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Neuroactive steroids (NASs) are naturally occurring steroids, which are synthesized 
centrally as de novo from cholesterol and are classified as pregnane, androstane, and 
sulfated neurosteroids (NSs). NASs modulate many processes via interacting with gam-
ma-aminobutyric acid (GABA), N-methyl-d-aspartate, serotonin, voltage-gated calcium 
channels, voltage-dependent anion channels, α-adrenoreceptors, X-receptors of the 
liver, transient receptor potential channels, microtubule-associated protein 2, neurotro-
phin nerve growth factor, and σ1 receptors. Among these, NSs (especially allopreg-
nanolone) have high potency and extensive GABA-A receptors and hence demonstrate 
anticonvulsant, anesthetic, central cytoprotectant, and baroreflex inhibitory effects. NSs 
are also involved in mood and learning via serotonin and anti-nociceptive activity via 
T-type voltage-gated Ca2+ channels. Moreover, they are modulators of mitochondrial 
function, synaptic plasticity, or regulators of apoptosis, which have a role in neuroprotec-
tive via voltage-dependent anion channels receptors. For proper functioning, NASs need 
to be in their normal level, whereas excess and deficiency may lead to abnormalities. 
When they are below the normal, NSs could have a part in development of depression, 
neuro-inflammation, multiple sclerosis, experimental autoimmune encephalitis, epilepsy, 
and schizophrenia. On the other hand, stress and attention deficit disorder could occur 
during excessive level. Overall, NASs are very important molecules with major neuropsy-
chiatric activity.
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OveRview OF NeUROACTive STeROiDS (NASs)

Neuroactive steroids are types of steroids—which are occurring naturally—in which they have an 
impact on behavioral actions, change excitability of neurons, and results in non-genomic effects and 
through the interaction with specific neurotransmitter receptors (1, 2). Adrenal glands, ovary, and 
brain are their sites of production either from cholesterol or via metabolism of deoxycorticosterone, 

Abbreviations: 3α5βPC, (3α, 5β)-20-oxo-pregnane-3-carboxylic acid; 3αHSD, 3alpha-hydroxysteroid dehydrogenases; 
3α-HSOR, 3alpha-hydroxysteroid oxidoreductase; 5αR, 5alpha-reductase;5αRI, 5alpha-reductase type I; ALLO/AP, allo-
pregnanolone; CA1, Cornu Ammo; CNS, central nervous system; Cyps, cytochrome P450; DHEA, dehydroepiandrosterone; 
DHEAS, dehydroepiandrosterone sulfate; DHP, dihydroprogesterone; EAE, experimental autoimmune encephalitis; GABA, 
gamma-aminobutyric acid; GABA-A, gamma-aminobutyric acid type A; GABA-AR, gamma-aminobutyric acid type A 
receptor; GABA-C, gamma-aminobutyric acid type C; HSD, hydroxysteroid dehydrogenases; LTP, long-term potentiation; 
MAP2, microtubule-associated protein 2; mIPSCs, miniature inhibitory postsynaptic currents; NASs, neuroactive steroids; 
NMDA, N-methyl-d-aspartate; NPCs, neural progenitor cells; NSs, neurosteroids; NSCs, neural stem cells; PHS, pregnenolone 
hydro-sulfate; PKC, protein kinase C; PMS, premenstrual syndrome; PR, progestrone receptor; PREG, pregnenolone; PREGS/
PregS/PS, pregnenolone sulfate; PROG, progesterone; StAR, steroidogenic acute regulatory protein; TBPS, t-butylbicyclophos-
phorothionate; THDOC, tetrahydrodeoxycorticosterone; THP, tetrahydroprogesterone; TRPM, mammalian transient receptor 
potential melastatin; VD, vitamin D; VDAC, voltage-dependent anion channels; VDR, vitamin D receptor; VGLCCs, L-type 
voltage-gated Ca2+ channels; VGTCCs, T-type voltage-gated Ca2+ channels.
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testosterone, and progesterone—which are their blood-borne 
precursors (3). Moreover, they are also produced in fetoplacental 
unit (4). The term “neurosteroids” (NSs) are coined since choles-
terol is the precursor for de novo synthesis of NSs centrally (5).

Grossly, NASs can be categorized into three classifications, 
namely, pregnane NSs, androstane NSs, and sulfated NSs. The 
pregnane NSs consisted of progesterone derivatives such as 
allopregnanolone (ALLO) (3α, 5α-tetrahydroprogesterone), 
epiallopregnanolone (3β, 5α-tetrahydroprogesterone), pregna-
nolone (3α, 5β-tetrahydroprogesterone), pregnenolone (PREG), 
dehydroepiandrosterone (DHEA), and allotetrahydrodeoxycor-
ticosterone (THDOC). The second classification consisted of 
androstane NSs including both androstanediol and etiocholanone 
and last sulfated NSs comprised dehydroepiandrosterone sulfate 
(DHEAS) and pregnenolone sulfate (PREGS) (6, 7). Furthermore, 
vitamin D is categorized as NSs as it affects the brain of younger 
children and adult population (8).

Dehydroepiandrosterone acts as an antagonist of cortisol 
and is the most plentiful circulating steroid among the NASs in 
human being (9). The sulfated form of this NASs—DHEA-S—has 
a relatively long half-life and in animal models, DHEA-S enhances 
cognitive and behavioral performance (10). Androstenol is a 
special type of NSs, acts as a pheromone, and has a higher struc-
tural resemblance to gamma-aminobutyric acid-A (GABA-A) 
receptor modulating NSs and as a result of this, act as a signaling 
molecule between entities of the alike species through interaction 
with GABA-A receptors (11).

Neurosteroids have revealed contribution in numerous 
nueropathophysiological processes, including aggression, mood, 
energy, general activity, learning, and memory processes (12), 
excitatory or inhibitory effects of different neurotransmitters, 
upsurge serotonin levels, and the inhibitory action against 
certain cortisol effects in the brain (12, 13). To realize their role, 
NSs involve allosteric modulation on GABA (14), N-methyl-d-
aspartate (NMDA) glutamate (15), serotonin (5-HT3) (16), and 
alpha-1 receptors (17).

BiOSYNTHeSiS OF NASs

Reduction of the A-ring from testosterone, deoxycorticosterone, 
and progesterone—which are steroid hormones—results in the 
formation of NSs (4). These chemicals can be released into the 
blood and act systemically or synthesized de novo locally, from 
cholesterol (5, 18), in certain brain parts such as in the pineal 
gland (the major site for neurosteroidogenic organ), cortex, 
glutamatergic neurons, hippocampus, and cortex (19).

Allopregnanolone and 7α-OH PREG were exceedingly 
produced and show vital roles in the Purkinje cell facilitation 
of survival in the juvenile quail (20) by suggested action via 
GABA-A receptor (21). Moreover, 3α-hydroxysteroid oxidore-
ductase (3α-HSOR) and 5α-reductase enzymes reduce the pre-
cursor steroid—found peripherally in skin and liver—to produce 
androstanediol, ALLO, and THDOC (22). Other substances 
are also involved in the induction of the biosynthesis of NASs: 
retinoic acids and vitamin D3 (VD3) induce neurosteroid pro-
duction in human glial cells in culture (23), VD3 via induction of 

CYP11A1 and HSD3B1 (steroidogenic genes), which is mediated  
by vitamin D receptor (24).

Some factors affect the biosynthesis of NASs. The mRNA 
expression of 5α-reductase type I (5α-RI) is markedly down-
regulated (~50%) by social isolation in neurons of the cortex, 
hippocampus, and basolateral nucleus of the amygdala. For 
instance, 65–75% and smaller (~35%) decrease of 5α-RI mRNA 
levels were observed in dentate gyrus granule cells and CA3 
glutamatergic pyramidal neurons, and frontal cortex pyramidal 
neurons (layer V/VI glutamatergic), respectively. Therefore, the 
anxiety and aggressive behavior seen in mice, which is socially 
isolated, is due to decreased ALLO biosynthesis in glutamatergic 
neurons of basolateral nucleus of the amygdala and frontal cortex 
(25) (Figure 1).

MeCHANiSMS OF ACTiON OF NASs

The mechanism of action of NASs can be classified as either (a) 
classical intracellular binding—in which this effect is described as 
a relatively slow genomic effects of NASs, (b) effect on membrane 
receptors and ion channels—in which this effect is also described 
as a rapid non-genomic effects of NASs, or (c) due to their meta-
bolic interconversion to traditional steroids in the brain whereas 
some steroids led to rapid membrane effects through interaction 
with certain neurotransmitter receptors (6, 26). In summary, NSs 
predominantly interact with ion channels and neuronal mem-
brane receptors—but not primarily through interaction with 
intracellular receptors—and thereby modulate brain excitability 
(27), preferably through direct modulation of ion channels that 
are ligand-gated, remarkably GABA-A receptors (28).

ReGULATiON OF NASs

In the supraoptic nucleus, oxytocin regulates neurosteroid modu-
lation of GABA-A receptors after parturition, since the activity of 
protein kinase C (PKC) and sensitivity of GABA-A receptor to 
ALLO in the supraoptic nucleus are mainly determined by the 
magnitude of activation of oxytocin receptor. Besides this, the 
GABA-A receptors are ALLO-resistant in breastfeeding mothers 
due to the presence of high level of oxytocin (29). The presence 
of relatively high concentrations of endogenous phosphatase dur-
ing late pregnancy enhances the sensitivity of ALLO to GABA-A 
receptors. On the other hand, sensitivity of ALLO is restored by 
these phosphatases stimulation—which are endogenous—or PKC 
inhibition when NSs are becoming insensitive to GABA-A recep-
tors (29). Instead, effect of the endogenous phosphatases and PKC 
on dissimilar phosphorylation sites or varying proteins of GABA, 
which are found on postsynaptic sites, may be prominent (30).

MeTABOLiSM OF NASs

Neuroactive steroids undergo multiple stages for their metabo-
lism. The brain microsomes process the two main NSs—PREG 
and DHEA—and convert them into their corresponding 
7α-hydroxylated derivatives. Consequently, the concentra-
tion of active metabolites may be regulated by the production 
of these 7α-hydroxylated derivatives of PREG (progesterone) 

http://www.frontiersin.org/Neurology/
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FiGURe 1 | Neurosteroids biosynthesis in the central nervous system. Abbreviations: 17b-HSD, 17b-hydroxysteroid dehydrogenase; 3a-HSD, 3a-hydroxysteroid 
dehydrogenase; 3b-HSD, 3b-hydroxysteroid dehydrogenase; 5a-R, 5a-reductase; AROM, aromatase; HST, sulfotransferase; P4507a, cytochrome 7a-hydroxylase; 
P450C11b,11b-hydroxylase; P450C17, cytochrome P450 17a-hydroxylase/C17,20-lyase; P450C21, 21-hydroxylase; P450scc, cytochrome P450 side-chain 
cleavage; STS, sulfatase (2, 22, 61).
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(31) and DHEA (androstenedione, a precursor of testosterone) 
(32). Furthermore, detection of a little amount of 7 beta-OH 
metabolites of DHEA and PREG has been possible, but their 
characterization was not definite (33).

eFFeCT OF NASs

effect of NSs on Receptors of Gamma-
Aminobutyric Acid
Effect on Gamma-Aminobutyric Acid-A Receptors
Gamma-aminobutyric acid-A receptors (GABA-A receptors) are 
major targets for central nervous system (CNS) actions of NSs 
(34). The GABA-A receptor function can be regulated by the 
NSs negatively or positively, based on the chemical structure of 
the steroid molecule (27, 35). Secondary to the activation of the 
inotropic GABA-A receptors by NASs, chloride ion influx and 
causes neuronal membrane hyperpolarization (36).

The GABA-A receptors have novel subunit dependence of 
NSs action (34). The neurosteroid THDOC favorably augment 
the receptor with σ subunit among the seven different classes of 

subunits (α1–6, β1–3, γ1–3, σ1–3, δ, ε, θ). High (micromolar) and 
low (nanomolar) levels of NSs cause direct activation of GABA-A 
receptors and allosteric augmentation of GABA-regulated cur-
rents, respectively (37). However, changing in the modulation of 
NSs and inhibition of intact GABA are observed in neurons found 
in thalamic relay of mice without delta subunit (34). Inhibition 
of PKC activity abolishes the effect of THDOC on GABA-A 
receptors through increased α-4 subunit phosphorylation and 
its accumulation on cell surface by accelerating the α-4 subunit 
insertion into cell membrane without altering their endocytosis 
(38). The increased effect of THDOC on the phosphorylation of 
α-4 subunit and its expression on the cell surface is counteracted 
by S443 mutation, which is the major site of phosphorylation of 
PKC in the α-4 subunit (39).

Neurosteroids increased expression of α4βγ2 GAB-A receptors 
at Cornu Ammo (CA1) pyramidal cell synapses. The diminution 
in decay time for GABAergic miniature inhibitory postsynaptic 
currents following short-term NSs exposure is mediated by this 
increased expression—containing α4-GAB-A receptors localized 
to synaptic sites (40).
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During stress, the balance between inhibition and excitation 
may be maintained by NSs, in which GABA-A receptor regulation 
is influenced by the levels of and duration of exposure to NSs (41). 
The plasma level of THDOC is elevated by about three times in 
the presence of stress (42). From the NASs, ALLO, THDOC, and 
androstanediol are powerful modulators of the GABA-A receptor 
(through positive allosteric modulation) and bring behavioral 
effects at low concentrations (1, 43, 44). Allopregnanolone was 
fully effective in suppressing GnRH release, mediated by interac-
tion with the GABA-A receptor. Moreover, ALLO suppressive 
action on GnRH release in vitro is completely offset by GABA-A 
antagonistic NASs, PREG-S (31).

Enhancement of NSs due to reduced sensitivity of GABAergic 
synaptic transmission in dentate granule cells lead to the blockage 
of seizure propagation into the hippocampus (45). In women, sei-
zure exacerbation during the perimenstrual period is contributed 
by the loss of NSs sensitivity of synaptic inhibition. In addition, 
withdrawal and elevated concentrations of NSs—observed in the 
mid-cycle—leads to exacerbation of seizure and anticonvulsant 
action, respectively (46). In the spinal cord, obliteration of induc-
tion of activity-dependent reflex plasticity is mediated by modu-
lation of GABA-A receptors dependent inhibition as a result of 
the activity of the progesterone and its metabolites (ALLO and 
THDOC) (47).

Neurosteroids are potent cytoprotectants when they interact 
with neuronal GABA-A receptor. The potency and efficacy of 
NSs is affected by their structure. Sulfated NSs (PREGS and 
DHEAS) fully efficacious (about 70%) than the non-sulfated (AP 
and 17α-OH-AP). This is further substantiated by the structural 
activity analysis that indicated the association of an increase 
in potency but decrease in efficacy of the cytoprotectants with 
the lack of the double bond between C-5 and C-6 in AP and 
17α-OH-AP and/or the hydroxyl group in the α-position (48).

Dehydroepiandrosterone and its sulfated metabolite, 
DHEA-S (more potent and more efficacious than the par-
ent compound), which interacted with the picrotoxin/TBPS 
(t-butylbicyclophosphorothionate) binding site in a competitive 
manner (49), decreased GABA-A receptor-mediated responses 
on serotonin (5-HT) neuronal firing regulation, and vice versa. 
Androsterone and its parent compound (DHEA) can affect 
anxiety, cognition, and mood through enhancement of the 
GABA-A mediated response (50). Inhibition of NMDA recep-
tor and potentiation of GABA-A receptor function, which will 
add on the clinical profile of anesthetic NASs—is mediated by 
another neurosteroid compound: (3α, 5β)-20-oxo-pregnane-
3-carboxylic acid (3α5βPC). Notwithstanding, a NAS with a 
better clinical activity can be produced by augmenting blockage 
of NMDA receptor and reducing GABA-A receptor blockage 
since a direct correlation of the optimal property of anesthetic, 
anticonvulsant, and neuroprotective with high micromolar con-
centrations of 3α5βPC—needed for blocking effect on GABA-A 
receptors—might not be observed (51).

Stereospecific non-genomic activity on GABA-A receptor 
results in sharp increases in blood concentrations of 3α-OH-
DHP—the neuroactive metabolite of progesterone—and ulti-
mately leads to enhancing the baroreflex inhibition of brainstem 
rostral ventrolateral medulla neurons (52).

Effect on Gamma-Aminobutyric Acid-C Receptors
The interaction of NASs with the ρ1-GABA-C receptor—which 
is very specific chiral sites—and 3α configuration of GABA-C 
receptor is required for all steroid actions. NSs have multiple sites 
for interaction with the ρ1 receptor of GABA-C than GABA-A. 
However, a similarity in qualitative measurements and GABA-A 
receptor potentiation was observed in sites mediating 5β-reduced 
steroids inhibition and potentiation of the ρ1 receptor by 5α 
receptors (53).

Allopregnanolone, alphaxalone, and 5α-THDOC prolong 
the decay time and potentiate the GABA-induced currents. On 
the contrary, the ρ1-GABA-evoked current is inhibited by the 
co-administration of GABA with 5β-THDOC, pregnenolone, or 
5β-DHP. The degree of inhibition and potentiation of ρ1-GABA 
provoked currents by NASs is reliant on the concentration of 
GABA. Since the application of GABA alone, following treatment 
with NAS, did not revert back to the control level for an extended 
period of time, a prolonged and persistent effect was observed on 
the effects of the NASs on ρ1 receptor channels. The 5α deriva-
tives were potentiators (only at exceedingly low concentrations 
of GABA), whereas the 5β compounds were inhibitors of the 
GABA-evoked currents (54).

effect of NSs on N-Methyl-d-Aspartate 
Receptors
Neurosteroids (PS and PHS) control the NMDA receptors 
dependent (4) and independent (L-type calcium channel-
dependent) long-term potentiation (LTP) positively at a lower 
dose (1–5 mM) and negatively at a higher concentration (15 mM) 
(sigma-receptor function blockade) (55). Positive modulation is 
through increased Ca2+ influx into presynaptic NMDA receptors 
(containing NR2D subunits) that raise the probability of gluta-
mate discharge in hippocampal slices as studied in rats less than 
6 days age (56, 57). The positive regulation was observed to be 
negatively affected by antepartum ethyl alcohol exposure due to 
a change in NMDA receptor phosphorylation (58).

Pregnenolone sulfate stimulates a continued increase in the 
NMDA effect from 200 to 400%, by integration of extra subunit 
specific (σ1) receptors into the surface membrane (57, 59). This 
integration requires G-protein-coupled activation of PKC and 
PLC and increased Ca2+ ion (Figure 2) (59). The movement of 
NMDA receptors between the membrane and intracellular pools 
is required for maintenance and plasticity of synaptic connec-
tions; however, deregulation of the receptor movement has been 
associated with neuropsychiatric disorders (60). Hence, NMDA 
receptor surface expression plays a great role in disorders of 
NMDA receptor trafficking or provides a basis for the develop-
ment of therapeutic interventions (59).

effect of NSs on voltage-Gated Calcium 
Channel Receptors
Effect on L-Type Voltage-Gated Calcium Channels
Allopregnanolone (APα) (3α-hydroxy-5α-pregnan-20-one) 
promotes proliferation of hippocampal neural progenitor cells in 
rat and cerebral cortical neural stem cells (NSCs) in human at a 
nanomolar levels, and inhibits the proliferation of polysialylated 
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FiGURe 2 | PregS-stimulated trafficking of functional N-methyl-d-aspartate (NMDA) receptors to the cell surface via a non-canonical G protein-, PLC-, Ca2+-, and 
protein kinase C (PKC)-dependent mechanism. DAG, diacylglycerol; IP3R, IP3 receptor; NMDA, (N)methyl-d-aspartate; PIP2, phosphatidylinositol 4,5-bisphosphate (59).
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form of the neural cell adhesion molecule (PSA-NCAM) at 
micromolar levels (62). This mechanism requires activation of 
L-type voltage-gated Ca2+ channels (VGLCCs) (63). In mature 
neurons, APα increases chloride influx via allosteric modulation 
of the GABA-A receptor, thereby hyperpolarizing the neuronal 
membrane potential and decreasing neuron excitability (36). In 
marked contrast, it leads to an efflux of chloride in immature neu-
rons, which causes depolarization of the membrane and opening 
of VGLCCs, then rises in intracellular Ca2+ (63, 64). Finally, this 
can trigger calcium-dependent mechanisms of mitosis in early 
precursor cells and human NSCs to promote neurogenesis (65).

Effect on T-Type Voltage-Gated Calcium Channels
The 5β-reduced NASs are powerful inhibitors of the T-type Ca2+ 
channels in rat peripheral sensory neurons in  vitro and very 
effective peripheral anti-pain agents in vivo, strongly proposing 
that T-type Ca2+ channels are involved in peripheral somatic 
nociception (66). Thus, the 5β-reduced steroids are hopeful new 
agents for studying the role of T-type Ca2+ channels in peripheral 
nociception and are potentially useful targets for the development 
of new pain therapies (67).

effect of NSs on Serotonin Receptor
Neurosteroids (DHEA) interact with ligand-gated serotonin 
(5-HT) receptors to enhance their firing action through σ1 
receptors (68). This stimulates neurogenesis in the hippocampal 
dentate gyrus and shields it from glucocorticoids’ detrimental 
attack (69).

Since DHEAs interact with σ1 receptors to bring their effect, 
σ1 receptor antagonists could eliminate the effect of DHEAs, 

whereas agonists of the receptor could simulate the blocking 
effect of DHEAs on 5-HT-evoked glutamate release via activa-
tion of Gi protein pyramidal cells of rat prelimbic cortex. At a 
lower concentration (1 µM), DHEAs could significantly hinder 
the 5-HT-evoked glutamate release in brain region by preventing 
its binding with 5-HT3. In reverse, DHEAs effect can be lessened 
with the rise in concentration due to promoting spontaneous 
glutamate release (70).

There is a relationship between central serotonergic activ-
ity and circulating ALLO concentrations. This is evidenced by 
an increase in ALLO concentrations in luteal phase after the 
administration of l-tryptophan in both controls and women 
with premenstrual syndrome (PMS) (greater increase in ALLO 
concentrations with PMS) (71).

effect of NSs on α2-Adrenergic Receptors
Neurosteroids (PREGS) blocks LTP of excitatory synapses in 
rat medial prefrontal cortex (mPFC) via interaction with α2-
adrenoreceptors secondary to enhancement of Gi proteins. After 
treatment of mPFC slices with the α2-adrenoreceptor inhibitor 
“yohimbine,” the blocking effect of PREGS on the induction of 
LTP was completely inhibited (72).

effect of NSs on Transient Receptor 
Potential Channels
Mammalian transient receptor potential melastatin (TRPM) 
proteins—such as TRPM1 and TRPM3—get together into ion 
transporting canals and respond to temperature, osmolarity, 
various chemical signals, change in membrane voltage, oxidative 
stress, and intracellular calcium (73). PREGS, pregnenolone, 
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TABLe 1 | Effect of neurosteroids on various receptors.

Receptor Neurosteroid effects Reference

GABA-A THDOC, 
androstanediol, AP, 
PREGS, 3α5βPC

Neuronal membrane hyperpolarization, cytoprotectants, anesthetic, anticonvulsant, neuroprotective (+), suppressing 
GnRH release, blockage of seizure propagation into the hippocampus (−)

(27, 34–36)

GABA-C AP, 5α-THDOC, 
5β-DHP

Potentiation of GABA-induced currents (+) at high concentration by 5α and (−) by 5β (53, 54)

NMDA PS, PHS Raise glutamate discharge in hippocampal slices (+) at lower dose and (−) at higher dose (55–57)

L-type 
VGLCCs

APα Promotes proliferation of hippocampal neural progenitor cells at nanomolar level, promote neurogenesis (+) (62, 65)

T-type 
VGLCCs

5β-reduced NASs Anti-pain agents in vivo (−) (66)

Serotonin AP, DHEA Neurogenesis in hippocampal dentate gyrus (+) (69)

α2-adrenergic PS Blocks long-term potentiation (−) (72)

TRPM PREGS, PS, 
epipregnanolone 
sulfate

Respond to temperature, osmolarity, various chemical signals, change in membrane voltage, oxidative stress, and 
intracellular calcium (+)

(73–76)

σ1 (Reward) PEG, DHEA, PR facilitated an acquisition of cocaine-induced conditioned place preference (+) (79)
Liver X DHP Protecting diabetes patients from peripheral neuropathy (+) (82)

PROG
VDAC NAS Regulate mitochondrial function, synaptic plasticity, regulators of apoptosis (+) (83)
MAP2 PREG, MePREG stimulate microtubule polymerization (+) (84)
NGF DHEA neuronal survival and neurogenesis, immune, reproductive, cardiovascular systems (+) (85)

(+) = potentiation of the receptor, (−) = inhibition of the receptor.
3α5βPC, (3α, 5β)-20-oxo-pregnane-3-carboxylic acid; ALLO/AP, allopregnanolone; DHEA, dehydroepiandrosterone; DHEAS, dehydroepiandrosterone sulfate; DHP, 
dihydroprogesterone; GABA-A, GABA-C, gamma-aminobutyric acid type C; MAP2, microtubule-associated protein 2; NASs, neuroactive steroids; NMDA, N-methyl-d-
aspartate; PHS, pregnenolone hydro-sulfate; PR, progesterone receptor; PREG, pregnenolone; PREGS/PregS/PS, pregnenolone sulfate; PROG, progesterone; THDOC, 
tetrahydrodeoxycorticosterone; TRPM, mammalian transient receptor potential melastatin; VDAC, voltage-dependent anion channels; VGLCCs, L-type Voltage-gated Ca2+ channels; 
VGTCCs, T-type voltage-gated Ca+2 channels.
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and epipregnanolone sulfate were found to potentiate TRPM3 
activity. As compared to pregnenolone, PREGS shows compa-
rable potency but greater than 10-fold higher intrinsic activity 
(74, 75), and it stimulates TRPM3 activity via heat-dependent 
modulation (76).

effect of NSs on Reward Pathway via the 
σ1 Receptor
The σ1 receptor is an intracellular neuronal protein found in 
endoplasmic reticular, plasma, nuclear, and mitochondrial 
membranes. The ligands of σ1 receptor potently modulate intra-
cellular Ca2+ mobilizations and extracellular Ca2+ influx (77, 78). 
Pregnenolone, DHEA, and progesterone interfere with cocaine-
induced reward path way in mice. DHEA and its precursor PREG 
facilitate cocaine-induced conditional place preference acting as 
σ1 receptor agonists (79).

effect of NSs on Liver X Receptors (LXRs)
Liver X receptors have two isoforms, LXRα (NR1H3) and LXRβ 
(NR1H2), classified under nuclear receptor superfamily. LXRα is 
highly found in liver and minimally in the intestine, macrophages, 
adipose tissue, lung, kidney, and adrenal gland; whereas LXRβ is 
broadly expressed (80). Oxysterols (oxidized cholesterol) bind 
with LXRs and induce expression of genes which eradicate harm-
ful cholesterol level by efflux through ATP-binding cassette fam-
ily of transporters (81). Activation of LXRs promote cholesterol 
disposal, steroidogenesis in the adrenal gland, regulation of StAR 
expression, restores normal StAR mRNA levels and completely 

restores the mRNA levels of P450scc to non-diabetic levels, and 
raises the local levels of NASs like PROG and DHP. These func-
tions play a role in protecting diabetes patients from peripheral 
neuropathy (82).

effect of NSs on voltage-Dependent Anion 
Channels (vDAC)
Interactions of NASs with VDAC isoforms (prominent brain pro-
tein) are important to regulate mitochondrial function, synaptic 
plasticity, or apoptosis. A role in avoiding apoptosis explains the 
neuroprotective actions of the NASs (83).

effect of NSs on Microtubule-Associated 
Protein 2 (MAP2)
Pregnenolone and its synthetic analog—MePREG interacts with 
MAP2 at an unknown binding site. Then, it stimulates micro-
tubule polymerization (rat brain and from PC12 cells) and the 
extension of neuritis in pheochromocytoma cells that are exposed 
to nerve growth factor (NGF) (84).

effect of NSs on Neurotrophin NGF 
Receptors
Acting as a neurotrophic factor, DHEA affects neuronal survival 
and neurogenesis during development and in aging in the brain 
via interacting with pro-survival TrkA and pro-death p75 (NTR) 
membrane receptors of neurotrophin NGF. This stimulation 
inhibits the apoptotic loss of NGF receptor positive sensory and 
sympathetic neurons. Furthermore, it provides a mechanistic 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


7

Tuem and Atey Neuroactive Steroids

Frontiers in Neurology | www.frontiersin.org August 2017 | Volume 8 | Article 442

explanation for the multiple actions of DHEA in other peripheral 
biological systems expressing NGF receptors, such as the immune, 
reproductive, and cardiovascular systems (85) (Table 1).

iNvOLveMeNT OF NASs iN 
NeUROLOGiCAL DiSeASeS

Epilepsy-related with menstruation (catamenial epilepsy) cur-
rently has no specific approved treatments. This kind of epilepsy 
is as a result of enhanced excitability due to withdrawal of NSs, 
which in turn leads to upregulation of α4 subunit and linked with 
upregulation of Egr3 and reduced synaptic inhibition. In addition, 
neurosteroid withdrawn mice were amazingly less sensitive to the 
antiseizure effects of diazepam, and progesterone receptor (PR) 
knockout animals were also less sensitive to the protective actions 
of diazepam during neurosteroid withdrawal (86). Neurosteroid 
(ALLO) has broad-spectrum anticonvulsant activity and recently 
it is approved for investigational use to treat an individual with 
prolonged super refractory status epilepticus (87). Other NS 
like APα also has anxiolytic and sedative-hypnotic properties 
with no indicated toxicological adverse events in healthy human 
volunteers and in children with refractory infantile spasms 
(88–90). Further investigations are presently ongoing to identify 
the neurogenic potential of APα in rodent models of aging and 
Alzheimer’s disease (AD) (63).

The concentrations of testosterone, cortisol, PROG, DHEA, 
DHEAS, and estrogen levels have been found to be changed in 
some patients with schizophrenia. The level of DHEA contrari-
wise associated with negative symptom severity in drug-free men 
with first-episode psychosis (91). In major depressive episodes, 
NS, mainly ALLO and pregnenolone, are found to be diminished 
in both the cerebrospinal fluid (CSF) and the plasma of untreated 
patients (25). However, following effective psychopharmaco-
logical treatment concentrations of ALLO in depressed patients 
increase to normal levels. Several findings support the hypothesis 
of an antidepressant effect of ALLO (92).

Stress-induced groups of rats showed declined amount of 
DHEA-S, which indicates that DHEA may play an important 

role in the development of adaptive responses to a stressful event 
(93). Higher blood level of DHEA and DHEAS were related with 
less experience of symptoms in attention deficit hyperactivity 
disorder (ADHD), in particular, hyperactivity symptomatology. 
However, the effect in ADHD patients remains elusive (94). 
Alterations in gene expression of the enzymes which synthesize 
NSs may be involved in the pathology of AD. In early AD, there is 
an attempt to increase the biosynthesis of NSs and NASs through 
increased mitochondrial import of cholesterol (95).

The amount of AP and DHEA showed significant reduction 
in specimens of multiple sclerosis white matter compared to 
controls. Allopregnanolone has a role in controlling neuro-
inflammation and protection of demyelination and axonal loss in 
models of multiple sclerosis by interacting with GABA-A recep-
tor. Experimental autoimmune encephalitis (EAE) is character-
ized by disordered neurosteroidogenic machinery, which causes 
reduced expression of the enzymes (3-alpha-hydroxysteroid 
dehydrogenase) involved in AP biosynthesis, related with reduced 
AP levels in the CNS. Since AP has a role in controlling neuro-
inflammation and protection of demyelination and axonal loss, it 
also used for the treatment of EAE associated myelin and axonal 
injury (96).

Levels of allopregnanolone and 5-DHP were found reduced 
in the CSF of Parkinson’s disease (PD) patients signifying a part 
for these progesterone metabolites in the disease. Moreover, the 
enzymes which synthesize allopregnanolone, mRNA expression 
of 5-reductase type 1 (SRD5A1) was significantly reduced in 
peripheral blood mononuclear cells of PD patients, proposing a 
generalized defect in the enzymatic machinery that regulates the 
metabolism of progesterone (97).
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