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Molecular Mechanisms That 
Contribute to Bone Marrow Pain
Jason J. Ivanusic*

Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia

Pain associated a bony pathology puts a significant burden on individuals, society, and 
the health-care systems worldwide. Pathology that involves the bone marrow activates 
sensory nerve terminal endings of peripheral bone marrow nociceptors, and is the likely 
trigger for pain. This review presents our current understanding of how bone marrow 
nociceptors are influenced by noxious stimuli presented in pathology associated with 
bone marrow. A number of ion channels and receptors are emerging as important 
modulators of the activity of peripheral bone marrow nociceptors. Nerve growth factor 
(NGF) sequestration has been trialed for the management of inflammatory bone pain 
(osteoarthritis), and there is significant evidence for interaction of NGF with bone marrow 
nociceptors. Activation of transient receptor potential cation channel subfamily V member 
1 sensitizes bone marrow nociceptors and could contribute to increased sensitivity of 
patients to noxious stimuli in various bony pathologies. Acid-sensing ion channels sense 
changes to tissue pH in the bone marrow microenvironment and could be targeted to 
treat pathology that involves acidosis of the bone marrow. Piezo2 is a mechanically gated 
ion channel that has recently been reported to be expressed by most myelinated bone 
marrow nociceptors and might be a target for treatments directed against mechanically 
induced bone pain. These ion channels and receptors could be useful targets for the 
development of peripherally acting drugs to treat pain of bony origin.
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iNTRODUCTiON

Pain is associated a number of different bony pathologies or disease and puts a significant  
burden (both in terms of quality of life and cost) on individuals, society, and the health-care systems 
worldwide (1, 2). For example, nearly 10% of men and 20% of women over the age of 60 years have 
symptomatic osteoarthritis. Over 50% of postmenopausal white women in northern parts of the 
USA are estimated to have osteopenia and a further 30% to have osteoporosis. Metastatic bone pain 
is the most common pain syndrome reported in cancer patients, and up to 50% of patients report 
the pain being poorly managed by present treatments (2). This burden is expected to increase with 
advances in modern medicine that prolong life expectancy, because many of the conditions that 
cause bone pain are intractable and develop late in life. Pain is the major reason why these patients 
present to the clinical environment. Opioids and non-steroidal anti-inflammatory drugs (NSAIDs) 
are used to treat mild to severe bone pain, but therapeutic use over long periods required to treat 
chronic or intractable bone pain is limited by undesirable side-effects including sedation, respiratory 
depression, tolerance, risk of addiction, gastrointestinal effects, and renal toxicity. Long-term use of 
opioids and NSAIDs in this setting is also contraindicated because of potentially undesirable effects 
on bone remodeling/healing (3–5), which may further complicate the underlying pathology. A major 
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FigURe 1 | Factors that contribute to activation of peripheral bone marrow 
nociceptors. Mast cells and macrophages, and cells associated with various 
different types of tumor in bone, release cytokines, interleukins, growth 
factors (including NGF), and other inflammatory mediators (represented by 
red circles). These act directly on the peripheral nerve terminal endings of 
sensory neurons that innervate the bone marrow. Destruction of bone by 
osteolytic processes as well as excessive mechanical stress or trauma can 
also lead to injury or distortion of bone that activates mechanically sensitive 
bone marrow nociceptors. Osteoclast-mediated bone remodeling and 
osteolytic tumors are accompanied by the production of extracellular protons 
(represented by blue circles) which are known to activate nociceptors in other 
tissues and likely also do so in bone marrow.
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impediment to the development of alternative strategies to treat 
bone pain is the significant challenge of experimental access to 
nociceptors in bony tissue. A better understanding of how these 
nociceptors transduce and code information about noxious 
stimuli applied to bone and how this is changed in pathological 
situations is critical to the development of more targeted and 
specific therapies to treat bone pain.

This review explores recent advances in our current under-
standing of mechanisms that generate and maintain bone pain, 
with a particular focus on the function of peripheral nociceptors 
that innervate bone marrow and how their molecular phenotype 
influences their function. A number of ion channels and recep-
tors are now emerging as important modulators of the activity of 
peripheral bone marrow nociceptors. Identifying these regulators 
of nerve activity in bone nociceptors and better understanding 
their role in generation of bone pain could open up avenues for 
development of tools to selectively manipulate pain originating 
from bone.

PATHOLOgY OR DiSeASe OF THe BONe 
MARROw ACTivATeS BONe MARROw 
NOCiCePTORS AND PRODUCeS PAiN

Bone cancers, fractures, intraosseous engorgement syndrome, 
osteoarthritis, and osteomyelitis produce inflammation and/or 
an increase in intraosseous pressure that can activate peripheral 
sensory nerve terminals within the bone marrow through the release 
of inflammatory mediators and/or by mechanical compression 
or distortion (6–12) (Figure  1). Inflammatory mediators that 

have been implicated include cytokines, endothelins, growth 
factors (including NGF), and prostanoids, and most of these 
have been shown to directly excite nociceptors and contribute 
significantly to pain profiles in skin, joints, and viscera (13). The 
role of inflammation is easy to appreciate in conditions such 
as bone marrow edema and osteomyelitis because these are 
defined by the presence of inflammation. Osteoarthritis is also 
now considered an inflammatory disease of subchondral bone 
(14), and bone cancers also have a significant inflammatory 
component (15). Destruction of bone by osteolytic processes 
as well as excessive mechanical stress or trauma can lead to 
injury or distortion of bone that likely activates mechanically 
sensory nerve terminals in bone marrow (3, 8, 12) (Figure 1). 
Agents known to act by reducing inflammatory processes (e.g., 
NSAIDs and specific COX inhibitors) produce partial analgesia 
in animal models of cancer-induced bone pain (16–18) and pro-
inflammatory cytokines contribute to mechanically induced 
nociceptive responses in fracture models (19). Osteoclast-
mediated bone remodeling is accompanied by the production of 
extracellular protons (hydrogen ions), which are known to acti-
vate nociceptors in other tissues (20–22) (Figure 1). Increased 
osteoclast activity is a hallmark of osteoporosis (23) and can also 
occur in some types of bone cancer (24, 25). Bisphosphonates 
are anti-bone resorption drugs which inhibit osteoclast activity 
and relieve pain in patients with osteoporosis (26, 27), and in 
animal models of bone cancer-induced pain (28, 29). Thus, pro-
tons released during osteoclast-mediated bone remodeling and/
or from osteolytic tumors in the bone marrow are a likely trigger 
of pain originating in the bone marrow. Taken together, these 
studies highlight that pathology of the bone marrow is associ-
ated with changes that likely activate bone marrow nociceptors 
and contribute to pain.

BONe MARROw NOCiCePTORS

In general, pain is transmitted by two main classes of periph-
eral nociceptors (30). Aδ nociceptors are small-diameter 
myelinated sensory neurons that transmit fast, intense pain, 
of the sort experienced in response to fracture, acute inflam-
mation, or mechanical instability of bone. C nociceptors are 
small-diameter unmyelinated sensory neurons that encode 
slow, aching pain of the sort experienced in more chronic 
conditions, such as osteoarthritis or bone cancer. Both Aδ- and 
C-fiber sensory neurons innervate the bone marrow (31–36), 
contain molecular markers for nociceptors, such as substance 
P, calcitonin gene-related peptide (CGRP), tropomyosin recep-
tor kinase A (TrkA), and transient receptor potential cation 
channel subfamily V member 1 (TRPV1) (33, 35, 37–42), and 
are responsive to noxious chemical and mechanical stimuli  
(31, 32, 42–45). Some larger diameter sensory neurons with 
specialized/encapsulated nerve terminal endings have been 
reported in the mandibular periosteum of cats (46, 47), human 
long bone periosteum (48), and Haversian canals in canine 
cortical bone (49), but not in the bone marrow.

Injection of physiological saline under pressure into the 
bone marrow of rats leads to activity dependent changes in 
Fos protein expression in the superficial dorsal horn (50, 51). 
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Fos is used routinely to study activity dependent changes in 
central neurons that are activated either directly, or indirectly 
by input from peripheral nociceptors, and the superficial dorsal 
horn of the spinal cord has a well-established role in process-
ing of nociceptive input (52). Spinal dorsal horn neurons also 
respond to balloon inflation within the bone marrow of the rat 
femur (36), and electrical stimulation of nerves that enter the 
bone marrow of the cat humerus generates evokes potentials 
in topographically relevant areas of the primary and secondary 
somatosensory cortices (53). These findings are consistent with 
a primary role for sensory neurons that innervate the bone mar-
row in nociception.

While we know a lot about the physiology of sensory neurons 
that innervate the periosteum, very little is known of those that 
innervate the bone marrow (54). This is important to consider 
because almost all bony pathologies involve bone marrow or 
subchondral bone, and so bone marrow nociceptors are critical 
to the experience and management of bone pain. Bone marrow 
is a very difficult medium to work with. It is located deep within 
the body and is encased by an outer shell of hard compact bone, 
making experimental access difficult. This has hampered past 
attempts to study physiological mechanisms of bone pain. Until 
recently, there were only two published studies of how periph-
eral sensory neurons respond to noxious stimulation of bone 
marrow, and both were very limited in scope (31, 32). In these 
studies, whole-nerve recordings were made from branches 
of the tibial nerve, while mechanical, thermal, or chemical 
stimuli were applied to the marrow cavity of anesthetized dogs. 
Increases in whole-nerve activity were evoked by mechanical 
and chemical stimulation, but no attempts were made to explore 
the activity of single units and so it  was not clear how individual 
bone marrow nociceptors respond to different types of noxious 
stimuli. Nonetheless, both studies showed that an increase 
in intraosseous pressure of approximately 3–5 times that of 
normal intraosseous pressure was required to mechanically 
activate the lowest threshold units in the whole-nerve recordings. 
The thresholds they reported were between 100 and 130 mmHg. 
These very high pressures required for activation of bone mar-
row mechano-receptors are unlikely to be experienced under 
normal physiological conditions, and are of the order of mag-
nitude experienced by humans in pathological conditions such 
as intraosseous engorgement syndromes (6, 55). Application of 
known algesic substances (potassium chloride, acetylcholine, 
histamine, serotonin, and bradykinin) to the bone marrow in 
one of these studies also produced an increase in whole-nerve 
ongoing activity (32). Thermal sensitivity was tested in this 
same study (32), but only secondary to ischemia produced by 
experimental ligature and application of vasoconstrictors, so it 
is not clear if the activity was related to temperature changes or 
other changes that occurred with ischemia.

More recently, an in  vivo bone–nerve preparation has 
been developed in our laboratory to record the activity of 
bone marrow nociceptors that innervate the rat tibial marrow 
cavity (42, 45). In these studies, recordings were made from 
a small nerve, proximal to its entry into bone, in response 
to noxious mechanical stimulation delivered by increasing 
intraosseous pressure with injections of isotonic saline. Spike 

discrimination software was used to isolate single Aδ nocicep-
tors from the whole-nerve recordings. The lowest thresholds 
for mechanical activation in the whole-nerve recordings were 
consistent with the reports described above. However, many 
of the single mechanically sensitive Aδ units that were isolated 
had thresholds for mechanical activation that were significantly 
greater (up to 230  mmHg). These studies provided evidence 
that single Aδ bone marrow nociceptors are capable of sign-
aling either the intensity or rate of change in intraosseous 
pressure (45). It was suggested that those that responded to the 
intensity of sustained intraosseous pressure may signal pain 
associated with pathologies that involve sustained increases in 
pressure within bone, for example intraosseous engorgement 
syndrome. In contrast, those that responded to changes in the 
rate of change in intraosseous pressure are likely to signal pain 
associated with rapid changes in pressure within the marrow 
cavity, for example, during needle aspiration of bone marrow or 
emergency intraosseous vascular access. The response of single 
bone marrow nociceptors with C-fiber conduction velocities 
has not yet been reported.

Sensitization of peripheral bone nociceptors has been 
used to explain, in part, the increased sensitivity of patients 
to mechanical stimuli in various bony pathologies (8, 16, 56). 
Sensitized peripheral nociceptors are hyper-excitable, that 
is, they have reduced thresholds for activation and increased 
activity in response to a given stimulus, making them more 
sensitive to noxious stimuli, thereby contributing to increased 
pain sensation (57). These changes are collectively referred to 
as peripheral sensitization. Peripheral sensitization typically 
occurs as a result of repeated mechanical or thermal stimula-
tion, or in response to known algesic substances or inflam-
matory mediators (57). At the cellular level, changes in the 
distribution and/or function of ion channels and receptors 
determine peripheral sensitization (57, 58). Much work has 
focused on the role of transient receptor potential channels, 
voltage gated sodium channels (VGSCs), and the neurotrophic 
factor receptors. Post-translation modifications of some of 
these in peripheral nerve terminals contribute to acute changes 
in sensitivity and pain (57, 59–61). Long-term changes in their 
level of expression, driven by transcriptional regulation at the 
soma of peripheral sensory neurons, contribute to prolonged 
changes in sensitivity and persistent pain (57, 59, 60, 62, 63).

Evidence of sensitization of peripheral nociceptors has 
been provided in animal models of bone cancer-induced pain  
(64, 65). In these studies, the authors showed increased spon-
taneous activity and reduced heat thresholds for cutaneous 
C-fiber afferent neurons recorded from the skin around the 
tumor bearing bone, not of bone afferent neurons. Direct evi-
dence of peripheral sensitization in bone marrow nociceptors 
has more recently been reported in response to application of 
at least some algesic substances. After application of capsaicin 
(a TRPV1 agonist) or nerve growth factor (NGF), some Aδ 
bone marrow nociceptors had reduced thresholds for activation 
and increased discharge frequency in response to mechanical 
stimulation (42, 45). Thus, bone marrow nociceptors can be 
sensitized to mechanical stimuli and this likely contributes to 
mechanically induced bone pain.
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NgF AND iNFLAMMATORY BONe PAiN

Nociceptors can be classified into two groups based on their 
response to NGF or glial cell line-derived neurotrophic factor 
(66). NGF acts through the p75 and TrkA receptors. The p75 
receptor is a 75-kDa protein that binds all neurotrophins with 
similar affinity. TrkA is a member of the Trk receptor family, 
which are a group of homologous 140  kDa proteins that bind 
specific neurotrophins (with high affinity). TrkA confers speci-
ficity for NGF. In humans, mutations of the TrkA genes have 
been reported in individuals that have a congenital insensitivity 
to pain (67–69). There is an increase in NGF levels in human 
pain conditions that are characterized by inflammation, such as 
arthritis (70, 71), and NGF applied exogenously to the human 
skin or muscle produces hyperalgesia or allodynia (72, 73). In 
animal studies, TrkA receptor knockout mice are hypoalgesic 
(74) and transgenic animals overexpressing NGF are hyperal-
gesic (75). As in humans, NGF is elevated in animal models of 
acute and chronic pain conditions and NGF sequestration allevi-
ates hyperalgesia in animals (76–80). Importantly, most of these 
studies have used inflammatory models or examined conditions 
that have a significant inflammatory component, reinforcing a 
role for NGF signaling inflammatory pain.

Present evidence clearly indicates a role for NGF in inflamma-
tory pain in various tissues, and this has led to the development of 
NGF sequestration for management of inflammatory bone pain 
(81). As detailed above, bone cancers, fractures, osteoarthritis, 
and osteomyelitis produce inflammation that can activate periph-
eral bone marrow nociceptors through the release of inflam-
matory mediators (Figure 1), and these include growth factors 
such as NGF. Sequestering NGF by systemic administration of 
anti-NGF antibodies can alleviate, in part, pain-like behaviors 
in animal models of bone cancer and fracture-induced pain and 
also inflammatory pain of other tissue systems (82–88). This 
approach has been successfully applied in clinical trials to manage 
osteoarthritic pain, but many of the patients receiving the treat-
ment developed rapidly progressive osteoarthritis and required 
joint replacement (89–93). The problem was so severe that it 
temporarily halted phase III clinical trials. The halt has now been 
lifted by the FDA and a number of new trials are under way (94). 
No attempt is made here to provide an up-to-date review of this 
literature. Instead, below is provided a review of the mechanisms 
by which NGF could interact with bone marrow nociceptors to 
mediate bone pain.

Mantyh and colleagues have demonstrated that TrkA is 
expressed in a substantial proportion of peripheral nerve ter-
minals in murine long bones (87, 95–97). They used antibodies 
directed against CGRP and NF200 to identify peptidergic and/
or myelinated sensory nerve terminals in bone, respectively. 
Over 80% of these expressed TrkA. Bone marrow sensory nerve 
terminals that express TrkA have also been reported in the 
rat tibia, but in this case they were defined by the absence of 
coexpression of tyrosine hydroxylase, a marker of sympathetic 
nerve terminal endings (42). Approximately two-thirds of DRG 
neurons retrograde labeled from the rat tibia express TrkA and 
p75 receptors (42), and a similar proportion is reported for DRG 
neurons projecting to subchondral bone of the rat femur (41). 

Importantly, the relative proportion of TrkA + sensory neurons 
that innervate bone is significantly greater than in published 
reports of TrkA  +  sensory neurons innervating skin, muscle, 
joint, and viscera (41, 98, 99), suggesting that NGF signaling may 
be more important in bone pain than in pain arising from other 
tissues. Coexpression of TrkA with TRPV1 and Nav1.8, but not 
Nav1.9, in retrograde labeled bone marrow nociceptor neurons 
further suggests that TRPV1 and/or Nav 1.8 may contribute to 
NGF-induced signaling in these neurons (42).

NGF applied directly to the bone marrow rapidly activates 
and alters the excitability of single mechanically sensitive bone 
marrow nociceptors in the rat in vivo bone–nerve preparation 
described above (42). The changes in activity reported occur 
with a very short latency and resolve within 15–30  min, and 
so the effect of a bolus of locally infused NGF appears to be 
transient. The same dose of NGF applied to the tibia also 
alters weight-bearing bearing in the hind limbs with a similar 
time-course (42). A function blocking anti-TrkA antibody and 
a mast cell stabilizer was used in this study to show that NGF-
induced changes in ongoing activity and mechanical sensitivity 
are dependent on signaling through the TrkA receptor, but are 
not affected by the activity of mast cells, respectively. Together, 
the findings suggest that acute behavioral responses to NGF in 
bone can be explained at least in part by the rapid activation 
and/or sensitization of mechanically activated bone marrow 
nociceptors, and that NGF needs to be present in around nerve 
terminals in bone for these changes to be maintained. This may 
explain why sequestering NGF after inflammatory pain has 
already developed attenuates pain behaviors in animal models 
of bone cancer and skeletal fracture (100).

Binding of NGF to TrkA on peripheral nerve terminals of 
peptidergic nociceptors, and the subsequent internalization 
and retrograde transport of the NGF/TrkA receptor complex 
(101) results in sensitization of primary afferent neurons that 
involves upregulated expression of a number of NGF signaling 
molecules, including VGSCs (62, 63) and TRPV1 (102–104). 
These changes can in turn increase the excitability of primary 
afferent neurons and drive persistent changes in the nervous 
system that are known to occur during inflammatory pain. 
However, it appears that there is no significant change in the 
expression of any of these channels subsequent to experimental 
inflammation of the bone marrow, even at time-points at which 
animals display significant pain behavior (42). This suggests 
that sensitization in inflammatory bone pain may not involve 
long-term changes in protein expression in the soma of bone 
marrow nociceptors and that retrograde transport of the NGF/
TrkA complex and/or upregulation NGF signaling molecules 
does not appear to be important for the maintenance of persis-
tent pain derived from inflammation in bone.

THe ROLe OF TRPv1 iN SeNSiTiZATiON 
OF BONe MARROw NOCiCePTORS

TRPV1 is a non-selective ligand-gated cation channel that 
integrates many physical and chemical stimuli, including 
noxious heat (>43°C), protons (pH < 6), capsaicin, and other 
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inflammatory mediators (105). Capsaicin (a TRPV1 agonist) 
sensitizes peripheral nociceptors to both mechanical and 
thermal stimulation (106–112). There is an increase in TRPV1 
expression in the DRG of animals with cancer-induced bone 
pain (113–116), and pharmacological blockade of TRPV1 
attenuates cancer-induced bone pain (23, 113), suggesting that 
TRPV1 activation plays a critical role in the generation of at 
least some types of bone pain.

TRPV1 is expressed in peripheral nerve terminals in the bone 
marrow (117) and in a substantial proportion (approximately 
30%) of retrograde labeled bone marrow nociceptors (42). 
Capsaicin activates and sensitizes some Aδ-bone marrow noci-
ceptors to mechanical stimulation (45). However, TRPV1 is not 
thought to transduce mechanical stimuli, and so it is not clear 
how capsaicin alters mechanical sensitivity in TRPV1 expressing 
bone marrow nociceptors. Capsaicin-sensitized bone marrow 
nociceptors have extremely high thresholds for mechanical 
activation before capsaicin is applied (45). In other tissue sys-
tems, nociceptors with these properties are classically described 
as mechanically insensitive afferents or “silent” nociceptors 
that under normal conditions are not activated by mechanical 
stimuli, but after inflammation or chemical stimulation, can 
become sensitive to a number of different stimulus types, includ-
ing mechanical stimuli (118, 119).

It is not yet clear if activation of TRPV1 sensitizes bone 
marrow nociceptors to thermal stimuli. Large changes in the 
temperature of deep tissues such as bone marrow are not experi-
enced under normal (or even pathological) conditions, and so it 
is not likely that bone marrow nociceptors could be activated by 
noxious heat. However, it is possible that activation of the TRPV1 
receptor might alter the function of bone marrow nociceptors 
by making them more sensitive to lower temperatures, and this 
might be relevant under conditions of inflammation when local 
tissue temperature increases.

ACiD-SeNSiNg iON CHANNeLS (ASiCs) 
iN BONe PAiN

Acid-sensing ion channels are voltage-independent proton-gated 
sodium channels that are activated by a drop in extracellular pH 
(to pH 5.0) (120). ASICs 1–3 are found in peripheral sensory 
neurons where they function as homomeric or heteromeric 
trimers to sense changes in extracellular pH around their sensory 
nerve terminals (121). There is a particular interest in ASIC 1b 
and 3 because they are found almost exclusively in DRG neurons. 
ASICs are upregulated in DRG neurons in animal models of 
osteoporosis (122) and bone cancer (23). Pathological changes 
leading to increased bone resorption by osteoclast activation are 
related to pain-like behaviors in a mouse model of osteoporosis, 
and inhibiting ASIC3 improves pain-like behavior in this model 
(122). TRPV1 is also activated by reductions in pH (108, 123) 
and as noted above, TRPV1 is expressed in bone marrow sensory 
neurons (42, 117). Blocking TRPV1 improves pain-like behavior 
in the murine model of osteoporosis (124), but whether this 
occurs as a result of inhibition of proton mediated activation of 
TRPV1 is not entirely clear. These findings suggest that acidosis 

associated with a number of different bony pathologies could be 
a trigger for pain via activation of sensory nerve terminals in 
bone marrow. However, as both ASICs and TRPV1 are expressed 
in osteoclasts, blocking these channels might reduce osteoclast 
mediated changes in bone turnover and pH (125) and thereby 
indirectly contribute to reduced activation of sensory nerve 
terminals and pain.

PRO-iNFLAMMATORY CYTOKiNeS AND 
PePTiDeS

Several pro-inflammatory cytokines (IL-1β, TNFα, IL-6, and 
TGFβ) and inflammatory mediators (CGRP) are increased in the 
DRG in response to bone cancer and fracture (116, 126–132). 
This suggests that inflammatory mediators may have a role to 
play in modulating the function of sensory neurons that inner-
vate bone. However, at present there is no evidence that any of 
these inflammatory mediators directly activate or sensitize bone 
marrow nociceptors or that changes in their expression alter the 
function of bone marrow nociceptors.

PieZO2 AND MeCHANiCALLY iNDUCeD 
BONe PAiN

Piezo2 is a newly discovered mechanically gated ion-channel  
that has received significant attention because of its remarkable 
structure. It has between 25 and 30 trans-membrane repeats—
unlike any other known ion channel (133, 134). Interest in Piezo2 
is rapidly advancing now that patients with congenital mutations 
have been identified and have been shown to have developmental 
growth defects (135–138). There is significant evidence that Piezo2 
is the transducer for low-threshold mechanical stimuli in Merkel 
cells (139–142) and proprioceptors (143, 144). However, recent 
evidence suggests Piezo2 might also be involved in the trans-
duction of noxious mechanical stimuli. Mechanically activated 
Piezo2 currents are enhanced by the algesic peptide bradykinin 
that drives mechanical hypersensitivity associated with inflam-
mation (145). Furthermore, Piezo2 knockdown in DRG inhibits 
inflammation-induced mechanical but not thermal hyperalgesia 
in mouse skin (146) and attenuates viscero-motor pain reflexes 
in response to noxious and innocuous colorectal distension in 
rats (147). Piezo2 knockout does not prevent nociceptors from 
transducing mechanical stimuli but it does selectively reduce 
the sensitivity of Aδ- (not C-) fiber mechano-nociceptors in the 
skin–nerve preparation (141). Piezo2 is expressed in myelinated, 
small-diameter (Aδ) nociceptors that likely mediate responses to 
noxious mechanical stimulation in the cornea (148, 149) and the 
majority (70%) of small myelinated (Aδ) nociceptors that inner-
vate the bone marrow express Piezo2 (45). Together, these find-
ings suggest that Piezo2 contributes to the mechanical sensitivity 
of Aδ mechano-nociceptors, including those that innervate bone 
marrow. As yet, there are no studies that have directly investigated 
the functional role of Piezo2 in bone marrow nociceptors, but it 
is possible that targeting this ion channel might be useful to treat 
mechanically induced bone pain.
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CONCLUSiON

Pathology that involves the bone marrow triggers pain by acti-
vating the sensory nerve terminal endings of peripheral bone 
marrow nociceptors. A number of ion channels and receptors 
are now emerging as important modulators of the activity of 
peripheral bone marrow nociceptors, and these could be useful 
targets for the development of drugs to treat pain of bony origin.
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