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Purpose: Drug resistance is a critical issue in the treatment of epilepsy, contributing 
to clinical emergencies and increasing both serious social and economic burdens on 
the health system. The wide variety of potential drug combinations followed by often 
failed consecutive attempts to match drugs to an individual patient may mean that this 
treatment stage may last for years with suboptimal benefit to the patient. Given these 
challenges, it is valuable to explore the availability of new methodologies able to shorten 
the period of determining a rationale pharmacologic treatment. Metabolomics could 
provide such a tool to investigate possible markers of drug resistance in subjects with 
epilepsy.

Methods: Blood samples were collected from (1) controls (C) (n  =  35), (2) patients 
with epilepsy “responder” (R) (n = 18), and (3) patients with epilepsy “non-responder” 
(NR) (n = 17) to the drug therapy. The samples were analyzed using nuclear magnetic 
resonance spectroscopy, followed by multivariate statistical analysis.

Key findings: A different metabolic profile based on metabolomics analysis of the 
serum was observed between C and patients with epilepsy and also between R and 
NR patients. It was possible to identify the discriminant metabolites for the three classes 
under investigation. Serum from patients with epilepsy were characterized by increased 
levels of 3-OH-butyrate, 2-OH-valerate, 2-OH-butyrate, acetoacetate, acetone, acetate, 
choline, alanine, glutamate, scyllo-inositol (C < R < NR), and decreased concentration 
of glucose, lactate, and citrate compared to C (C > R > NR).

significance: In conclusion, metabolomics may represent an important tool for dis-
covery of differences between subjects affected by epilepsy responding or resistant to 
therapies and for the study of its pathophysiology, optimizing the therapeutic resources 
and the quality of life of patients.
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TaBle 1 | Summary of the patients enrolled in the study: healthy controls, responders (R), and non-responders (NR) under therapy with AEDs.

classes age (mean ± sD)/range gender (F/M) age at onset seiz/Trim aeDs Type of seiz Foc/gen Mri n/sWMg

Controls (n = 35) 44.68 (±16.33)a/22–76 24/11 – – – – –
R (n = 18) 47.5 (±16.86)a/27–80 12/6 15.9 ± 5.3 2 ± 106 Under therapy 12/6 13/5
NR (n = 17) 52.17 (±9.57)a/41–71 11/6 15.4 ± 5.8 30 ± 12 Under therapy 11/6 13/4

AEDs, antiepileptic drugs; Seiz/Trim, seizure at trimester; type of seizure, focal or generalized; MRI, magnetic resonance imaging; N, normal; SWMG, Small White Matter Gliosis.
aNS (p > 0.05).
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inTrODUcTiOn

Drug resistance is a critical issue in patients suffering from 
epilepsy. Indeed, a sufficient control of seizures is only obtained 
in half the population of patients with epilepsy, while in the 
remaining half, a subset of about 30% are classified as resistant 
to antiepileptic drugs (AEDs) (1). Although still debated, the 
definition of “drug resistance in epilepsy” can be broadly stated 
as “…a partial or no response to drugs that determines the pres-
ence of disabling seizures, which lead the affected individual to 
a significant neuropsychiatric and social impairment, lowering 
the quality of life, causing increased morbidity and higher risk 
of sudden death” (2). Moreover, it is worth noting that such 
clinical failures in controlling seizures correspond to a severe 
economic impact given that 6,000,000 patients are estimated 
in Europe alone as having active epilepsy, with an annual cost 
of € 20 billion euro (3), plus the associated familiar and social 
excruciating burden. Perhaps, one of the less discussed prob-
lems is represented by the urgency of determining the correct 
combination of drugs to treat epilepsy or indeed whether there is 
a combination of drugs that do indeed work for a given patient. 
This problem is well illustrated by the fact that the pursuit of 
the most efficient AEDs can take years to even attempt the ideal 
combination (4). Moreover, since most of these patients can 
be eligible for non-pharmacological or resective treatment or 
vagal nerve stimulation (VNS® Cyberonics USA), there is an 
urgent need to find biomarkers that timely gage an individual’s 
drug resistance. To investigate this issue, in the present study, 
we have applied a metabolomics approach to identify the meta-
bolic profile of AEDs pharmacoresistance. Metabolomics is an 
effective postgenomics research tool that, through the metabolic 
study of biological fluids, has been applied to many disciplines 
including the study of human diseases, food control, and plant 
physiology (5–7). In addition, metabolomics has recently been 
used for studying several neurological diseases (8–10). The 
study of biofluids has been associated with the use of several 
analytical techniques of separation and detection, including 
gas chromatography or liquid chromatography coupled to 
mass spectrometry and nuclear magnetic resonance (NMR) 
spectroscopy (11–13). Depending on the instrument used to 
generate the metabolomics profile, a different panel of metabo-
lites is obtained. In particular, NMR is characterized by lower 
sensitivity, but higher reproducibility and relatively easy quan-
tification compared to MS analysis. Following this approach, 
the metabolic phenotype of an individual can be characterized 
according to how the individual’s metabolism is influenced by 
many disparate factors such as genes, environment, nutrition, 

microbiota, and drugs. The application of metabolomics is 
an important step toward the understanding of the role that 
metabolic components have in disease and has been consid-
ered a real “quantum leap” advance in diagnosis, in staging, 
and, eventually, in categorizing different clusters of the same 
disease (14). On the basis of the results obtained in the present 
investigation, we suggest that the metabolomics approach is a 
viable new tool for neuroscience and in this case could help 
the clinician in the diagnosis of pharmacoresistance in epilepsy.

MaTerials anD MeThODs

subjects selection
Subjects affected by epilepsy, either pharmacologically con-
trolled or pharmacoresistant, were enrolled from patients 
monitored in the Epilepsy Diagnostic and Treatment Centre 
of the University of Cagliari (Italy), along with matched 
healthy controls (Table  1). The study was approved by the 
ethical committee of the University Hospital of Cagliari, and 
written informed consent was obtained from each patient 
before inclusion. Subjects enrolled were not on ketogenic  
diet (KD).

As shown in Table  2, 17 individuals affected by drug-
resistant, complex focal or generalized epilepsy were enrolled 
in the study. Among them, 15 subjects received AEDs in various 
combinations, while 2 in addition to AEDs had been implanted 
with a VNS device. The group of responders (R) was represented 
by 18 subjects, comparable with the AEDs-resistant group for 
type of seizures and mean age (Table 2) as well as for similar 
AEDs. Patients on monotherapy were not included in the study 
to better match the two epileptic groups. In subjects affected 
by focal seizures, the most probable type of seizure was deter-
mined both on the basis of reports from the patients themselves 
or from family members who witnessed events, as well as by 
ictal and interictal digital video-EEG and by 24-h EEG (Holter-
EEG) recordings. On the basis of these criteria, the group of 
AEDs-resistant subjects included 6 patients with generalized 
epilepsy and 11 affected by focal seizures, while among the 
AEDs-responder patients, 6 suffered from generalized and 12 
from focal seizures. No pathological signals were observed by 
magnetic resonance imaging (MRI) analysis. Small white matter 
altered microvascular spots were considered by neuroradiologist 
as age compatible (Table 2). The selection criteria included rela-
tive stability of clinical features related to interictal EEG activity, 
while the AEDs range in the serum was monthly assessed in 
optimal dosage in responder (R) and non-responder (NR) 
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TaBle 2 | Summary of the epileptic patients enrolled in the study: responders (R) and non-responders (NR) under therapy with AEDs.

Patients gender age age at onset seiz/trimester aeDs Type of seiz Mri

Responder 1 R F 52 12 4 CBZ + TOP FOC N
2 R M 27 18 2 LMT + PB GEN N
3 R F 57 16 0 FELB + CBZ FOC N
4 R M 74 9 3 CBZ + LEV FOC N
5 R F 27 19 1 LEV + PB GEN N
6 R M 45 15 0 LMT + TOP + CBZ FOC SWMG
7 R F 76 11 1 CBZ + LMT FOC SWMG
8 R F 44 8 3 LMT + LEV + PB GEN SWMG
9 R F 43 16 1 OXC + TOP FOC N
10 R M 40 19 4 LMT + TOP FOC N
11 R F 44 24 2 CBZ + LEV FOC N
12 R M 80 9 0 LMT + LEV + PB GEN N
13 R M 67 21 1 OXC + LEV + CBZ FOC SWMG
14 R F 41 26 0 FELB + CBZ FOC N
15 R F 41 15 4 LMT + CBZ FOC N
16 R F 27 21 1 LMT + TOP GEN N
17 R F 37 12 5 OXC + LEV FOC SWMG
18 R F 33 22 3 CBZ + LMT GEN N

Non-responder 1 NR F 41 14 34 CBZ + LEV FOC N
2 NR F 54 17 40 LMT + TOP FOC SWMG
3 NR F 42 23 38 CBZ + TOP + VNS FOC 1NR
4 NR F 55 8 22 PRI + LEV + VNS GEN N
5 NR M 44 12 30 CBZ + FELB FOC N
6 NR M 44 20 52 OXC + LEV FOC SWMG
7 NR F 63 14 18 PB + CBZ GEN N
8 NR F 70 16 28 CBZ + LEV FOC N
9 NR F 71 18 12 LMT + FELB FOC N

10 NR M 46 9 38 CBZ + TOP FOC SWMG
11 NR F 48 11 32 PB + LEV + LMT FOC N
12 NR M 58 26 14 OXC + LEV GEN N
13 NR F 60 11 51 LMT + LEV + TOP FOC SWMG
14 NR M 48 16 22 PB + TOP GEN N
15 NR M 41 25 18 FELB + CBZ GEN N
16 NR F 49 8 24 CBZ + LEV FOC N
17 NR F 53 13 36 LMT + TOP + CBZ GEN N

AEDs, antiepileptic drugs; CBZ, carbamazepine; LEV, levetiracetam; LMT, lamotrigine; TOP, topiramate; VNS, vagal nerve stimulation; FELB, felbamate; PB, phenobarbital;  
OXC, oxcarbazepine; PRI, primidone; type of seizure, focal or generalized; MRI, magnetic resonance imaging; N, normal; SWMG, Small White Matter Gliosis.
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patients. The subjects affected by generalized and focal epilepsy 
were considered eligible if they had been monitored for more 
than 4 years. Further selection criteria for inclusion in the study 
were as follows: (i) stable clinical symptomatology and EEG 
features from the last three months; (ii) normal neurological 
examination and psychiatric evaluations according to DSM-V; 
(iii) recent brain MRI negative for potentially epileptogenic 
alterations (stroke, tumors, MAV, infectious diseases); and (iv) 
AEDs treatment in both pharmacoresistant and R groups given 
at stable dose from at least 3  months (Table  2). All selected 
patients did not receive KD. Seizure frequency occurrence was 
determined by the number of seizures reported in a personal 
diary (either by patient and/or caregivers). These data were 
standardized by considering the number of seizures during the 
3-month period before the study; this period was arbitrarily 
selected (15). The selected subjects exhibited their first seizure 
between 8 and 26  years of age, and the seizure frequency  
of the AEDs-resistant subjects ranged from 14 to 52 episodes in 
the trimester preceding the day of the metabolomics study, while 
the AEDs controlled group presented from 0 to a maximum of 
4 seizures in the trimester preceding the study (Table 2).

The controls were matched by age and gender and were healthy 
subjects without neurological symptoms and chronic diseases.

Blood samples of patients and controls were collected after 
overnight fasting to minimize the immediate effects of the food.

Patients receiving valproic acid and lacosamide were excluded 
because the NMR resonances of these compounds affect the 
recognition of certain metabolites in the NMR spectra of serum.

samples Preparation and acquisition
The blood samples were centrifuged for 10 min at 1,700 g, after-
ward the serum was obtained, carefully collected into aliquots of 
1 ml, and stored at −80°C until analysis. All procedures related to 
samples preparation and acquisition of the data were performed 
according to internal standard protocols, previously published 
(16). Serum samples were thawed and centrifuged at 2,500 g for 
10 min at 4°C. An aliquot of 800 µl of serum was used, and a 
solution of chloroform/methanol 1:1 (2,400  µl) plus 350  µl of 
distilled water was added. Samples were vortexed for 1 min and 
centrifuged for 30 min at 1,700 g at RT. After the centrifugation, 
hydrophilic and hydrophobic phases were collected. The first 
was concentrated overnight using a speed vacuum instrument 
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(Eppendorf concentrator plus, Eppendorf AG, Hamburg, 
Germany) and then resuspended in 630  µl of D2O and 70  µl 
trimethylsilylpropanoic acid (TSP) 5.07 mM (f.c. = 0.507 mM). 
TSP was added to provide an internal reference for the chemi-
cal shifts of the spectrum obtained with the NMR analysis. Six 
hundred and fifty microliters of the solution were transferred 
into 5 mm NMR tubes. NMR experiments were acquired with a 
Varian UNITY INOVA 500 spectrometer (Agilent technologies, 
Inc., Santa Clara, CA, USA) operating at 499  MHz equipped  
with a 5  mm triple resonance probe with z-axis pulsed field 
gradients and autosampler. One-dimensional 1H-NMR spectra 
were collected at 300 K with a NOESY pulse sequence to suppress  
the residual signal of water by using 0.100 ms of mixing time. 
Spectra were recorded with a spectral width of 6,000, 2  Hz, 
acquisition time of 1.5 s, relaxation delay of 2 ms, 90° pulse of 
9.2 µs, and number of scan of 256. Each free induction decay was 
zero-filled to 64K points and multiplied by a 0.5-Hz exponen-
tial line-broadening function. Spectra were manually phased, 
baseline corrected, and chemical shifts referred to the internal 
standard TSP (at δ  =  0.0  ppm) using MestReNova software  
(version 8.1, Mestrelab Research S.L. Spain).

statistical analysis
All spectra from NMR analysis were processed as previously 
reported (16). Each spectrum was divided into consecutive 
“bins” 0.04 ppm wide. The spectral area under investigation was 
the region between 0.6 and 8.6 ppm. To remove variations in the 
presaturation of the residual water resonance and spectral regions 
of noise, the regions between 4.64 and 5.2 ppm and between 5.28 
and 6.6  ppm were excluded. The integrated area within each bin 
was normalized to percent values to minimize the effects of the 
different concentrations of serum samples. No interference from 
the drug metabolites, apart from valproic acid and lacosamide 
(which were excluded from analysis), was observed.

The final data set consisted of a 159 by 70 matrix (variables- 
bin × samples-subjects) values. Multivariate statistical analysis was 
performed on the generated matrix using SIMCA-P + software 
(version 13.0, Umetrics, Umeå, Sweden). NMR’s variables were 
scaled using Pareto scaling. Initial data analyses were conducted 
using principal components analysis (PCA). Then partial least 
square discriminant analysis and orthogonal partial least square 
discriminant analysis (OPLS-DA) were applied. The quality of the 
model was assessed with two parameters: R2 and Q2 cumulative. 
R2 estimates goodness of fit and Q2 estimates goodness of predic-
tion. Each mathematical model was validated by permutation test. 
This test was used to validate the model and to assess the degree 
of overfitting, by means of -n random permutations (n = 500). 
The resulting plot displays the correlation coefficient between the 
original y-variable and the permuted y-variable vs the cumula-
tive R2 and Q2, and the regression line. The scores values from 
each OPLS-DA model were subjected to CV-ANOVA to test the 
significance of the model, and the validation was considered suc-
cessful with p < 0.05. Through the analysis of the S-plot, visual-
izing both the covariance and the correlation structure between 
the X-variables and the predictive score, and through the analysis 
of the set of VIPs (important variables on the projection), it was 
possible to identify the variables characterizing each class. These 

most significantly variables were quantified using Chenomx  
NMR Suite 7.1 and literature (17). A representative NMR 
spectrum showing the discriminate attribution is represented in 
Figure S1 in Supplementary Material. The concentrations were 
used to perform a non-parametric test, in particular, U-Mann–
Whitney test, followed by a Holm–Bonferroni correction 
(GraphPad Prism software version 7.01, GraphPad Software, Inc.,  
CA, USA).

resUlTs

As an initial step, the possible presence of outliers in our popula-
tion was tested through the analysis of all the NMR spectra of 
blood serum by PCA. All samples passed this initial filtering step. 
Then, OPLS-DA was performed between the two groups and 
validated: controls and patients with epilepsy (Figures 1A,B). 
A significant different distribution of metabolites for the two 
groups was observed (p  <  0.001). Model parameters for the 
explained variation (R2X and R2Y) and the predictive capabil-
ity (Q2) were significantly high (R2X  =  0.571; R2Y  =  0.790; 
Q2 = 0.690), indicating robust classification of the two groups.

After observing a different metabolic profile between con-
trols and patients with epilepsy, a possible difference between 
R and NR patients was investigated, too. OPLS-DA analysis of a 
three classes model, controls, R, and NR patients (Figure 1C), 
indicated a significant p value (p  <  0.001) validated with the 
permutation test (Figure 1D).

Statistical parameters of this model were R2X  =  0.664, 
R2Y = 0.615, and Q2 = 0.488. Validation of the model was perfor-
med by permutation test.

Each class was individually compared with the others  
by OPLS-DA and results validated by a permutation test 
(Figures 2A–F). All the analysis showed significant statistical values  
positive both in terms of variance of predictive capability and 
p value. Statistical parameters are reported in Table 3.

For each OPLS-DA model, it was possible to identify the dis-
criminant metabolites for the three classes under investigation.  
The metabolites corresponding to the discriminants variables  
were identified and quantified by using Chenomx software. 
Meta bolic discriminants were similar among the different groups. 
Serum from epileptics patients were characterized by increased 
levels of 3-OH-butyrate, 2-OH-valerate, 2-OH-butyrate, acetoac-
etate, acetone, acetate, choline, alanine, glutamate, and scyllo-
inositol (C < R < NR) and decreased concentration of glucose, 
lactate, and citrate compared to controls (C > R > NR) as showed 
in Table S1 in Supplementary Material.

The matrix containing the concentrations of discriminant 
metabolites for each patient belonging to the three groups was 
analyzed to carry out an analysis of the variance with multivariate 
and univariate tests. The multivariate analysis showed that the 
discriminating metabolites of each mathematical models previ-
ously analyzed were similar. Moreover, this analysis showed 
differences in terms of concentration depending on the classes, 
suggesting a possible role of the therapeutic effect in R patients. 
2-OH-butyrate and 2-OH-valerate were not quantified because 
signals overlapped in the same spectral region (triplet at 
0.92 ppm). Univariate analysis using metabolite concentrations 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


FigUre 1 | Scores plots obtained from nuclear magnetic resonance spectra of serum samples from controls and patients with epilepsy. (a) Scores plot from the 
multivariate orthogonal partial least square discriminant analysis model between controls (C): C (●) and patients with epilepsy: P (O): each point represents a single 
serum spectrum, with the position determined by the contribution of the 159 variables. (B) Validation of the corresponding model by permutation test (n = 500).  
(c) Scores plot from the multivariate orthogonal partial least square discriminant analysis of a three classes model: healthy subjects (●), responder (R) patients (Δ), 
and non-responder (NR) patients ( ◾ ). (D) Statistical validation of the corresponding model by permutation test.
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as variable was conducted on all groups. U-Mann–Whitney test 
was used to explore and compare the mean differences between 
the groups (Table 4), and then Holm–Bonferroni correction was 
applied. The results are showed in Table 4.

A different metabolic profile was identified for the three 
different groups; in particular the group of the patients with epi-
lepsy was characterized by an increase of acetate, acetoacetate, 
acetone, and scyllo-inositol (R in particular) with respect to the 
control group, while it showed a decrease of lactate, glucose,  
and citrate.

DiscUssiOn

The present study in patients with drug-resistant epilepsy 
shows that the concentrations of glucose, citrate, and lactate 
are decreased and ketone bodies (3-OH-butyrate, acetate, ace-
toacetate, and acetone) increased compared to R patients with 
epilepsy and controls. At first glance, our result appears in line 
with the observations that, in cases of refractory epilepsy, the 
energetic failure is reflected by uncompensated brain glucose 
levels (18). On the other hand, the increased concentrations of 
KBs in NR patients seem unexpected and at variance with the 
traditional studies that demonstrated the efficacy of the KD in 
controlling pharmacoresistant seizures (19). However, the key 

role of the KD, which represents the largest source of KBs, in the 
treatment of severe forms of infantile epilepsy (20) as well as in 
adult seizures (21, 22) is still challenging (23–25). According to 
our data, subjects affected by frequent and intractable seizures 
show an increase of KBs compared to patients pharmaco-
logically controlled, despite being treated with similar dose of  
AEDs (Table 2). The reduction of citrate, glucose, and lactate 
concentrations in NR patients compared with R and C patients 
suggest a switch from glucose metabolism, the suitable energetic 
substrate of the brain, to ketogenic metabolites. Indeed, previ-
ous studies reported similar variations including a reduction 
in 13C-labeled citrate in an experimental seizure model in the 
hippocampus (26, 27). It is also worth noting that in these stud-
ies the concentrations of citrate and glucose showed a parallel 
decrease similar to the lactate profile. These observations sug-
gest that in conditions of frequent/uncontrolled convulsions the 
biochemical response of the cellular machinery might be forced 
toward alternative energy resources such as those derived from 
KBs utilization. The antiseizure effects induced by KD suggest 
several mechanisms encompassing bioenergetics and mito-
chondrial changes (28), activity of cellular oxidation via poly-
unsaturated fatty acids (29), and regulation of neuroprotective 
fac tors (30–32). Moreover, as glutamate and γ-aminobutyric acid 
(GABA), respectively, are the major excitatory and inhibitory 
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FigUre 2 | Scores plots obtained from nuclear magnetic resonance spectra of serum samples from controls and responder (R) and non-responder (NR) patients. 
(a) Scores plot from the multivariate orthogonal partial least square discriminant analysis (OPLS-DA) model between controls (●) and NR patients ( ◾ ). (B) Statistical 
validation of the corresponding model by permutation test (n = 500). (c) OPLS-DA between controls (●) and R patient (Δ) and (D) statistical validation of the 
corresponding model by permutation test (n = 500). (e) OPLS-DA model between R (Δ) and NR patients ( ◾ ). (F) Statistical validation of the corresponding  
model by permutation test (n = 500).
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neurotransmitters in the brain several studies focused their 
main issues on how KBs affect levels of these neurotransmitters 
and their receptor activity (33). Following magnetic resonance 
spectroscopy investigations, it has been demonstrated that 
increased levels of GABA neurotransmission are detected 
in cerebrospinal fluid of patients with KD (34, 35) underlin-
ing a possible action of ketone bodies upon the modulation 
of GABA-A receptors by increasing the synaptic inhibition  
(35, 36). The increase of synaptic inhibition might not be per se 
sufficient in contrasting AEDs-resistant epileptogenesis since 

the brain networks under sustained seizure activity show a poor 
affinity of GABA receptors (37, 38). Moreover, several alterna-
tive mechanisms for the KD effects have been proposed recently. 
The antiepileptic action of medium-chain triglyceride, a good 
source of KBs, has been widely documented (39, 40). Recently, 
Chang et al. demonstrate that medium-chain triglyceride, rich 
in decanoic acid, provides an antiseizure effect acting through 
direct AMPA receptor inhibition (41).

Finally, the high production of KBs in patients with frequent 
seizure could be important to balance the increase of glutamate 
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TaBle 4 | Metabolites significant altered among the classes control (C), responder (R), and non-responder (NR).

Metabolites c mean 
(mM) ± sD

r mean 
(mM) ± sD

nr mean 
(mM) ± sD

p value [Mann–
Whitney test (MW) 

test]: c vs r

p value [holm–
Bonferroni correction 

(hBonf.c)]: c vs r

p value  
(MW test):  
c vs nr

p value 
(hBonf.c):  
c vs nr

p value  
(MW test):  
r vs nr

p value 
(hBonf.c):  
r vs nr

3-OH-butyrate 0.10 ± 0.07 0.12 ± 0.06 0.14 ± 0.1 ns ns 0.002 0.01 ns Ns
Acetate 0.061 ± 0.01 0.09 ± 0.02 0.1 ± 0.02 <0.0001 0.001 0.002 0.01 ns ns
Acetoacetate 0.01 ± 0.01 0.02 ± 0.01 0.03 ± 0.01 0.005 0.025 <0.0001 0.001 0.01 ns
Acetone 0.0008 ± 0.001 0.008 ± 0.008 0.02 ± 0.01 <0.0001 0.001 <0.0001 0.001 ns ns
Citrate 0.12 ± 0.04 0.10 ± 0.04 0.09 ± 0.02 ns ns 0.009 0.04 ns ns
Glucose 2.02 ± 0.05 1.81 ± 0.03 1.74 ± 0.03 ns ns 0.01 0.04 ns ns
Lactate 1.88 ± 0.04 1.72 ± 0.05 1.16 ± 0.05 ns ns <0.001 0.001 0.001 0.007
Scyllo-inositol 0.16 ± 0.01 0.4 ± 0.5 0.24 ± 0.2 0.04 ns ns ns ns ns

Summary of the univariate statistical analysis. U-MW was performed, and all the results underwent the HBonf.C.

TaBle 3 | Summary of the statistical parameters of the models C vs non-responder (NR), C vs responder (R), and R vs NR.

Orthogonal partial least square discriminant analysis models Permutationd

groups componentsa r2Xcumb r2Ycumb Q2cumc p r2 intercept Q2 intercept

Controls vs NR 1P + 1O 0.518 0.850 0.824 <0.001 0.140 −0.360
Controls vs R 1P + 1O 0.545 0.739 0.566 <0.001 0.316 −0.490
Responders vs NR 1P + 1O 0.508 0.631 0.467 <0.001 0.278 −0.395

aThe number of predictive and orthogonal components used to create the statistical models.
bR2X and R2Y indicated the cumulative explained fraction of the variation of the X block and Y block for the extracted components.
cQ2cum values indicated cumulative predicted fraction of the variation of the Y block for the extracted components.
dR2 and Q2 intercept values are indicative of the validity of the model. The permutation test was evaluated on the corresponding partial least square discriminant analysis model.
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through the modification of the behavior of vesicular glutamate 
transporters (42). Together the effects of KBs emerge as a complex 
pleiotropic mechanism, which contains an apparent paradox: 
while the KBs are the most relevant part of a KD; nonetheless, their 
antiepileptic effects still needs to be proved (31). It seems possible 
to suggest that the increase of KBs in patients with epilepsy can 
be interpreted as an attempt to activate spontaneous biochemical 
processes aimed to optimize ultimate energetic resources.

The results of the present study represent an interesting 
finding that can help the clinician in evaluating subjects affected 
by severe epilepsy as potential pharmacoresistant patients, thus 
prompting new investigations addressed to find alternative 
therapeutic solutions. However, several lines of criticism emerge 
in commenting the present data. Among them (i) we cannot rule 
out that the population of R and NR might show a metabolomic 
pattern related to the level of seizure control and drug sensi-
tivity; (ii) despite supporting data also from the literature, we 
cannot point at the metabolomic profile as the sole predictor 
mechanism of anticonvulsant effects, given the manifold players 
of epileptogenesis and pharmacoresistance (43, 44); (iii) there 
are no sufficient data that a possible seizure control might rever-
berate in a given metabolomic pattern; (iv) the metabolomic 
profile described in the present study has been derived from 
a single sample of each individual, while possible variations  
(e.g., related with seizure frequency or time of seizure) can be 
better assessed by multiple samples.

In conclusion, the results suggest that metabolomic can help 
to better understand some aspects of pharmacoresistant epilepsy 
and contribute to target some peculiar biochemical mechanisms 
involved in the epileptogenesis. A larger cohort of selected patients 

affected by drug-resistant epilepsy and a multicentric carefully 
planned study are needed to validate the present findings.
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FigUre s1 | Assignments in an nuclear magnetic resonance spectrum  
of the discriminant metabolites resulting from the groups [control  
(C), responder (R), and non-responder (NR)] comparison. (1) 3-OH- 
butyrate; (2) lactate; (3) alanine; (4) acetate; (5) acetone; (6) acetoacetate; 
(7) glutamate; (8) citrate; (9) choline; (10) glucose; (11) scyllo- 
Inositol.
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