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The selection of an appropriate segmentation tool is a challenge facing any researcher 
aiming to measure gray matter (GM) volume. Many tools have been compared, yet there 
is currently no method that can be recommended above all others; in particular, there 
is a lack of validation in disease cohorts. This work utilizes a clinical dataset to conduct 
an extensive comparison of segmentation tools. Our results confirm that all tools have 
advantages and disadvantages, and we present a series of considerations that may be 
of use when selecting a GM segmentation method, rather than a ranking of these tools. 
Seven segmentation tools were compared using 3 T MRI data from 20 controls, 40 pre-
manifest Huntington’s disease (HD), and 40 early HD participants. Segmented volumes 
underwent detailed visual quality control. Reliability and repeatability of total, cortical, and 
lobular GM were investigated in repeated baseline scans. The relationship between each 
tool was also examined. Longitudinal within-group change over 3 years was assessed 
via generalized least squares regression to determine sensitivity of each tool to disease 
effects. Visual quality control and raw volumes highlighted large variability between tools, 
especially in occipital and temporal regions. Most tools showed reliable performance 
and the volumes were generally correlated. Results for longitudinal within-group change 
varied between tools, especially within lobular regions. These differences highlight the 
need for careful selection of segmentation methods in clinical neuroimaging studies. This 
guide acts as a primer aimed at the novice or non-technical imaging scientist providing 
recommendations for the selection of cohort-appropriate GM segmentation software.

Keywords: gray matter, segmentation, huntington’s disease, Freesurfer, statistical parametric mapping, advanced 
normalization tools, FMriB’s software library, Multi-atlas label Propagation with expectation–Maximization-
based refinement

inTrODUcTiOn

Neuroimaging is widely used to investigate both pathological and non-pathological neural phe-
nomena. Given the increasing focus on the reproducibility of MRI findings, it is important that 
investigators share experiences of the many MRI analysis techniques available in a move toward 
standardization and optimization of methods. Structural MRI is routinely used to investigate 
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potential differences in brain morphology within both clinical 
and healthy control groups.

Gray matter (GM) volume is a frequently used measure of 
brain morphology; it is typically reliable, able to discriminate 
between healthy controls and clinical groups and fast to calculate 
(1). It is most often measured using automated software tools that 
separate GM from other tissue types. Thus, high quality deline-
ation or segmentation of GM, white matter (WM), and cerebro-
spinal fluid (CSF) is critical in achieving accuracy for all forms of 
volumetric analyses. There are currently a number of automated 
tools that can be used for GM segmentation. Methodological 
comparisons of these tools have focused mainly on built-in 
automated segmentation software within standard neuroimag-
ing analysis packages including Statistical Parametric Mapping 
(SPM), FMRIB’s Software Library (FSL), and FreeSurfer or on 
optimization of a single application (2–10). In short, using these 
methods on phantom data has shown that both SPM 8 and FSL 
FAST (version 4.1) are reliable and accurate, whereas FreeSurfer 
(version 4.5) appears to be highly reliable but not necessarily 
accurate for measuring GM volume (3), and both SPM 5 and FSL 
were recommended for GM sensitivity in phantom and control 
data (9).

Typically, GM segmentation tools have been developed and 
optimized for use on healthy brains (11) and therefore may not 
show the same level of accuracy and reliability when used in 
clinical cohorts. Given the potential challenges associated with 
performing MRI scans in clinical groups, their scans may be of 
a lower quality due to increased movement and reduced tissue 
contrast (12). Klauschen et al. (9), for example, found that GM 
volume is often underestimated in poor quality images with poor 
contrast and noise, and overestimated in good quality images, 
indicating possible bias toward reduced GM in patient popula-
tions. Furthermore, greater anatomical variability is likely due 
to the presence of pathology in clinical cohorts leading to poor 
segmentation performance in software not designed to deal with 
pathological abnormalities (11). These key factors could lead to 
inconsistent findings within clinical neuroimaging studies (7).

There is evidence that some GM segmentation tools are sensi-
tive to volumetric change in clinical populations. SPM 8, SPM 12, 
FSL 4.1.9, and FreeSurfer 5.1.0, for example, are all sensitive to 
disease-related change in Alzheimer’s disease, with SPM best for 
scans with increasing noise (4), but generally appear to perform 
with greater accuracy for cortical GM (CGM) than subcortical 
GM, as shown in MS patients (13). SPM, FSL, and FreeSurfer have 
all shown significant bias in GM measurements when comparing 
participants with Autism Spectrum Disorder to control partici-
pants (7); and SPM can overestimate group differences in healthy 
elderly participants with atypical anatomy—using a voxel-based 
technique (14). Although these studies provide some explanation 
for the difficulty experienced with replication in structural MRI 
studies, especially in clinical participants, these tools are regularly 
applied to patient cohorts without optimization for unique brain 
pathology.

Here, we systematically compare the performance of seven GM 
segmentation tools firstly in a group of well-phenotyped healthy 
controls and secondly, in a clinical group to highlight potential 
issues that may occur when applying standard segmentation tools 

to patients. We used a group of premanifest Huntington’s disease 
(PreHD) gene-mutation carriers across different stages of HD (15). 
HD is a fully penetrant genetic neurodegenerative disease caused 
by an expanded CAG repeat in the huntingtin gene (16, 17).  
HD gene-carriers can be identified many years prior to formal 
motor symptom-based clinical diagnosis enabling tracking of 
the very earliest signs and symptoms, including neural atrophy. 
Studies using various analysis techniques, including those imple-
mented in SPM and FSL have shown significant GM change over 
as little as 12 months in HD (16, 18, 19) likely driven by atrophy in 
the caudate and putamen, primary regions of neurodegeneration 
in HD. Regional GM studies focusing on cortical thickness and 
voxel-based morphometry suggest a pattern of atrophy beginning 
in occipital and posterior regions and progressing anteriorly as 
HD progresses (15, 16, 20, 21), while other studies have shown 
that frontal lobe volume is largely affected across all disease stages 
in HD (22–24). However, despite numerous studies examining 
GM volume in HD, it has yet to be established which segmentation 
tools most accurately and sensitively facilitate the measurement 
of subtle between-group differences and within-group change.

This guide acts as a primer aimed at the novice imaging analyst 
or non-technical imaging scientist providing recommendations 
on how best to select segmentation software for quantification of 
GM volume, in particular CGM, according to the nature of the 
cohort of interest. As there is no ground truth regarding cortical 
degeneration in HD per se, and therefore no one measure against 
which to compare the quality of segmentations, we do not provide 
a ranking of segmentation tools based on their performance, 
but instead guidelines on how to select the most appropriate 
segmentation tool according to the type of dataset being inves-
tigated. In addition to commonly used segmentation methods 
(SPM, FSL, and FreeSurfer), we have included two relatively 
new tools that have yet to be extensively validated, Advanced 
Normalization Tools (ANTs) and Multi-Atlas Label Propagation 
with Expectation–Maximization-based refinement (MALP-EM).

MaTerials anD MeThODs

Participants
Participants were recruited from all four sites (London, Leiden, 
Paris, and Vancouver) of the observational multisite Track-HD 
study and attended clinical and MRI scanning sessions at yearly 
intervals between 2008 and 2011 (15). At the baseline visit, 
participants were required to have a positive genetic test of ≥40 
CAG repeats, a burden of pathology score >250 [as calculated by 
(CAG-35.5) × age (25)]. The cohort was separated into PreHD 
and manifest HD participants, with manifest participants having 
a diagnostic confidence score of 4 or more. The PreHD cohort had 
a score on the Unified Huntington’s Disease Rating Scale (26)-
Total Motor Score (TMS) of ≤5, and was split into two groups 
based on the median expected years to disease onset (27); those 
estimated to be more than 10.8  years from disease onset were 
classified as the PreHD-A group and those less than 10.8 years 
from estimated onset, PreHD-B. The HD participants had a 
TMS of ≥7, and were split into two groups using the UHDRS 
based on their Total Functional Capacity (TFC) scores as stage 1 
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FigUre 1 | (a) An example of a gross failure on a Track-Huntington’s 
disease (HD) scan when using Statistical Parametric Mapping (SPM) 8 Unified 
Segment. (B) An example of a gross failure on a Track-HD scan when using 
FMRIB’s Software Library (FSL) Brain Extraction Tool (BET) brain extraction 
and FAST segmentation procedures.
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(HD1:TFC = 11–13) or stage 2 (HD2:TFC = 7–10). The control 
group was comprised of partners, spouses, and gene-negative 
siblings of the gene-carriers. Full selection criteria and data 
collection processes have been published previously (15). For all 
studies, the local ethical committees gave ethical approval and 
written informed consent was obtained from each participant 
according to the Declaration of Helsinki.

One hundred participants from Track-HD were included 
in the current study: 20 controls, 20 PreHD-A participants, 20 
PreHD-B participants, 20 HD1, and 20 HD2 participants. The 
participants were considered for inclusion according to whether 
they had repeated (back-to-back) structural scans at baseline of 
Track-HD (baseline scan A and baseline scan B) and follow-up 
scans at the 2011 time point. The final participants were randomly 
selected from those with the correct scans whilst aiming to main-
tain approximate age matching between the groups.

Data acquisition
The 3  T T1-weighted scans were acquired from four scanners. 
Two were Siemens TIM Trio (London; Paris) and two were Philips 
Achieva scanners (Leiden and Vancouver). The parameters for 
Siemens were TR = 2,200 ms, TE = 2.2 ms FOV = 28 cm, matrix 
size = 256 × 256, 208. For Philips, TR = 7.7 ms, TE = 3.5 ms, 
FOV  =  24  cm, matrix size  =  242  ×  224, 164. The acquisition 
was sagittal for whole brain coverage. Slice thickness was 1 mm, 
with no gap between slices. These acquisition protocols were 
validated for multisite use (15). All images were visually assessed 
for quality; specifically, artifacts such as motion, distortion, and 
poor tissue contrast (IXICO Ltd. and TRACK-HD imaging team, 
London, UK).

Data analysis
T1 scans from baseline (2008) and 3-year follow up (2011) were 
used for this study. All participants had two scans from the base-
line time point, collected consecutively (back-to-back), and one 
scan from the follow-up time point. All T1-weighted scans were 
bias-corrected using the non-parametric, non-uniform intensity 
normalization (N3) method (28), with optimized parameters for 
3 T data as outlined in Boyes et al. (29). Scans were then processed 
following the recommended steps for each software package, as 
detailed below. This typically involved performing brain extrac-
tion and then segmenting the extracted brain into different tissue 
classes, with one tool (ANTs) also requiring template creation. 
Following this, volumes for the total GM, CGM, and lobular GM 
were extracted from the GM segmentations.

Software Packages
A number of segmentation algorithms were considered for this 
investigation, with the final tools based on ease of access, fre-
quency of use within the literature and usability of the software. 
Software packages selected were

• SPM version 8 Unified Segment (30, 31).
• SPM version 8 New Segment.
• SPM version 12 Segment.
• ANTs Atropos version 2.1.0 (32, 33).
• MALP-EM version 1.2 (34, 35).

• FSL FAST using FSL version 5.0.9 (36).
• FreeSurfer version 5.3.0 (37).

Segmentations were performed in the native (or individual) 
space in which the scans were acquired. All seven tools include 
brain extraction either as an additional step prior to segmentation 
or within the automated GM segmentation pipeline. In this study, 
the brain extraction procedure provided by each tool was used 
along with the segmentation method. It should be noted that by 
not using one common brain extraction method prior to per-
forming segmentation there is additional variability introduced. 
However, the aim of this study was to examine performance of 
each segmentation tool based on recommended usage and fol-
lowing the steps many novice are likely to run. Since brain extrac-
tion is an inherent part of a number of the tools examined (e.g., 
SPM, FreeSurfer, MALP-EM) and the other tools include brain 
extraction algorithms optimized to work with their segmenta-
tion procedure (e.g., FSL and ANTs) most users would apply the 
standard processing for each tool.

Quality control
Following any manipulation of the images scans were visually 
examined for quality. For this study, processing was classed as 
a “fail” if there was gross failure in performing the extraction 
or segmentation (Figure 1), rather than for more minor errors. 
Gross failures at any stage were initially checked to rule out user 
error. Processing changes were made to rectify software-based 
gross errors in two cases. First, SPM 8 Unified Segment deline-
ation of the GM may fail if the orientation of the brain deviates 
noticeably from the standard SPM templates (Figure 1A). In a 
few cases, therefore, adjustments were performed to shift the 
brain orientation to achieve a better match. Second, prior to 
segmentation using FSL, the Brain Extraction Tool [BET (38)] 
was run on all data. Using standard parameters BET failed to 
extract brains satisfactorily on the Track-HD cohort (Figure 1B) 
and optimized BET parameters were substituted, with these 
optimized parameters provided in the Supplementary Material.

During QC, the GM regions were overlaid on the original T1 
scans. This enabled easy comparison between the boundaries 
of the segmented regions and the visible boundaries on the T1 
scan. Over- and undersegmentation refers to regions whereby 
the boundary of the segmented region differed from the visible 
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boundary on the T1. All segmentation tools also showed minor 
errors as discussed in the results section (Figure 2). No manual 
intervention was used, however, to avoid adding subjectivity to 

FigUre 2 | Continued

FigUre 2 | Continued  
Examples of the gray matter (GM) output from each tool overlaid on one 
participant from the Track-Huntington’s disease (HD) study. The figure shows 
three coronal views, with (a) showing the same slices with no segmentation. 
The first slice shows the frontal and temporal regions, the second slice is 
toward the middle of the brain, and the last slice shows the occipital lobe.  
All figures show default probabilistic segmentation maps for each software 
except for FreeSurfer, which shows volumetric and surface-based regions. 
For the probabilistic segmentation maps, the brighter the yellow within a 
voxel, the more likely that the voxel contains GM. The arrow labeled x points 
to a region of the dura incorrectly classified as occipital GM, and the arrow 
labeled + points to a region of voxels incorrectly classified as temporal GM. 
(a) Prior to segmentation. (B) Statistical Parametric Mapping (SPM) 8 Unified 
Segment, (c) SPM 8 New Segment, (D) SPM 12 Segment, (e) Advanced 
Normalization Tools (ANTs) Atropos, (F) MALP-EM, (g) FMRIB’s Software 
Library (FSL) FAST, and (h) FreeSurfer.

the measures. Recommendations for manual intervention are 
provided in the discussion.

segmentations
For all GM segmentations except FreeSurfer (see below), volume 
(ml) was calculated using FSLstats. Probabilistic segmentation 
maps output by each tool were used in the calculation of volume 
throughout, as they can account for partial volume effects (PVEs) 
(39). For each segmentation, total GM, CGM, and lobular GM 
measures were extracted. Total GM included both CGM and 
subcortical GM. CGM excluded all subcortical GM structures, 
and lobular GM divided CGM into the frontal lobe, temporal 
lobe, parietal lobe, occipital lobe, and insula (see below for further 
information on extraction of these regions).

Segmentation using all three versions of SPM, FSL, and 
MALP-EM were run with default settings in native space.

Advanced Normalization Tools brain extraction and seg-
mentation pipeline (Atropos) requires templates and priors. The 
recommended default pipeline was followed and study-specific 
templates and priors (32) were created using a subset of 25 
Track-HD scans, 5 from each group following the process recom-
mended in Tustison et al. (40). Templates were created for both 
of the back-to-back baseline datasets and for the final time point 
using the same participants. Following template creation, ANTs 
brain extraction was run on each participant using the study-
specific template brain mask and priors. The extracted brain for 
each participant was then used when running the segmentation 
pipeline, Atropos.

Finally, FreeSurfer was run using the default recon-all pipeline. 
Unlike the other six segmentation tools, FreeSurfer volumetric 
maps are not recommended for the calculation of volume as 
they do not account for PVE. Automatically optimized volumes 
from the aseg.stats file that are calculated via a combination of 
volumetric and surface-based factors were used for total GM 
and CGM.1

As a number of the segmentation tools do not output CGM 
and subcortical GM segmentations, for all volumes excluding 
FreeSurfer a CGM mask was overlaid on total GM to output 

1 https://surfer.nmr.mgh.harvard.edu/fswiki/MorphometryStats.
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TaBle 1 | Demographics for the participants included in the Track-HD analysis showing means, SDs, and ranges.

controls (N = 20) PrehD-a (N = 20) PrehD-B (N = 20) hD1 (N = 20) hD2 (N = 20)

Age 48.32 (9.28) 48.48 (6.70) 47.74 (7.72) 49.10 (8.19) 50.14 (8.94)
30.73–62.97 37.27–59.41 38.11–64.13 31.11–59.63 33.26–62.41

Sex (females) N = 13 N = 10 N = 12 N = 9 N = 8

Education 4.05 (1.28) 4.30 (2.27) 4.1 (2.03) 4.2 (1.36) 3.55 (2.32)
2–6 2–6 2–5 2–6 2–6

CAG N/A 41 (1.21) 42.35 (1.27) 43.35 (1.90) 43.75 (2.45)
39–43 40–44 40–47 41–52

Disease burden N/A 259.80 (29.50) 318.43 (23.99) 372.35 (52.05) 399.15 (70.31)
171–290.75 267.6–356.03 264.75–472.91 287.31–548.74
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CGM volumes rather than using each tool’s default regions. 
While possibly reducing the performance of some tools by using 
a mask not optimized to that particular technique, this ensured 
consistency across segmentation techniques.

The Harvard Oxford cortical mask was registered to each 
participant’s structural scan in native space and used to extract 
CGM volume from all segmentation outputs (41). As the Harvard 
Oxford mask includes considerable cerebellar GM, a cerebellum 
mask was used to exclude cerebellar GM (42). In addition, an MNI 
mask dividing CGM into five regions (lobes) was also used to 
examine the performance of the tools within the frontal, temporal, 
parietal and occipital lobes and the insula. Cortical and lobular 
masks were binarized and registered to native space via ANTs to 
extract CGM and lobular volumes from the segmentations.

The only exception was FreeSurfer, where total GM and CGM 
volumes were extracted from an automatically created text file. As 
FreeSurfer regions have undergone significant optimization dur-
ing development, we would expect that FreeSurfer may have an 
advantage over the other tools and this should be considered when 
exploring the results. To calculate lobular regions for FreeSurfer, 
the lobular masks for each participant were transformed from 
native space into each subject’s FreeSurfer analysis space2 and 
used to extract volumes.

Qualitative analysis
A qualitative examination of the data was performed initially, as 
various segmentation issues are best identified by visual examina-
tion of the volumetric maps. For example, minor but consistent 
over- or underestimation of GM within automatically identified 
anatomical regions may not be detected quantitatively, but can be 
easily recognized by a trained expert during visual examination. 
All scans were examined blinded to group and all errors were 
noted. From this, trends within each tool were detected.

Quantitative analysis
Quantitative analysis was performed using Stata version 12.1. 
Total and CGM volumes were examined in all analyses, and a 
subset of analyses also examined lobular GM volume. First, 
summary statistics, including means, ranges, and SDs for 
demographic information were calculated and between-group 

2 https://surfer.nmr.mgh.harvard.edu/fswiki/FsAnat-to-NativeAnat.

differences derived. Total GM, CGM, and lobular GM mean 
volumes were calculated for both baseline and the follow-up scan 
for each participant. Additionally, reliability was tested for the  
back-to-back baseline scans using intraclass correlation (ICC) (43).  
ICC measures the agreement between repeated ratings, and 
ranges between 0 and 1 with higher values demonstrating better 
reliability. Mean repeatability for back-to-back scans was also 
calculated as percent variability error [Function 1 (40, 44)]. 
This measure provides a percentage value of variability between 
repeated applications on the same cohort for each tool; lower 
values represent less variation. Spearman’s Rho was also used to 
test the correlation between each set of volumes extracted using 
each segmentation tool.

Function 1: Mean repeatability calculation used on back-to-back 
scans from 2008. VolA represents the first baseline back-to-back 
scan, VolB Represents the second baseline back-to-back scan:
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To measure the longitudinal sensitivity of each segmentation 
tool, the control group was compared to all HD groups. Follow-up 
volume of total GM, CGM, and lobular volumes were expressed 
as a percentage of baseline volumes and regression analyses were 
performed to determine whether there were significant differ-
ences in the rate of change between controls and each HD group. 
All results were adjusted for age, gender, and site.

resUlTs

Demographics and clinical characteristics
Participant demographics are given in Table 1. Age for the two 
HD groups was slightly higher than for controls and the PreHD 
groups, but this difference was not significant. CAG was sig-
nificantly higher in PreHD-B, HD1, and HD2 than in PreHD-A, 
and significantly higher for HD1 and HD2 than for PreHD-B. As 
expected, disease burden was also increased in the HD groups.

Qualitative analysis
Based on visual examination, each segmentation technique 
performed somewhat differently, for example, the boundaries 
between GM/CSF and GM/WM differed slightly for each tool. 
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TaBle 2 | A description of the performance of each tool, with most common issues outlined.

software Performance

SPM 8 Unified Segment • Poor temporal delineation very common.
• Occipital spillage and underestimation of frontal lobes in a number of scans.
• 6/400 scans segmented excluded from analysis due to gross failure (1 for 2008 A, 2 for 2008 B non-registered, 2 for 2008 B registered,  

1 for 2011).

SPM 8 New Segment • Poor temporal delineation very common.
• Occipital spillage in a number of scans.
• Classified voxels in the skull and dura as GM in almost all segmentations.
• No scans failed segmentation.

ANTs Atropos • Variable performance.
• Brain extraction determined segmentation quality; e.g., large brain mask meant dura included in the segmentation.
• Frequent overestimation of occipital GM and poorly delineated temporal lobes.
• No segmentation fails.

MALP-EM • Fewer issues with overestimation of the occipital lobe.
• Generally better temporal lobe delineation.
• CGM underestimated in superior regions in a small number of cases.
• No segmentation fails.

FSL FAST • Standard BET provided extremely poor brain extractions on Track-HD data and was re-run with an optimized BET procedure, although 
results of the optimized BET were still subpar.

• Often underestimated GM volume, with occasional overestimated due to poor brain extraction.
• As a result, difficult to characterize GM segmentation, and segmentations were deemed as pass or fail, with a fail representing a complete 

failure to segment the GM.
• Only two scans were rated as a complete fail.

FreeSurfer • For the volumetric regions, GM tended to be very tight along CSF boundary, with a layer of voxels on the GM/CSF boundary typically 
excluded from the volume-based segmentation.

• During the automated partial volume calculation used within FreeSurfer, volume is calculated via a combination of the volume- and surface-
based segmentations and so some of these excluded voxels would be included in the calculation if they are within the cortical surface.

• Spillage into the temporal CSF and occipital dura regularly seen with some cases classifying skull as GM.
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Some common errors were also identified across a number of 
the tools. For example, the occipital lobe was frequently overes-
timated, with voxels in the occipital dura assigned to GM (see 
Figure  2, arrow x). In addition, temporal regions were often 
segmented poorly, with unclear boundaries and oversegmenta-
tion outside of the GM (Figure 2, arrow +). Table 2 describes the 
overall performance of each tool, and Figure 2 shows an example 
of each tool in one participant from the Track-HD study.

cross-sectional Quantitative analysis
Volumetric Measures
Volumes of the total GM, CGM, and lobular GM were extracted 
for control participants and participants at different stages of HD. 
Total GM and CGM volumes are described for both baseline and 
follow-up time points for each segmentation tool (Figures 3 and 4;  
Table S1 in Supplementary Material). For all techniques, both 
total GM and CGM volumes were lower in participants with 
more advanced disease stage.

For lobular volumes, all tools showed more discrepancies in 
raw volume (Table 1; Figures S1–S5 in Supplementary Material). 
For the frontal lobe, all techniques estimated higher GM volume 
in PreHD-A participants than in controls, with some techniques 
also estimating higher GM volume in PreHD-B compared to 
controls. Frontal lobe volume was reduced in HD1 and HD2 
groups compared to control and premanifest groups. Temporal 
lobe volumes were also higher in PreHD-A than in controls for all 
segmentation tools, with both SPM 12 and MALP-EM estimating 
higher temporal volume in all groups compared to controls. Other 

tools showed slightly lower volumes in PreHD-B, HD1, and HD2 
than in controls. Parietal lobe volumes showed more uniform 
volume differences between each technique, with all techniques 
except for FreeSurfer measuring higher parietal lobe volumes in 
PreHD-A, PreHD-B, and HD1 compared to controls, and lower 
volume in HD2 compared to controls. FreeSurfer showed lower 
volumes in all groups from PreHD-B when compared to controls. 
For the occipital lobe, the results were variable for each technique, 
with most techniques showing higher volumes in PreHD-A 
than controls, and slightly reduced volume with increasing 
disease progression. Only FreeSurfer showed large reductions in 
volume between each group. Finally, insula volume was largest 
in PreHD-B for all techniques except FreeSurfer, with between-
group differences appearing minimal for most tools.

Reliability Measures
Control Participants
For controls, ICC values for baseline scan pairs were above 0.90 
for total GM, CGM, and lobular GM volume using each segmen-
tation tool (Table 3; Table S2 in Supplementary Material). Mean 
repeatability (indexing variability) was lowest in total GM for all 
techniques, ranging from 0.35% (SPM 8 New Segment) to 1.36% 
(FreeSurfer), as shown in Table  3, CGM showed only slightly 
higher variability than total GM for all techniques. Lobular 
regions generally showed higher repeatability values than total 
GM and CGM, indicating more variability between the lobular 
volumes for the first and second back-to-back baseline scans 
(Table 3).
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FigUre 4 | Box plots showing cortical gray matter (GM) volumes for all groups and all tools for 2008 and 2011 timepoints. Boxes show the first quartile, median, 
and third quartile, with whiskers representing the smallest and largest value not classified as an outlier. Dots represent outliers.

FigUre 3 | Box plots showing total gray matter (GM) volumes for all groups and all tools for 2008 and 2011 timepoints. Boxes show the first quartile, median,  
and third quartile, with whiskers representing the smallest and largest value not classified as an outlier. Dots represent outliers.
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Spearman’s Rho correlations showed that there were strong 
relationships between the volumes extracted using the seven differ-
ent tools, with values above 0.90 common (Table 4). Correlations 
were higher for CGM than for total GM. Spearman’s Rho for 
lobular regions are shown in Tables S4–S8 in Supplementary 
Material. Relationships >0.75 were seen for all measures for 
controls across all regions, with most results >0.90, indicating 
a high level of agreement between tools. Overall, SPM 8 Unified 
segment showed the lowest relationships with other measures.

Differences in ICC and repeatability for different scanner 
manufactures were briefly examined in control participants. 
Results for Siemens and Philips scanners were highly comparable 
for all techniques, and so no further analysis was done to compare 
the effects of different scanners in this cohort.

HD Gene-Carrier Participants
Reliability for total GM, CGM, and lobular GM as measured by 
ICC was above 0.90 for most tools across all regions and the disease 

subgroups (Table 5; Table S2 in Supplementary Material). In total 
GM and CGM, ICC values tended to be lower for PreHD-A than 
for other HD groups.

Repeatability values were more variable than ICC values. 
Repeatability was lower with increasing disease stage for total GM 
and CGM (Table 6). For individual lobes, it was more variable 
across disease stages, lobes, and tools, but showed a small range of 
mean values (Table S3 in Supplementary Material). Values ranged 
from 0.37% (parietal lobe volume measured by MALP-EM in 
HD1 participants) to 4.51% (temporal lobe volume measured by 
FreeSurfer in HD2 participants).

For total GM and CGM, Spearman’s correlation between 
measures tended to be lower for the HD2 group, indicating that 
the techniques perform differently on more atrophied brains 
(Tables S4 and S5 in Supplementary Material). SPM 8 Unified 
Segment again had lower values than other techniques for 
Spearman’s Rho, especially with SPM 8 New Segment in HD2 
participants, whereby correlations of 0.441 and 0.411 were seen 
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TaBle 4 | Spearman’s rank correlation for control participants for total GM and CGM.

sPM 8 Unified segment sPM 8 new segment sPM 12 segment anTs atropos MalP-eM Fsl FasT

Total gM

SPM 8 Unified Segment 1
SPM 8 New Segment 0.761 1
SPM 12 Segment 0.904 0.857 1
ANTs Atropos 0.788 0.920 0.929 1
MALP-EM 0.812 0.958 0.928 0.967 1
FSL FAST 0.867 0.896 0.956 0.929 0.944 1
FreeSurfer 0.874 0.904 0.884 0.874 0.905 0.920

cortical gM

SPM 8 Unified Segment 1
SPM 8 New Segment 0.798 1
SPM 12 Segment 0.918 0.971 1
ANTs Atropos 0.809 0.976 0.934 1
MALP-EM 0.861 0.932 0.953 0.974 1
FSL FAST 0.897 0.932 0.947 0.944 0.967 1
FreeSurfer 0.844 0.910 0.893 0.919 0.962 0.956

TaBle 3 |  (A) Intraclass correlation coefficients and confidence intervals for control participants for back-to-back segmentations of total GM, CGM, frontal lobe GM, 
temporal lobe GM, parietal lobe GM, occipital lobe GM, and insula GM included in the current study; (B) repeatability values for back-to-back segmentations of total 
GM, cortical GM, frontal lobe GM, temporal lobe GM, parietal lobe GM, occipital lobe GM, and insula GM for all control participants included in the current study, 
showing means, SDs, and ranges.

sPM 8 Unified segment sPM 8 new segment sPM 12 segment anTs atropos MalP-eM Fsl FasT Freesurfer

(a) intraclass correlations confidence intervals

Total GM 0.994 0.999 0.997 0.982 0.998 0.986 0.978
0.985–0.998 0.997–1.000 0.993–0.999 0.951–0.993 0.995–0.999 0.960–0.995 0.947–0.991

Cortical GM 0.994 0.999 0.997 0.985 0.998 0.988 0.967
0.985–0.998 0.998–1.000 0.993–0.999 0.958–0.994 0.995–0.999 0.964–0.996 0.918–0.987

Frontal Lobe 0.996 0.999 0.997 0.983 0.997 0.989 0.960
0.990–0.998 0.997–0.000 0.991–0.999 0.955–0.993 0.993–0.999 0.969–0.996 0.902–0.984

Temporal Lobe 0.989 0.994 0.992 0.990 0.994 0.985 0.975
0.973–0.996 0.986–0.998 0.980–0.997 0.975–0.996 0.984–0.997 0.963–0.994 0.936–0.990

Parietal Lobe 0.995 0.997 0.996 0.976 0.996 0.984 0.956
0.986–0.998 0.993–0.999 0.990–0.998 0.931–0.991 0.990–0.998 0.954–0.994 0.886–0.983

Occipital Lobe 0.994 0.993 0.995 0.971 0.992 0.978 0.962
0.985–0.998 0.984–0.997 0.988–0.998 0.922–0.989 0.981–0.997 0.936–0.992 0.906–0.985

Insula 0.977 0.979 0.979 0.982 0.985 0.979 0.975
0.941–0.991 0.948–0.992 0.948–0.992 0.955–0.993 0.962–0.994 0.947–0.991 0.938–0.990

(B) Mean repeatability (sD) range

Total GM 1.08 (0.82) 0.35 (0.34) 0.69 (0.48) 1.14 (1.65) 0.41 (0.53) 0.91 (1.33) 1.36 (1.43)
0.18–2.88 0.01–1.00 0.12–1.77 0.00–6.44 0.02–2.07 0.05–4.99 0.05–5.77

Cortical GM 1.06 (0.82) 0.36 (0.25) 0.79 (0.50) 1.23 (1.71) 0.49 (0.57) 1.14 (1.36) 1.82 (2.09)
0.02–2.72 0.00–0.98 0.07–1.96 0.03–6.81 0.01–2.18 0.03–4.81 0.06–8.05

Frontal Lobe 1.13 (0.93) 0.50 (0.43) 1.09 (0.67) 1.50 (2.28) 0.67 (0.74) 1.43 (1.49) 2.33 (3.05)
0.00–3.09 0.05–1.48 0.20–2.45 0.02–9.65 0.00–2.67 0.01–5.72 0.01–11.04

Temporal Lobe 1.50 (2.63) 0.82 (1.52) 1.06 (2.27) 1.25 (1.86) 0.90 (1.71) 1.54 (2.07) 3.16 (2.32)
0.03–11.93 0.02–7.09 0.04–10.50 0.00–7.27 0.00–7.62 0.02–8.36 0.29–7.46

Parietal Lobe 1.07 (0.88) 0.59 (0.79) 0.88 (0.87) 1.57 (2.35) 0.80 (0.75) 1.29 (1.91) 2.21 (2.79)
0.01–3.29 0.04–3.72 0.14–3.78 0.01–7.25 0.00–2.74 0.11–6.03 0.10–8.84

Occipital Lobe 1.02 (0.96) 0.85 (0.82) 0.88 (0.63) 1.36 (1.79) 0.75 (0.86) 1.29 (1.63) 2.23 (1.86)
0.07–3.53 0.04–3.29 0.15–2.51 0.07–6.57 0.07–3.93 0.03–6.00 0.00–6.56

Insula 1.73 (2.42) 1.48 (1.66) 1.44 (2.13) 1.51 (1.76) 1.31 (1.88) 1.58 (2.21) 2.07 (1.91)
0.08–10.97 0.05–7.91 0.22–9.90 0.21–8.32 0.01–8.44 0.09–10.55 0.09–7.43

8

Johnson et al. Recommendations for Automated GM Segmentation

Frontiers in Neurology | www.frontiersin.org October 2017 | Volume 8 | Article 519

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


TaBle 5 |  (A) Intraclass correlation coefficients and confidence intervals for HD 
participants for all tools measuring total GM volume in back-to-back 2008 scans; 
(B) intraclass correlation coefficients and confidence intervals for HD participants 
for all tools measuring CGM volume for back-to-back 2008 scans.

PrehD-a 
(N = 20)

PrehD-B 
(N = 20)

hD1  
(N = 20)

hD2  
(N = 20)

(a) Total gM intraclass correlations confidence intervals

SPM 8 Unified 0.993 0.977 0.984 0.989
0.982–0.997 0.943–0.991 0.960–0.994 0.973–0.996

SPM 8 New 
Segment

0.999 0.999 0.999 0.999
0.998–1.000 0.998–1.000 0.998–1.000 0.998–1.000

SPM 12 0.989 0.990 0.997 0.994
0.972–0.995 0.974–0.996 0.994–0.999 0.982–0.998

Atropos 0.975 0.994 0.989 0.986
0.912–0.991 0.981–0.998 0.970–0.996 0.938–0.995

MALP-EM 0.996 0.998 0.999 0.996
0.989–0.998 0.996–0.999 0.996–0.999 0.990–0.998

FAST 0.989 0.997 0.995 0.994
0.970–0.996 0.989–0.999 0.982–0.998 0.985–0.998

FreeSurfer 0.988 0.988 0.992 0.993
0.967–0.995 0.968–0.995 0.979–0.997 0.983–0.997

(B) cortical gM intraclass correlations confidence intervals

SPM 8 Unified 0.993 0.979 0.987 0.991
0.982–0.997 0.947–0.992 0.967–0.995 0.977–0.996

SPM 8 New 
Segment

0.999 0.999 0.999 0.999
0.998–1.000 0.998–1.000 0.998–1.000 0.998–1.000

SPM 12 0.988 0.991 0.998 0.995
0.971–0.995 0.978–0.996 0.995–0.999 0.984–0.998

Atropos 0.970 0.995 0.991 0.990
0.893–0.990 0.984–0.998 0.974–0.997 0.947–0.997

MALP-EM 0.995 0.998 0.999 0.996
0.986–0.998 0.994–0.999 0.997–10.000 0.991–0.999

FAST 0.986 0.996 0.995 0.995
0.961–0.994 0.989–0.998 0.985–0.998 0.987–0.998

FreeSurfer 0.985 0.983 0.989 0.992
0.957–0.994 0.955–0.993 0.970–0.996 0.981–0.997
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for total GM and CGM, respectively. For lobular regions, the 
relationships between measures were generally lower than those 
in control participants, with more correlations between 0.7 and 
0.9 (Tables S6–S10 in Supplementary Material).

longitudinal Quantitative analysis
Total GM Volume
Total GM volume change (as a percentage of baseline volume) 
for all tools was smaller in controls than that of the HD 
gene-carrier groups (Table 7; Figure 5). However, when total 
GM volume change within each HD group was statistically 
compared to controls, MALP-EM, and FreeSurfer were the 
only two tools that detected significantly greater change in all 
disease groups. All other tools detected significantly greater 
change in HD1 and HD2 compared to controls, with SPM 12 
and FAST also showing greater change in PreHD-B compared 
to controls.

CGM Volume
The same analysis was conducted in CGM showing that CGM 
change was inconsistent across tools (Table 8; Figure 6). Except 
for SPM 8 New Segment, all tools showed significantly greater 
change in HD1 and HD2 compared to controls, SPM 8 New 
Segment only showed greater change in HD1. MALP-EM, FAST, 
and FreeSurfer all showed greater change in PreHD-B than con-
trols, and only MALP-EM and FreeSurfer showed greater change 
in PreHD-B than controls.

Lobular GM Volume
Longitudinal change within the lobes was variable for all groups 
with the parietal and occipital lobes showing the most consistent 
patterns of group differences across most techniques.

Frontal Lobe Volume
There was significant frontal lobe change in HD groups compared 
to controls (Table S11 in Supplementary Material). SPM 8 New 
Segment and ANTs showed no significantly different change in 
any group compared to controls. MALP-EM and SPM 8 Unified 
Segment only detected significant change in HD1 compared to 
controls, and SPM 12 detected change in PreHD-B, HD1, and 
HD2 compared to controls. Both FSL FAST and FreeSurfer found 
significant differences in longitudinal change in all HD groups.

Temporal Lobe Volume
For the temporal lobe, SPM 8 New Segment, MALP-EM and 
ANTs showed no significant differences in volumetric change. 
FSL FAST and SPM 8 Unified segment found significant differ-
ences in HD1 compared to controls, and FreeSurfer and SPM 12 
found differences in HD1 and HD2 compared to controls (Table 
S12 in Supplementary Material).

Parietal Lobe Volume
Change in the parietal lobe was more widely detected across 
groups, with all techniques except SPM 8 Unified Segment show-
ing significantly greater volume reduction in HD1, HD2, and 
PreHD-B compared to controls, which only showed a difference 
between HD1 and controls. SPM 8 New Segment, MALP-EM, 
FAST, and FreeSurfer detected significantly greater change over 
time in all HD groups (Table S13 in Supplementary Material).

Occipital Lobe Volume

Occipital lobe change was again widespread across all tools in 
HD groups compared to controls (Table S14 in Supplementary 
Material). SPM 8 New Segment, MALP-EM, FSL FAST, and 
FreeSurfer found significantly greater change in all HD groups 
compared to controls. SPM 12 and ANTs found significantly 
greater change in all PreHD-B, HD1, and HD2 compared to con-
trols and finally SPM 8 Unified Segment found greater change in 
HD1 and HD2.

Insula Volume
Finally, within the insula SPM 8 New Segment and MALP-EM 
found no differences between any group and controls, SPM 8 
Unified Segment, ANTs, FAST, and FreeSurfer found greater 
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TaBle 6 |  (A) Repeatability values for back-to-back segmentations of total GM for all HD participants included in the current study, showing means, SDs, and ranges; 
(B) repeatability values for back-to-back segmentations of CGM for all HD participants included in the current study, showing means, SDs, and ranges.

sPM 8 Unified sPM 8 new sPM 12 atropos MalP-eM FasT Freesurfer

(a) Total gM

PreHD-A Total GM 0.89 (0.80) 0.27 (0.19) 0.97 (0.86) 1.26 (1.63) 0.58 (0.53) 0.82 (0.67) 0.90 (0.87) 
0.01–3.05 0.02–0.80 0.01–2.93 0.07–5.61 0.02–2.22 0.00–2.42 0.03–2.69

PreHD-B Total GM 1.61 (1.83) 0.28 (0.22) 0.83 (0.88) 0.78 (0.72) 0.40 (0.40) 0.54 (0.51) 1.15 (0.98)
0.24–7.03 0.02–0.70 0.02–3.15 0.07–2.45 0.01–1.37 0.02–1.75  0.03–3.85

HD1 Total GM 1.13 (1.33) 0.29 (0.24) 0.64 (0.54) 1.00 (1.27) 0.39 (0.27) 0.82 (0.68) 0.91 (0.74) 
0.04–6.22 0.01–0.75 0.08–1.80 0.02–4.45 0.08–1.20 0.13–2.20 0.15–3.55

HD2 Total GM 0.94 (0.77) 0.22 (0.12) 0.86 (0.71) 1.24 (1.33) 0.57 (0.50) 0.65 (0.70) 0.80 (0.72) 
0.07–2.90 0.03–0.37 0.03–3.20 0.02–5.08 0.01–1.87 0.00–3.06 0.05–2.54

(B) cortical gM

PreHD-A Cortical GM 0.91 (0.76) 0.33 (0.22) 1.03 (0.89) 1.31 (1.77) 0.67 (0.64) 1.01 (0.70) 1.08 (1.03)
0.05–2.82 0.04–0.75 0.10–3.32 0.09–6.19 0.05–2.72 0.02–2.41 0.03–3.15

PreHD-B Cortical GM 1.61 (1.90) 0.31 (0.27) 0.86 (0.81) 0.77 (0.69) 0.47 (0.47) 0.65 (0.53) 1.49 (1.28)
0.09–7.24 0.00–1.10 0.06–2.91 0.15–2.60 0.02–1.70 0.00–1.86 0.23–5.22

HD1 Cortical GM 1.14 (1.44) 0.35 (0.25) 0.67 (0.55) 1.02 (1.09) 0.37 (0.31) 0.87 (0.66) 1.30 (1.11)
0.11–6.76 0.03–0.88 0.06–1.71 0.00–3.69 0.03–1.43 0.11–2.35 0.27–5.16

HD2 Cortical GM 0.96 (0.78) 0.22 (0.16) 0.86 (0.70) 1.13 (1.11) 0.61 (0.49) 0.66 (0.63) 1.04 (0.96)
0.04–2.74 0.02–0.61 0.02–3.10 0.04–3.47 0.09–1.85 0.11–2.77 0.04–3.17

TaBle 7 | Mean change (2011 volume as a percentage of baseline volume), SD, and ranges for all tools and groups in total GM.

controls PrehD-a PrehD-B hD1 hD2

SPM 8 Unified Segment % change 2008–2011 −0.67 (3.05) −2.11 (3.06) −2.08 (4.53) −5.15 (6.97) −3.58 (2.06)
5.42–7.93 2.13–11.07 7.22–14.38 7.37–30.87 0.53–6.28

Significant difference — −1.12 (0.75–3.00) −0.62 (0.55–1.79) −1.71 (0.65–2.76) −0.53 (0.06–1.00)
p = 0.239 p = 0.299 p = 0.002 p = 0.027

SPM 8 New Segment % change 2008–2011 −0.43 (2.41) −1.51 (1.09) −1.28 (0.76) −1.78 (1.04) −3.00 (3.39)
7.93–3.23 0.32–3.30 0.26–2.60 −0.14–4.12 0.28–16.62

Significant difference — −1.05 (0.05–2.16) −0.44 (0.07–0.95) −0.41 (−0.06–0.76) −0.59 (−0.09–1.08)
p = 0.062 p = 0.089 p = 0.021 p = 0.021

SPM 12 Segment % change 2008–2011 −0.80 (2.29) −1.54 (3.61) −2.77 (1.64) −4.42 (2.06) −4.87 (2.50)
4.79–3.97 −7.49–7.29 0.28–5.89 0.82–7.80 0.98–9.65

Significant difference — −0.43 (1.40–2.26) −1.00 (−0.42–1.58) −1.21 (−0.78–1.65) −0.78 (−0.36–1.19)
p = 0.646 p = 0.001 p = 0.000 p = 0.000

ANTs % change 2008–2011 −1.39 (2.38) −1.67 (2.57) −1.65 (2.18) −3.00 (1.96) −3.28 (4.26)
0.83–9.69 2.79–6.97 2.17–7.17 −0.10–7.09 1.40–18.87

Significant difference — −0.59 (0.90–2.08) −0.20 (0.44–0.84) −0.58 (−0.16–1.00) −0.75 (−0.18–1.31)
p = 0.435 p = 0.544 p = 0.006 p = 0.009

MALP-EM % change 2008–2011 −0.35 (1.36) −1.28 (1.29) −1.37 (1.20) −2.45 (2.36) −2.31 (2.72)
3.81–2.55 1.28–4.68 1.08–3.59 3.34–9.15 1.76–11.83

Significant difference — −0.89 (−0.06–1.72) −0.47 (−0.10–0.85) −0.65 (−0.28–1.02) −0.39 (−0.02–0.75)
p = 0.036 p = 0.013 p = 0.001 p = 0.039

FAST % change 2008–2011 −0.49 (3.57) −1.90 (7.83) −2.57 (3.02) −4.38 (4.47) −6.70 (5.81)
7.91–8.88 26.04–11.48 0.72–12.70 4.55–12.72 −0.32–18.59

Significant difference — −0.30 (–2.62–3.23) −1.15 (−0.44–1.86) −1.05 (−0.56–1.55) −0.85 (−0.37–1.33)
p = 0.839 p = 0.002 p = 0.000 p = 0.001

FreeSurfer % change 2008–2011 −0.42 (1.90) −1.75 (1.62) −2.08 (1.54) −3.06 (1.70) −3.46 (1.80)
−5.96–2.51 −2.15–4.86 −0.97–4.98 −0.16–5.95 0.13–6.30

Significant difference — −1.13 (−0.06–2.21) −0.87 (−0.37–1.37) −0.85 (−0.49–1.22) −0.64 (−0.31–0.97)
p = 0.039 p = 0.001 p = 0.000 p = 0.000

Results of regression analyses comparing rate of change in controls to HD groups, with significantly greater change in HD groups represented by *p < 0.05 (light green), **p < 0.01 
(dark green). Age, gender, and site were controlled for.
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FigUre 5 | Mean values for all tools and groups showing 2011 volume as a percentage of baseline volume in total gray matter (GM). Significant change difference 
relative to controls after controlling for age, gender, and site is represented by *p < 0.05, **p < 0.01.
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change in HD1 and HD2 than controls, and SPM 12 found greater 
change in PreHD-B, HD1, and HD2 (Table S15 in Supplementary 
Material).

DiscUssiOn

We compared seven segmentation tools in controls and HD 
participants. Our aim was to identify the key advantages and 
disadvantages of each tool and use this information to provide 
advice for the non-technical user on selecting the most appro-
priate method to use according to the nature of the cohort. The 
segmented data were examined qualitatively and quantitatively 
with a particular focus on CGM. Subcortical changes are already 
well characterized in HD but there is increasing recognition that 
the cortex plays an important role prior to disease onset and 
particularly around the time of conversion to manifest disease 
(17). Moreover, delineation of the cortex is generally more 
problematic than subcortical segmentation due to its convoluted 
structure. Results showed while few segmentations were classi-
fied as a “gross” failure following visual examination many tools 
show poor delineation of the GM especially in temporal and 
occipital regions, with wide variation in the quality of segmenta-
tion performance across tools. This was further evident in the 
quantitative results, with large differences in segmentation 
across tools for raw total GM, CGM, and lobular GM volumes. 
Longitudinal analysis demonstrated that while the pattern of total 
GM and CGM change was similar across tools, when GM change 
in HD participants was statistically compared to GM change in 
controls, the tools detected differing degrees of change. In addi-
tion, for lobular volumes the tools showed different patterns of 

change in a number of regions. Despite the variability in both 
raw volumes and sensitivity to change, all tools generally showed 
high reliability across groups and regions, as measured by ICC 
and repeatability metrics, and extracted volumes were typically 
highly correlated between different tools.

For controls and HD participants, GM regions derived 
using MALP-EM were consistently larger than those for other 
tools, likely due to the regions having higher probabilistic GM 
segmentation values. SPM also outputted comparatively large 
regions, with FSL FAST and FreeSurfer outputting the lowest; a 
discrepancy that has been previously noted (7). SPM regularly 
overestimated both occipital and temporal lobe regions, this was 
particularly noticeable for larger brains and in earlier versions 
of SPM, indicating that SPM may overestimate between-group 
differences when comparing healthy to atrophied brains. Low 
volumes using FSL can be explained by regular underestimation 
of the CGM, partly resulting from poor brain extraction in this 
cohort. It is important to note that the poor performance of BET 
should not rule out the use of FSL in other cohorts, since it is 
known to perform well on other data. Lower volumes output 
by FreeSurfer likely result from subtle under-estimation seen 
throughout the cortical boundary with CSF. While the partial 
volume included via calculation of FreeSurfer regions would 
account for some of these voxels, the regions remained tight along 
the outer boundary after accounting for this. ANTs showed some 
evidence of over- and undersegmentation.

Although all tools demonstrated errors using segmentation 
default pipelines, no manual intervention was performed to 
improve the quality of segmentation due to the increased subjec-
tivity involved in manual intervention. However, it is important 
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TaBle 8 | Mean change (2011 volume as a percentage of baseline volume), SD, and ranges for all tools and groups in cortical GM.

controls PrehD-a PrehD-B hD1 hD2

SPM 8 Unified Segment % change 2008–2011 −0.94 (3.06) −2.05 (2.17) −1.73 (3.71) −4.55 (4.11) −4.03 (2.30)
5.17–8.55 2.37–5.99 7.96–8.46 7.45–10.73 0.71–7.24

Significant difference −0.89 (0.82–2.59) −0.40 (−0.63–1.42) −1.26 (−0.56–1.97) −0.55 (−0.06–1.03)
p = 0.309 p = 0.447 p = 0.000 p = 0.028

SPM 8 New Segment % change 2008–2011 −0.16 (0.93) −0.74 (0.90) −0.56 (0.62) −0.95 (0.74) −1.74 (3.22)
1.52–1.84 1.21–2.79 0.87–2.26 0.29–2.60 0.82–14.87

Significant difference 0.56 (1.07–0.06) 0.20 (0.39–0.00) 0.31 (0.46–0.15) 0.29 (0.65–0.07)
p = 0.030 p = 0.046 p = 0.000 p = 0.114

SPM 12 Segment % change 2008–2011 −0.93 (2.35) −1.73 (3.87) −3.14 (1.71) −5.06 (2.39) −5.24 (2.61)
4.68–4.25 7.83–7.98 −0.58–6.16 −1.17–9.06 −1.30–10.43

Significant difference 0.50 (2.421.42) 1.13 (1.72–0.53) 1.38 (1.86–0.91) 0.83 (1.26–0.40)
p = 0.608 p = 0.000 p = 0.000 p = 0.000

ANTs % change 2008–2011 −1.58 (2.75) −2.13 (2.55) −2.01 (1.90) −3.34 (1.79) −3.51 (3.95)
1.25–11.81 2.21–7.71 2.00–5.84 −0.26–6.61 0.81–17.69

Significant difference 0.81 (2.440.83) 0.27 (0.95–0.42) 0.64 (1.09–0.18) 0.71 (1.28–0.13)
p = 0.335 p = 0.446 p = 0.006 p = 0.017

MALP-EM % change 2008–2011 −0.48 (1.24) −1.36 (1.26) −1.47 (1.24) −2.54 (2.69) −2.32 (2.10)
3.13–2.49 1.13–4.08 0.73–3.82 3.65–10.92 1.37–9.09

Significant difference 0.78 (1.55–0.01) 0.45 (0.80–0.09) 0.66 (1.05–0.26) 0.33 (0.62–0.04)
p = 0.047 p = 0.013 p = 0.001 p = 0.027

FAST % change 2008–2011 −0.74 (3.41) −3.77 (4.51) −2.77 (3.55) −4.78 (4.88) −7.00 (6.34)
6.63–8.33 2.62–12.54 0.36–15.00 3.85–14.14 0.09–20.82

Significant difference 1.96 (3.48–0.45) 1.12 (1.83–0.41) 1.09 (1.59–0.59) 0.85 (1.37–0.33)
p = 0.011 p = 0.002 p = 0.000 p = 0.001

FreeSurfer % change 2008–2011 −0.55 (1.49) −1.75 (1.77) −2.23 (1.86) −3.49 (2.04) −3.87 (2.04)
3.32–2.26 1.94–6.24 1.37–5.69 0.50–6.51 0.13–7.69

Significant difference 0.98 (1.98–0.03) 0.85 (1.33–0.37) 0.93 (1.28–0.58) 0.70 (1.00–0.40)
p = 0.057 p = 0.000 p = 0.000 p = 0.000

Results of regression analyses comparing rate of change in controls to HD groups, with significantly greater change in HD groups represented by *p < 0.05 (light green), **p < 0.01 
(dark green). Age, gender, and site were controlled for.
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to note that all tools offer some opportunity to improve the 
issues described above via optimization of the segmentation 
and/or manual intervention after segmentation. For example, 
FreeSurfer allows editing of the segmented region to improve 
regions with over- or undersegmentation, MALP-EM, FAST, 
SPM, and ANTs can all be used with highly optimized masks 
to improve segmentation, or can be manually edited after 
segmentation.

Despite the lack of optimization and manual editing it is reas-
suring to note good reliability for back-to-back scans across tools 
using ICC and a repeatability metric. These findings support the 
results of previous studies comparing SPM, FSL, and FreeSurfer 
(7) and offer additional information on the performance of ANTs 
and MALP-EM. Most tools were also highly correlated, again 
supporting previous studies (7), although correlations between 
the techniques tended to decrease with increasing disease pro-
gression indicating divergence of performance on brains with 
more advanced atrophy. It is likely that using optimized brain 
masks or performing manual editing may improve performance 
on atypical brains.

Different techniques showed different longitudinal sensitivity 
to GM change in HD groups compared to controls, especially 
within the five lobes. For total GM and CGM, all techniques 

showed decreasing volume with increasing disease progression. 
While SPM 8 Unified Segment, SPM 12, and FAST showed the 
largest decreases in total GM volume over time, MALP-EM and 
FreeSurfer both showed significant change across all disease 
stages, possibly indicating greater sensitivity to small changes. In 
CGM, SPM 8 Unified Segment, SPM 12, and FAST showed large 
decreases in raw GM volume, but again MALP-EM and FreeSurfer 
showed statistical sensitivity to small changes. MALP-EM was 
developed for use in clinical cohorts, which could partly explain 
the sensitivity of MALP-EM in an HD cohort (35).

The results of the longitudinal lobular analysis show large 
differences between the tools on each lobe, with particular diver-
gence between tools in the frontal lobe, temporal lobe, and insula. 
The results of this analysis emphasize the importance of good 
quality segmentations, with some significant results being driven 
by participants with very high rates of change. For example, a 
significantly greater volumetric loss in PreHD-A compared to 
controls in the frontal lobe as measured by FSL FAST was possibly 
driven by a percentage loss in one participant of 18% between 
baseline and follow-up. Re-examination of the segmentations 
revealed underestimation of the frontal lobe in the follow-up 
timepoint rather than a true volumetric change. If manual editing 
had been performed this result would be accounted for, and a 
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more biologically plausible rate of change measured. The impact 
of segmentation errors is reduced in large cohorts or with whole-
brain analyses, but when examining regional change the quality of 
every slice of the segmentation is paramount. This result supports 
the work of Iscan et  al. (6) who found that by including scans 
which have poorly delineated FreeSurfer regions in an analysis, 
the sample size required to detect a true effect increases. It is pos-
sible that the results shown in the parietal and occipital lobe are 
more uniform across tools as this is a region that is thought to 
undergo the most atrophy within CGM in PreHD and early HD 
(16, 45–47), and so statistical sensitivity to change in these regions 
is more robust when segmentation quality is sub-optimal and 
variability is high. In comparison, regions that may have slower 
rates of change in HD (e.g., frontal lobe) are more easily biased 
by poor segmentations and thus different techniques identify 
different patterns of atrophy. While this study is underpowered 
to draw conclusions on the true nature of lobular progression of 
GM atrophy in HD, the results provide a useful demonstration 
on the importance of selecting a segmentation tool that performs 
well on a particular dataset.

The results of this study are limited by a few factors. First, 
the aim was to examine segmentation procedures as they would 
routinely be applied by non-technical users and thus default brain 
extraction was used. This introduces additional variability to the 
comparison, and between-technique differences would likely be 
reduced if the same brain extraction was used prior to segmenta-
tion. In addition, we did not compare the longitudinal pipelines 
offered by some tools (e.g., FreeSurfer, SPM) as not all currently 
offer a longitudinal pipeline. Finally, in this study, we used scans 
from multiple sites which could impact the performance of 

different techniques. However, this is also a relevant point given 
the increasing number of multi-site studies.

The results of this study can inform the selection of a GM 
segmentation tool for use in the Track-HD cohort, but they 
can also be generalized to other clinical cohorts, particularly 
neurodegenerative diseases. All tools showed consistently high 
reliability when used with our clinical data. However, there were 
a significant number of segmentation errors and while segmenta-
tion quality for each tool can be optimized, it is important to note 
variable results are likely depending on factors including scanner 
parameters, quality of data and researcher expertise. We now use 
this analysis as the basis for a set of considerations on how to 
select of the most appropriate segmentation tool in different types 
of datasets.

Which segmentation Tool Best answers 
Your Question?
It is important to consider which software tools contain features 
that are most appropriate for addressing your question or 
hypothesis. For example, if regional GM volume is the main 
focus, considering software that includes the option to perform 
regional analysis and atlas optimization can potentially reduce 
errors otherwise introduced when applying a rough mask to your 
cohort. Some tools (for example, SPM, ANTs, FSL, MALP-EM) 
are suitable for extracting volumes from customized regions 
or atlases applied to volumetric maps, while others, such as 
FreeSurfer, recommend using default atlases. Furthermore, the 
intended use of other structural analyses such as cortical thickness 
or VBM should also be considered. More broadly speaking, if T1 
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weighted imaging is being considered for a study it is important 
to ensure that it is the most appropriate method for examining the 
expected clinically relevant pathology, as opposed to techniques 
for example the use of diffusion weighted imaging would likely be 
more appropriate for studying WM pathology.

are Your Knowledge, experience, and 
resources sufficient to Use the Tool?
While some tools offer numerous options for customization, 
this often requires an appropriate level of analysis and comput-
ing expertise. Without full understanding of the changes being 
applied to a pipeline, there is a risk of producing results that are 
not accurate, reliable or reproducible. Conversely, some tools 
provide little or no customization, and thus are simple to apply 
yet may be limited in the range of appropriate applications. If 
available, use your chosen tool to analyze test data with the same 
MRI acquisition parameters as those in your study prior to begin-
ning the analysis on a full cohort of participants. This will reduce 
delays due to errors or complexity of technique when applying it 
to a large cohort.

As an example, ANTs has previously been validated with 
impressive results for both registration and cortical thickness 
using default pipelines in a healthy cohort (40, 48). However, 
due to the number of possible optimizations for a clinical cohort, 
such as creation of a study-specific template and priors, an 
inexperienced user may find using this tool challenging. When 
applying ANTs to the Track-HD cohort, the large variation in 
brain sizes within each patient group meant that when using the 
study-specific brain mask to extract the brain, dura was often 
erroneously classified as GM. Group-specific templates may have 
been more suitable here, but this would have required more time 
and expertise to create and optimize.

Another consideration is the variable nature of processing 
time necessary for each tool, which can range from 5 min (SPM) 
to 24 h (FreeSurfer) per brain. In addition, a number of registra-
tion or segmentation tools require high levels of processing power 
and may not run locally on desktop/laptop machines. Access to a 
high-powered computer cluster or just a single laptop with limited 
processing resources might determine which tool you choose. 
Financial costs also warrant consideration. While all tools exam-
ined for this case study are freely available for academic purposes, 
SPM works on a MATLAB platform that is not freely available. In 
addition, some tools require a license for use in industry settings 
and if developing methodology for later use within clinical trials, 
industry costs of these tools should be considered.

Which segmentation Tools are Most 
reliable?
A number of studies have previously demonstrated that some 
of the tools discussed in the current study have high reliability 
(3, 9). These findings were supported by current results in the 
Track-HD cohort. Current versions of all tools, including two not 
previously validated in this way (ANTs Atropos and MALP-EM), 
demonstrated high reliability. While repeatability was more 
variable, and lower in early-HD participants, the values were still 
very good for most tools. It is important to note that in some 

back-to-back scan pairs, FreeSurfer resulted in large repeatability 
values indicating that within some segmentations there were large 
variations in performance for FreeSurfer. For example, for one 
PreHD-A participant the repeatability within the frontal lobe was 
26.01. When the segmentations were re-examined, it was clear 
that large regions of the temporal lobe had been excluded from 
the segmentation. This result is concerning in such a widely used 
tool, and highlights the importance of visual QC and manual 
editing. While reliability can be established for all tools in this 
and previous studies, accuracy is more difficult to determine—see 
section Which Segmentation Tools Are Most Accurate?

Which segmentation Tools are Most 
accurate?
While phantom data can be used to examine the accuracy of 
volumetric measurement tools in healthy models, the results of 
phantom analyses do not always represent performance when 
applied to clinical cohorts. In HD, for example, where the pat-
tern of neural change is not well understood it is challenging 
to define the tool that provides the greatest accuracy. Often, 
measures are examined in terms of their overlap to examine 
accuracy—however since all tools showed consistent errors (e.g., 
oversegmentation in occipital and temporal regions) this could 
falsely inflate accuracy results. How do we determine which is the 
most accurate result? Visual quality control was an important fac-
tor when assessing accuracy in this study. MALP-EM appeared to 
be the most visually accurate tool, with SPM 12 also performing 
well despite some segmentation errors in temporal and occipital 
regions. By comparing the results of longitudinal change in this 
sample to other previously published values of longitudinal GM 
change in larger HD cohorts (measured by various techniques), 
it appears that a number of techniques overestimate GM change 
in this small cohort. SPM 8 New Segment, MALP-EM, ANTs, 
and FreeSurfer produced values in line with previous studies 
suggesting that they may be able to detect accurate results from a 
small sample (16, 18). Since inconsistencies between volumetric 
neuroimaging tools are thought to result in contradictions within 
clinical neuroimaging research, it is imperative that the accuracy 
of each tool is visually examined within a cohort to ensure good 
performance of the tools on a particular cohort.

should i Perform Visual Qc of My Data?
This is a necessary step in the processing of any data. All reg-
istrations, segmentations and masks in this study were visually 
checked. Errors in processing, complete segmentation failures or 
patterns in segmentation errors were only detected by viewing the 
data. While total failure of a tool to segment an image was rare, 
consistent errors in segmentation were common. In cases where 
segmentation did fail completely, the volumetric measurements 
for total GM and CGM were often not out of line with expected 
values and so may not be detected in a quantitative check of 
extreme values but would not provide reliable data on pathology 
or longitudinal sensitivity.

In this study for cases where segmentation was poor but not 
classified as a fail, the data were included in the final analysis but 
this resulted in inflated group differences due to outliers, and a 
larger sample size would be required to detect true effects (6).  
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TaBle 9 | Some characteristics of the different software tools included in the current study.

sPM8 
Unified 

segment

sPM8 new 
segment

sPM 12 
segment

anTs MalP-eM FasT Freesurfer

Total GM volume in default pipeline? Yes Yes Yes Yes Yes Yes Yes
Regional atlas/volume in default pipeline? No No No Additional Script Yes No Yes
Probabilistic Segmentation default? Yes Yes Yes Yes Yes Yes No
Discrete Volume Maps default? No No No Yes Yes Yes No
Easy to manually output regional volumes from maps? Yes Yes Yes Yes Yes Yes Requires time
Volumes automatically output in text file? No No No No Yes No Yes
Time to segment (per brain) 5–10 min 5–10 min 5–10 min 1.5–4 h 1.5–4 h 5–10 min 12–24 h
Can be used to process other GM measures?  
(e.g., cortical thickness)

VBM VBM VBM Cortical thickness No VBM Cortical thickness; 
gyrification
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The process of performing visual QC and rejecting or editing 
poor quality data is likely to be easier than recruiting and scan-
ning more patients. When investigating GM volume in a cohort 
with subtle disease effects such as PreHD patients, the benefits of 
visual QC are likely to be substantial.

In addition to visual QC, manual editing can be performed 
where appropriate to increase sensitivity. In large cohorts this may 
be unfeasible; however, as all techniques showed some segmenta-
tion errors in the Track-HD cohort and all offer options for manual 
editing this should be considered. It is particularly important for 
studies in which subtle group differences or longitudinal change 
is expected or when subregions are being examined. Manual edit-
ing requires the user to have in-depth knowledge of anatomy and 
a consistent procedure specifying when manual edition should be 
performed in order to reduce subjectivity.

how similar are results across  
the Different Tools?
For control participants, all tools appeared to produce very simi-
lar results for both total GM and CGM; with between–technique 
correlation coefficients generally high, although slightly higher 
for CGM volume, indicating that techniques show greater varia-
tion in subcortical segmentation (Table 3).

However, in HD participants the correlations were more 
variable, indicating that some techniques appear to detect 
disease-related change to a greater extent than others. In total 
GM volume (Table  6), the relationships between techniques 
were generally lower than in controls. For CGM, correlation 
coefficients were higher and more stable than for total GM, 
indicating that measurement of the subcortical GM may be more 
variable than CGM across different tools. As marked subcortical 
atrophy in the caudate and putamen is a defining feature of HD, it 
is unsurprising that the techniques may perform differently when 
segmenting this region, especially for tools developed on healthy 
controls. These results suggest that care should be taken when 
applying techniques in regions of severe atrophy or change, with 
much more divergence performance apparent in the use of the 
tools in these circumstances.

cOnclUsiOn

With a multitude of tools available to measure the volume of GM 
using MRI scans, the selection of the most appropriate tool can 

be a challenging first step in a research project, and one that may 
have a marked effect on the results of research. By using seven 
segmentation tools to analyze GM volume from 100 MRI scans 
with back-to-back data at multiple time-points in controls and 
a unique clinical group, we were able to highlight a number of 
key points related to the measurement of GM volume. Table 9 
provides some characteristics of the tools included in this study 
that can help to guide the initial decision making process in GM 
volumetric selection.

All methods compared in this work showed high reliability, 
supporting the results of previous studies and adding new sup-
port for the use of ANTs and MALP-EM, which have not been 
compared in this way previously. For the current cohort, the tools 
that detected the greatest raw change over a three-year follow-up 
period were not always the most sensitive to significant change 
in this period, indicating that higher variability in performance 
of these tools reduced their sensitivity to subtle disease-related 
change. Despite this, all tools detected significant longitudinal 
change in GM when comparing the most advanced patients in 
the cohort to controls, meaning that all tools are sensitive to 
more advanced neural pathology across the whole cortex. Subtle 
regional differences were not detected by all tools, however. One 
of the most significant findings from this study is the importance 
of visual quality control of GM segmentations. Poorly segmented 
and inaccurate data can easily be included in neuroimaging 
research if visual QC is omitted. While time consuming, the 
results of research that uses visual quality control will be more 
sensitive and accurate than if it is not performed.

No one tool is more appropriate for analysis of every type of 
dataset or cohort. We have identified several key considerations 
for the selection of the most appropriate GM segmentation tool. 
The scientific question, level of expertise and available resources 
are naturally paramount, while comparison of two or three differ-
ent tools for ease and success of application is recommended and 
visual quality control essential.
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