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Light impinging on the retina fulfils a dual function: it serves for vision and it is required 
for proper entrainment of the endogenous circadian timing system to the 24-h day, thus 
influencing behaviors that promote health and optimal quality of life but are independent 
of image formation. The circadian pacemaker located in the suprachiasmatic nuclei 
modulates the cardiovascular system with an intrinsic ability to anticipate morning solar 
time and with a circadian nature of adverse cardiovascular events. Here, we infer that 
light exposure might affect cardiovascular function and provide evidence from existing 
research. Findings show a time-of-day dependent increase in relative sympathetic tone 
associated with bright light in the morning but not in the evening hours. Furthermore, 
dynamic light in the early morning hours can reduce the deleterious sleep-to-wake 
evoked transition on cardiac modulation. On the contrary, effects of numerous light 
parameters, such as illuminance level and wavelength of monochromatic light, on 
cardiac function are mixed. Therefore, in future research studies, light modalities, such 
as timing, duration, and its wavelength composition, should be taken in to account 
when testing the potential of light as a non-invasive countermeasure for adverse car-
diovascular events.
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OUT OF SiGHT: iMPACT OF LiGHT On BeHAviORAL BRAin 
ReSPOnSeS

The mammalian eye senses light for fulfilling its dual function via two detecting systems: (1) 
the classical visual system that serves for image formation (1) and (2) the non-image-forming 
(NIF) system, which besides unconscious vision and activating early visual systems (2) affects a 
myriad of physiological and behavioral responses (3–7). Importantly, while these two systems 
differ in terms of their functions, growing evidence indicates that their complete dichotomy is 
outdated at the eye and brain levels (8–11). Thus, it is more likely that numerous outputs of our 
physiology and behavior are affected by a multi-dimensional system which can be divided into 
different networks. NIF effects are mostly—but not exclusively (10)—driven by melanopsin—a 
photopigment found in intrinsically photosensitive retinal ganglion cells (ipRGC) (3), which also 
play an important role as relay to transmit NIF effects coming from the classical visual system (9). 
These photoreceptors essentially detect environmental irradiance and exhibit maximal sensitivity 
to short wavelength light (blue, peak sensitivity ~480 nm) (3, 4, 12). Melanopsin ipRGCs typically 
display a low spatial resolution, long response latencies in contrast to fast responding cones and 
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FiGURe 1 | (A) Putative light mechanisms on human cardiovascular system via the suprachiasmatic nuclei (SCN). Human SCN potentially sends different projections 
to different parts of the PVN to inhibit melatonin in the pineal gland, while stimulating most other SCN-driven rhythms (e.g., HR and cortisol) after light exposure. BP, 
blood pressure; BT, body temperature; Cort, cortisol; HR, heart rate; Mel, melatonin; PVN, paraventricular hypothalamus nucleus; SCG, superior cervical ganglion; 
StelG, stellate ganglion; Vasoconstr & UCP, vasoconstriction and uncoupling protein. Continuous lines: active pathways, dotted lines: suppressed pathways. “Plus” 
signs: stimulation; “minus” signs: inhibition. Reproduced with permission from Scheer et al. (42). (B) Putative sympathetic and parasympathetic outputs from the 
SCN to peripheral organs via neurons of the rat brainstem. DMV, dorsal motor nucleus of the vagus; IML, intermediolateral spinal cord column. Red lines: 
parasympathetic output. Green lines: Sympathetic output. Dashed red and green lines correspond to potential output pathways. Modified from Kalsbeek et al. (34).
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rods, can integrate photic energy even beyond the duration of 
a given light exposure, and are also involved in the detection 
of motion and, patterns (2–4, 9, 10, 13–15). These slow kinetics 
could be a potential factor underlying long-term light effects on 
human physiology and behavior, such that—apart from its acute 
effects (16)—it also impacts on, i.e., skin temperature, melatonin 
rhythms, and sleep–wake regulation, even after light exposure is 
over (17–20).

The ipRGCs directly project via the retino–hypothalamic 
tract to the suprachiasmatic nuclei (SCN) within the anterior 
hypothalamus, commonly deemed as the primary circadian 
oscillator (7, 21). The SCN, in turn, projects multisynaptically 
to the pineal gland (22) (associated with melatonin synthesis) 
and to numerous brain regions that receive input from the visual 
photoreceptor system, as, for instance, the lateral geniculate 
nucleus, superior colliculus, and olivary pretectal nucleus which 
is a essential node for the pathway for pupillary constriction (5, 
23, 24). The melanopsin-expressing ipRGCs are also directly 
connected to regions which are regulating the sleep–wake cycle 
(25–27), including the ventrolateral preoptic nucleus (VLPO; 
linked to sleep–wake regulation), the subparaventricular 
nucleus/zone of the hypothalamus (SPVZ; linked to sleep 
regulation and to motor activity), and the lateral hypothalamus 

containing orexin (hypocretin) wake-promoting neurons (23, 
24, 28).

Early animal anatomical and functional studies showed that 
light information conveyed to the SCN affects melatonin secretion 
from the pineal gland (22, 29–31) and glucocorticoid secretion 
from the adrenal cortex (32, 33). Furthermore, in rodents, the 
SCN may influence parasympathetic output to the heart via con-
nections with pre-autonomic neurons within the hypothalamus, 
which may enable the 24-h sympathetic-parasympathetic balance 
of autonomic cardiac inputs (34). Collectively, these data suggest 
that the SCN can transfer its time-of-day information to various 
organs throughout the body like the cardiovascular system (see 
Figure  1 for a putative schematic diagram on the anatomical 
mechanisms for light modulation on the cardiovascular system 
via the SCN). Interestingly, hypertension seems to be related to 
changes in both SCN morphology and function in rodents (35, 
36) and humans (37–39). This potential disturbance in hyperten-
sion-related circadian regulation, together with the incidence of 
tachycardia prior to the onset of hypertension (40), correspond to 
some of the earlier findings that highlighted a putative role of the 
SCN as a mediator of cardiovascular physiology (41).

NIF effects are essential for the circadian entrainment to the 
solar 24-h light/dark cycle and can both change the amplitude 
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and the phase of outputs of the circadian system, including, but 
not limited to hormone secretion (i.e., melatonin and cortisol), 
body temperature, sleep–wake cycle, and cardiovascular func-
tion in humans (17–20, 43–45). Although photoreceptors are 
not directly accessible in humans, two studies have provided 
a putative role of ipRGCs for light affecting cognitive brain 
responses, including frontal cortical areas associated with execu-
tive cognitive control (46, 47). Furthermore, in conjunction to 
light’s wavelength, properties like intensity, duration, and timing 
are essential in discovering how light differentially impacts on 
human physiology [for reviews, see Ref. (16, 48)]. For instance, 
light exposure at night elicits a suppression of melatonin levels, 
as well as a decrease in subjective and objective indicators of 
sleepiness (e.g., subjective sleepiness, theta activity in waking 
EEG, occurrence of slow eye movements) (19, 44, 49–51). 
Recently, it was shown that exposure to progressively dynamic 
morning light can directly influence sleep inertia, well-being, 
and cortisol levels in humans (52–54).

Despite growing evidence for a plethora of NIF effects of 
light on our physiology, relatively few studies have investigated 
how it impacts on cardiovascular control. In the next section, 
we address some of the evidence which speaks to how targeted 
light exposure—e.g., morning vs. night light exposure, different 
wavelengths, illuminance levels, dynamics—affects cardiovascu-
lar function.

LiGHT UP THe HeART: iMPACT OF LiGHT 
eXPOSURe On CARDiOvASCULAR 
COnTROL

The heart is the propelling “force for the delivery of oxygen and 
nutrients, for the disposal of waste and for the distribution of 
heat” (42). These cardiometabolic demands do not occur at an 
even rate throughout the 24-h day, but rather heavily change 
their dynamics over the day and night (55). Importantly, the 
heart contains a peripheral clock that markedly modulates 
cardiovascular physiology (e.g., gene and protein expression, 
extracellular stimuli/stresses responsiveness) and its daily 
rhythmicity (56). Importantly, maximum risk for cardiovascu-
lar incidents is in the morning hours between 06:00 a.m. and 
12:00 a.m. (57–61). Some other evidence shows an increase in 
occurrences in the evening (between 06:00 p.m. and midnight), 
hinting to a possible bimodal pattern (62). This “morning shift” 
in key cardiovascular regulatory mechanisms is an important 
characteristic of ischemic diseases like brain vascular disease, 
cerebral infarction, and myocardial infarction (63). Furthermore, 
hypertensive patients show a compromised cardiovascular 
anticipation to the activity period that may increase the risk 
of cardiovascular incidents in the early morning hours (39, 42, 
58, 64). Yet, these adverse cardiovascular events in the morning 
hours cannot be explained by solely daily rhythm in external 
factors like body position and activity (65). Instead, it is more 
likely that they might be associated with circadian changes in 
blood pressure, vascular tone, catecholamines, platelet aggrega-
tion, increase in plasminogen activator inhibitor-1, heart rate 
(HR), and variation in beat-to-beat interval (63, 66, 67). Clinical 

findings also suggest a small (but not trivial) 1.28-fold higher 
rate of acute myocardial infarction in a wide window (06:00 a.m. 
to 12:00 a.m.) in comparison to the rest of the day (57), bimodal 
peaks in the morning and evening hours (62), and stress-related 
contributors to adverse cardiovascular events (68). Thus, a 
dysfunction of the circadian clock may possibly be a risk factor 
for cardiovascular diseases, contributing, to some degree, to 
increased HR and heart rate variability (HRV) in the morning. 
Given that (1) the endogenous circadian timing system is best 
synchronized to the 24-h cycle by light (69) and (2) the SCN 
modulates the adrenal and the heart (33, 42), it is, therefore, 
reasonable to infer that exposure to different light modalities 
may affect cardiovascular function [e.g., HR, HRV, pre-ejection 
period (PEP)]. Thus, specific light properties, such as timing, 
exposure duration, intensity, wavelength, and dynamics, may 
well determine the magnitude of such effects.

Earlier human studies indicate that resting HR is affected by 
the day/night cycle and on the light level (41, 70). Accordingly, 
bright polychromatic light exposure (10 min of either no light, 
light at 100 lux or light at 800 lux) increased resting HR in the 
early morning hours, particularly during exposure to light at 
800  lux (41), with no effects on the vagal tone, as indexed by 
the root mean square of the successive differences of the inter-
beat interval (RMSSD) (70), which is a valid index of vagal tone 
(71). Furthermore, exposure to bright polychromatic light at 
5,000 lux for 4 h during either the day (12:00 p.m. to 04:00 p.m.) 
or night (12:00 a.m. to 04:00 a.m.; thus also including the early 
morning hours prior to an individual’s wake-up time) suggest a 
time-of-day dependency: HR increased due to being exposed to 
bright light at night, but not during daytime (72). One plausible 
explanation for the time-of-day dependency of light on HR in 
the early morning hours might be related to the endogenous 
increase in sympathetic cardiac activity during this time window 
(42). The light-dependent increase in sympathetic tone may be 
due to light exposure in the morning hours, as sympathetic 
muscle nerve activity increases with morning light exposure 
(73). HR is also affected by light in a phase-dependent manner, 
which goes in concert with phase-dependent influence on sym-
pathetic tone by morning, but not evening light (41). However, 
human sympathetic modulation estimated as pre-ejection 
period (PEP) is relatively uncoupled from the endogenous (i.e., 
regulated by the CNS) circadian drive and is mainly influenced 
by prior activation (74). Light can elicit acute cardiovascular 
physiological effects that depend on properties beyond timing 
and duration, such as its wavelength. Indeed, a 2-h exposure to 
monochromatic blue light (460 nm) in the late evening led to 
increased HR as compared to 550-nm monochromatic (green) 
light, indicating a key role for melanopsin NIF photoreceptors 
in modifying human HR (17).

Light effects on HRV show mixed-results in humans (75–77). 
For instance, higher illuminance (1,000 lux bright polychromatic 
white light) increased the low-frequency to high frequency (LF/
HF) HR power ratio as compared to baseline (vs. 200 lux bright 
polychromatic white light), which may suggest a relative increase 
in cardiac sympathetic activity under higher illuminance (77). 
Furthermore, evening (~21:00  h) exposure to 10-min of red, 
green, and blue fluorescent lights of 700  lux, preceded and 
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followed by 15-min of darkness, decreased the absolute HF 
HR power in the episode of darkness only following blue light 
episode (75), suggesting that HF HR is specifically sensitive to 
high frequency (blue) light. Conversely, exposure to 5-min of 
blue, red, and white fluorescent lights may lead to a decrease in 
absolute HF power following exposure to only red light (76). The 
dissimilarity of these earlier human findings may be associated 
with differences in body posture (78) and respiratory frequency, 
the later being affected by light depending on its color (79). A 
recent human study measured autonomic cardio-respiratory 
outputs (i.e., electrocardiogram and respiration) during 6-min 
exposure to colored OLED (red, green, and blue lights), which 
was preceded and followed by 3-min of darkness under paced 
breathing (15 breaths/min) (80). These cardio-respiratory meas-
urements were repeated after 45 min with melanopsin-stimulating 
photon flux density (MSPFD) of 0.00, 0.10, and 0.20 µmol/m2/s, 
respectively. Accordingly, HF (0.20–0.30 Hz) power had a greater 
decrease with blue light in comparison to red and green lights. 
Furthermore, HF power decreased with blue light with 0.20 µmol/
m2/s MSPFD, but not with that with 0.10 or 0.04 µmol/m2/s, sug-
gesting a dose-dependent effect to blue light exposure. HF power 
especially between 0.15 and 0.40 Hz, also called the respiratory 
band, reflects vagal tone to control HR (80). In this context, one 
may speculate that blue OLED light exposure may result in a vagal 
cardiac suppression through melanopsin-dependent NIF effects, 
which might ultimately shift the state of our body from a resting 
mode to an arousal one similar to animal data (27).

Collectively, light exposure impacts cardiovascular physiology, 
as indexed by its effects on HR and HRV, which may be associated 
with its effects on the underlying temporal orchestration set up 
by the endogenous circadian system (41, 70). In this context, 
strategies for the “optimizing” internal biological rhythms for 
regulation of cardiovascular events should lead to counteracting 
potential adverse events during the vulnerable morning hours. 
Interestingly, sleep–wake transitions in the early morning hours 
are associated with a relative increase in sympathetic activation 
in comparison to the rest of the day (81), which highlights the 
propensity for cardiac vulnerability upon awakening (66). Given 
the recent evidence for the progressive dynamics of light expo-
sure on some surrogates of human peripheral physiology (e.g., 
cortisol levels) (53, 54), one may hypothesize that exposure to a 
dynamic rather than abrupt light exposure during the morning 
sleep–wake transition might impact on cardiovascular function, 
with a possible gradual rise HR and cardiac sympatho-vagal 
control. Indeed, one human study tested how HR and HRV 
was differentially impacted by exposure to a “naturalistic” dawn 
simulation light (DSL) source (progressive rise from 0 to 250 lux) 
with onset at 30-min before and offset at 30-min after scheduled 
wake-up time, as compared to a control dim light condition (82). 
Importantly, posture was controlled (recumbent during sleep 
and semi-recumbent during wake) and sleep duration was the 
same prior to wake-up time in both light conditions. Accordingly, 
DSL exposure gradually increased HR, as compared to a steeper 
HR increase under a control condition (82). These gradual light 
changes on HR dynamics were mirrored by gradual increases in 
cardiac sympatho-vagal modulation in DSL as compared to a 
control condition (Figure 2). While HRV is a potent tool typically 

used in physiological and pathological conditions (83, 84), it does 
not disentangle the interplay between sympathetic and parasym-
pathetic cardiac control. These specific autonomic subsystems 
are modulatory reacting systems that control HR with different 
latent periods and time courses, such that parasympathetic effects 
on HR are much slower faster than parasympathetic effects (85). 
By applying a non-linear symbolic analysis method (86, 87), the 

FiGURe 2 | Cardiac modulation during sleep–wake transition. (A) Exposure 
to dawn stimulating light [dawn simulation light (DSL); gray lines] increases 
instantaneous heart rate (HR) relative to control dim light (black lines), and is 
associated with a higher cortisol increase. (B,C) DSL exposure (gray bars) 
progressively increases HR and relative cardiac sympathetic [LF/(LF + HF) 
ratio] levels during sleep-to-wakefulness, relative to control dim light  
(black bars). Horizontal lines: p < 0.05. Reproduced with permission from 
Viola et al. (82).
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