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Mild traumatic brain injury (mTBI) has been firmly associated with disrupted white matter 
integrity due to induced white matter damage and degeneration. However, compara-
tively less is known about the changes of the intrinsic functional connectivity mediated 
via neural synchronization in the brain after mTBI. Moreover, despite the presumed 
link between structural and functional connectivity, no existing studies in mTBI have 
demonstrated clear association between the structural abnormality of white matter 
axons and the disruption of neural synchronization. To investigate these questions, we 
recorded resting state EEG and diffusion tensor imaging (DTI) from a cohort of military 
service members. A newly developed synchronization measure, the weighted phase 
lag index was applied on the EEG data for estimating neural synchronization. Fractional 
anisotropy was computed from the DTI data for estimating white matter integrity. Fifteen 
service members with a history of mTBI within the past 3 years were compared to 22 
demographically similar controls who reported no history of head injury. We observed 
that synchronization at low-gamma frequency band (25–40 Hz) across scalp regions 
was significantly decreased in mTBI cases compared with controls. The synchronization 
in theta (4–7 Hz), alpha (8–13 Hz), and beta (15–23 Hz) frequency bands were not signifi-
cantly different between the two groups. In addition, we found that across mTBI cases, 
the disrupted synchronization at low-gamma frequency was significantly correlated with 
the white matter integrity of the inferior cerebellar peduncle, which was also significantly 
reduced in the mTBI group. These findings demonstrate an initial correlation between the 
impairment of white matter integrity and alterations in EEG synchronization in the brain 
after mTBI. The results also suggest that disruption of intrinsic neural synchronization at 
low-gamma frequency may be a characteristic functional pathology following mTBI and 
may prove useful for developing better methods of diagnosis and treatment.
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inTrODUcTiOn

Traumatic brain injury (TBI) is a major health challenge in both 
civilian and military populations (1, 2). Mild TBI (mTBI) is esti-
mated to account for over 85% of all TBI cases (3). Specifically, 
mTBI has been recognized as a signature wound of the wars in 
Iraq and Afghanistan (4). According to surveys (5–7), approxi-
mately 15–23% of returning soldiers suffer from mTBI. Following 
an mTBI individuals often experience difficulties in cognitive 
functions such as memory, executive function and processing 
speed (8, 9), resulting in a significant negative impact on quality 
of life. Despite decades of research, the exact pathophysiology 
underlying the cognitive sequelae of mTBI remains unclear.

Cognitive functions rely on the integration of distributed 
processing of neuronal groups in large-scale brain networks 
(10–12). Structurally, the distributed neuronal groups, or the 
so-called “nodes” in the brain network, are connected to each 
other through white matter axons. Recent studies using advanced 
imaging techniques such as diffusion tensor imaging (DTI) have 
identified diffuse axonal injury, which likely represents selective 
damage of white matter tracts due to acceleration and decel-
eration forces or explosive blasts, as a major neuropathological 
consequence of mTBI (13, 14). This disruption in structural 
connectivity is expected to affect functional connectivity of brain 
networks, leading to network dysfunction and cognitive impair-
ments (15).

In contrast with a substantial prior literature showing the 
impairments of structural connectivity in mTBI, little is known 
about the effect of mTBI on functional connectivity. It is widely 
understood that functionally, the coordination and communica-
tion between the distributed neuronal groups are mediated via 
synchronization of neural oscillations (16–18). Most previous 
work investigated the network dysfunction after mTBI by analyz-
ing blood-oxygen-level-dependent signals [e.g., Ref. (19, 20)], 
which is an approximate and indirect measure of neural activity. 
Only a handful of studies (21–24) have specifically examined 
synchronization from electrophysiological data (EEG and MEG). 
In addition, despite the presumed link between structural and 
functional connectivity, no studies have yet demonstrated an 
association between the structural abnormality of white matter 
tracts and the disruption of neural oscillatory synchronization 
in any forms of TBI. Bridging this gap is important for further 
understanding of the pathophysiology of the disorder and may 
lead to better methods of diagnosis and treatment.

Methodologically, within the small number of the prior stud-
ies in mTBI that have examined synchronization using EEG or 
MEG, most of them employed conventional measures of syn-
chronization such as coherence and phase locking value (PLV). 
It is known that these conventional measures are sensitive to the 
problem of volume conduction (25, 26). Nearby scalp electrodes 
or sensors are very likely to pick up activity from the same cortical 
sources, leading to spurious associations between the time series 
from these electrodes or sensors. Several alternative measures of 
synchronization including imaginary component of the coher-
ency (ImC) (27), phase lag index (PLI) (26), and weighted phase 
lag index (WPLI) (28) have been introduced to deal with this 
problem. These measures are based upon the observation that 

non-zero-lag phase synchronization cannot be generated by  
volume-conducted activity from uncorrelated common sources, 
and are therefore likely to reflect true underlying brain con-
nectivity. Among these measures the WPLI was developed most 
recently. Compared to PLI and ImC, WPLI has been demon-
strated to be less sensitive to additive noise and has higher 
statistical power to detect changes in phase synchronization (28). 
Applying WPLI to study the abnormality of neural synchroniza-
tion in mTBI may provide new insights into the problem.

In this study, we applied the WPLI analysis to resting EEG 
data recorded from military service members within two months 
of their return from a deployment in either Iraq or Afghanistan. 
Fifteen service members with a history of mTBI within the past 
3 years were compared to 22 service members with no history 
of head injury from the same cohort. The association between 
neural synchronization and white matter integrity was also exam-
ined. We hypothesize that the intrinsic functional connectivity 
mediated via phase synchronization of neural oscillations will be 
affected after mTBI and the synchronization abnormality will be 
associated with white matter structural abnormality.

MaTerials anD MeThODs

Participants and Psychological 
assessments
Fifteen individuals with mTBI occurring in the past 3  years 
(mTBI group, 12 men, 3 women, mean age 27.1 ± 6.2 years) and 
22 individuals with no history of head injury (control group, 21 
men, 1 women, mean age 27.9 ± 6.1 years) were included in this 
study for comparisons. Both mTBI and controls were from the 
same cohort of military service members within 2 months of their 
return from a deployment in either Iraq or Afghanistan. The diag-
nosis of mTBI was determined by the Military Acute Concussion 
Evaluation (29). Most of the mTBI participants reported multiple 
head injury events. The types of head injury include combat-
related blast exposure (n = 8), motor vehicle accident (n = 6), 
sports injury (n = 5), and accidental fall (n = 3).

All participants were administrated a series of validated 
questionnaires including the PTSD Checklist-Military Version 
(PCL-M), a self-administered screen for PTSD (30), the Patient 
Health Questionnaire-9 (PHQ-9), a widely used instrument for 
screening depression (31), and the Pittsburgh Sleep Quality Index 
(PSQI), a self-report instrument for assessing sleep over the prior 
month (32). Inclusion in the study required a score of less than 
10 on the PHQ-9 and less than 50 on the PCL-M. In addition, 
an experienced, licensed psychologist conducted the Clinician-
Administered PTSD Scale for DSM-IV (CAPS) (33) with all par-
ticipants to confirm the absence of a PTSD diagnosis. Additional 
exclusion criteria for this study included: a current Glasgow Coma 
Scale score less than 13; a history of head injury resulting in loss 
of consciousness for 60 min or more; active suicidal or homicidal 
ideation; pregnancy; a diagnosis of postconcussive syndrome 
(PCS) according to International Classification of Diseases, 10th 
Clinical Modification criteria.

The data analyzed here are from a larger study exploring 
predictors for postdeployment delayed-onset PTSD, major 
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depressive disorder and PCS. Therefore, the military service 
members who met the diagnostic criteria for PTSD, depression 
or PCS at the time of recruitment were excluded from the study. 
The experimental protocols were approved by institutional review 
boards at Uniformed Services University, Walter Reed National 
Military Medical Center, and the National Institutes of Health. 
All participants provided and signed written informed consent 
prior to participation.

eeg recording and Preprocessing
Scalp EEG was recorded from all participants during eyes-closed 
resting state for about 2.5 min in an acoustically and electrically 
shielded room. The data were acquired using the EPA6 amplifier 
(Sensorium Inc.) and Grass electrodes (Natus Neurology Inc.) at 
Fz, Cz, Pz, Oz, C3, and C4 positioned according to the standard 
10–20 electrode system, with linked earlobes as reference and a 
forehead ground. A limited number of electrodes was used to test 
the utility of a reduced montage that could be implemented in 
a far forward military medical environment. Electrode imped-
ances were maintained under 5 kΩ. EOG was recorded from two 
electrodes placed below and above the right eye. The sampling 
rate was 2,048 Hz.

The EEG data were preprocessed offline using custom scripts 
written in MATLAB (www.mathworks.com). All data were 
first visually inspected to ensure that participants were awake 
throughout the recording period. Data from Oz channel were 
found to be contaminated by artifacts in three participants, and 
therefore excluded from further analysis. All the following analy-
ses were conducted for Fz, Cz, Pz, C3, and C4 channels. EOG 
artifacts were corrected by using a regression approach (34). The 
data after EOG correction were high-pass filtered at 0.5 Hz, low-
pass filtered at 50 Hz, and down-sampled to 256 Hz. To remove 
data portions contaminated by artifacts and to construct multiple 
trials for computing WPLI, we segmented the 2.5-min continu-
ous EEG data into 1-s short epochs, resulting in 150 pseudotrials. 
Trials with activity exceeding 75 μV were excluded from analysis. 
The mean trial rejection rate was 2.83%.

Weighted Phase lag index
As described by Vinck et al. (28), WPLI is a measure of phase 
synchronization based solely on the imaginary component of the 
cross-spectrum. Let X1(f) and X2(f) be the Fourier transform of 
the signals x1(t) and x2(t) from two separate sensors, respectively, 
at frequency f. Then the cross-spectrum between x1(t) and x2(t) 
is computed as

 S X X( ) ( ) ( )f f f= 1 2
* ,  (1)

where X2
* is the complex conjugate of X2. If we write the Fourier 

transformed signals as X1(f) = r1exp(iθ1) and X2(f) = r2exp(iθ2) 
then the cross-spectrum can be rewritten as

 S f r r i r r i r r( ) = ∆( ) = ∆( ) + ∆( )( )1 2 1 2 1 2exp cos sinθ θ θ ,  (2)

where Δθ  =  θ1  −  θ2 is the phase difference between the two 
signals at frequency f. In what follows, we drop inclusion 
of f for notational convenience, but note that all values are 

frequency dependent. Let Im(S) denote the imaginary part of 
the cross-spectrum:

 Im ( ) sinS = ( )r r1 2 ∆θ . (3)

Then the WPLI is defined as
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where ⋅  denotes an expectation. In practice the expectation is 
estimated by averaging over a large number of epochs. In Eq. 3, 
we see that the imaginary part of the cross-spectrum is only sensi-
tive to synchronizations of two signals which have phase delays. 
From the quasistatic approximation, volume conduction does not 
induce a phase delay; therefore WPLI is insensitive to spurious 
connectivity created by volume conduction.

Weighted phase lag index has been proposed as an improved 
measure of phase synchronization compared to PLI (26), which 
is defined as

 
PLI Im( ))= 〈 〉| ( | .sign S

 (5)

From the Eq.  3, we can see that the sign of the imaginary 
part of the cross-spectrum indicates whether signal x1(t) tends 
to phase lead or lag signal x2(t). Therefore PLI estimates to what 
extent the phase leads and lags between two signals are non-
equiprobable. Compared to PLI, WPLI weights the contribution 
of the observed phase leads and lags by the magnitude of the 
imaginary part of cross-spectrum (see the Eq. 4). Cross-spectra 
around the real axis contribute to a lesser extent than cross-
spectra around the imaginary axis (28). This makes WPLI less 
sensitive to noise as cross-spectra around the real axis are at risk 
of changing their true sign with small noise perturbations.

The estimate of WPLI obtained from Eq.  4 has a positive 
bias. To solve this problem, Vinck et al. (28) propose a debiased 
estimator of the squared WPLI, which is defined as
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where N is the number of epochs and Sj and Sk are the cross-
spectrum between a pair of channels for the j-th and k-th 
epochs, respectively. In this study N was typically about 150. 
The smallest value of N used was 133. Equation 6 is debiased 
(strictly asymptotically unbiased) because it converges to the 
square of Eq.  4 in the limit of an infinite number of epochs. 
The theoretical development of this debiased estimator and its 
statistical performance can be found in the original method by 
Vinck et al. (28).

In the current study, we used the debiased WPLI-square 
estimator as the measure of EEG phase synchronization. We 
computed the debiased WPLI-square (which will be referred to 
as WPLI throughout the rest of the article) for all pairs of EEG 
electrodes based on Eq. 6. Cross-spectra were computed using 
the Fourier transforms of the preprocessed 1-s data epochs. The 
frequency resolution thus equaled 1 Hz.
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TaBle 1 | Participant characteristics and psychological measures.

Variable mTBi 
(n = 15)

controls 
(n = 22)a

group  
comparisonb

Mean sD Mean sD df t-Value p-Value

Age 27.1 6.2 27.9 6.1 35 0.38 0.71
Gender, male/female 12/3 21/1 0.15
Handedness, R/L 13/2 19/3 0.37
CAPS total 25.0 13.6 15.7 10.8 35 −2.32 0.027*
CAPS Criterion B 6.9 5.1 2.6 3.1 35 −3.17 0.0031*
CAPS Criterion C 5.1 4.1 3.8 5.6 35 −0.80 0.43
CAPS Criterion D 13.0 6.8 9.3 4.2 35 −2.07 0.046*
PSQI score 6.9 3.1 6.3 2.5 33 −0.66 0.52
PHQ-9 score 3.1 1.9 1.9 2.1 34 −1.83 0.076
PCL-M score 32.1 7.8 23.9 6.9 34 −3.37 0.0019*

an = 21 for PHQ-9 score and PCL-M score; n = 20 for PSQI score.
bFisher’s exact tests were used for gender and handedness. Student’s t-tests were 
used for other variables.
*p < 0.05.
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DTi acquisition and Processing
Twelve out of 15 mTBI cases and 17 out of 22 controls had 
their DTI data recorded within a two day period from 
the EEG recording. DTI data were acquired on a Siemens 
Biograph mMR 3  T scanner with parameters TR (repetition 
time) =  17,000  ms, TE (echo time) =  98  ms, flip angle =  90°, 
voxel size = 2 mm × 2 mm × 2 mm, matrix size = 128 × 128, 
and slices = 75. The acquisition included 10 images at b = 0 s/
mm2, 10 images with non-collinear directional gradients at 
b  =  300  s/mm2, and 60 images with non-collinear directional 
gradients at b = 1,100 s/mm2. Images were processed using the 
CATNAP software for tensor estimation (35). Two b-values were 
included for more robust tensor estimation (36) as well as for 
potentially exploring more sophisticated diffusion models in the 
future. All diffusion weighted images were included in the single 
tensor fit. Images were preprocessed for motion correction and 
eddy current correction, with adjustments to the gradient table 
performed based on patient position. Distortions due to echo 
planar imaging susceptibility artifacts were corrected by per-
forming a deformable registration to an anatomic T2-weighted 
acquisition (TR  =  3,200  ms, TE  =  409  ms, flip angle  =  120°, 
voxel size = 1 mm × 1 mm × 1 mm, matrix size = 256 × 256, 
slices = 176). Following preprocessing, all images were used to 
perform tensor estimation. Next, automated segmentation of 
white matter tracts was performed using the Diffusion-Oriented 
Tract Segmentation (DOTS) algorithm (37). DOTS combines 
statistical atlases of tract location and tensor orientation with 
a Markov random field model to map diffusion properties to 
tract labels. This enables average values of fractional anisotropy 
(FA) to be computed for each labeled tract. The statistical region 
of interest (ROI) atlas was based on the atlas of Ref. (38). We 
included the following fiber tracts which are susceptible to mTBI 
(39–43): corpus callosum, inferior and superior longitudinal and 
fronto-occipital fasciculi, cingulum, fornix, uncinate fasciculus, 
optic radiation, corticospinal and corticopontine tracts, inferior, 
middle, and superior cerebellar peduncles (separated for left and 
right when applicable).

statistical analyses
Differences between groups in demographics and psychological 
measures were examined by two-sample t-tests whether the data 
are numerical or Fisher’s exact tests whether the data are cat-
egorical. The comparisons between the mTBI and control groups 
for the WPLI measures were tested using the Wilcoxon rank-
sum tests. In order to identify oscillatory frequencies in neural 
synchronization showing abnormality following mTBI, we first 
performed the tests on the theta (4–7 Hz), alpha (8–13 Hz), beta 
(15–23  Hz), and low-gamma (25–40  Hz) frequency bands for 
WPLI spectra averaged across all electrode pairs. Then for the 
identified frequency band, we further performed the tests for each 
electrode pair to reveal the spatial pattern of the abnormality. To 
test whether or not the estimated WPLI values are significantly 
larger than zero, an empirical distribution technique using sur-
rogate data was applied (44, 45). Specifically, we randomly and 
independently shuffled the time series data from each electrode 
to create a surrogate data set. Then the WPLI measures were 

computed from the surrogate data set. After repeating this pro-
cess 1,000 times, we created empirical distributions for the WPLI 
measures. Since the shuffling process destroys all the temporal 
structure in the data, the empirical distributions provide vari-
ability for the null hypothesis case. We then used these distribu-
tions to assess the significance of the WPLI measures estimated 
from the actual data. For the FA measures from the DTI data, 
the comparisons between mTBI and control groups were tested 
using two-sample t-tests for each ROI and the p-values were 
corrected for multiple comparisons using the Holm-Bonferroni 
method. To examine the association between disruption of neural 
synchronization and the abnormality of white matter integrity, 
we computed Pearson’s correlation coefficient across participants 
between the WPLI measures and the FA measures that are found 
statistically significant between groups. For the WPLI measure, 
in order to accommodate the individual differences for the 
null hypothesis case, the measure of each participant was first 
normalized by its empirical null distribution (subtracted the 
mean and divided by the standard deviation) and then correlated 
with FA measure across participants. Statistical significance of 
correlation coefficients was tested by a t-statistic created from 
Fisher transform. The p-values less than 0.05 were considered 
statistically significant.

resUlTs

Participant characteristics and 
Psychological Measures
Table 1 summarizes the participant characteristics and psycho-
logical measures. Age, gender, and handedness were found to be 
statistically indistinguishable between the mTBI and the control 
groups (p  >  0.05). Compared to controls, mTBI cases showed 
significantly higher PTSD scores including CAPS (total score, 
Criterion B subscore for Reexperiencing, Criterion D subscore 
for Hyperarousal) and PCL-M scores (p  <  0.05). The PHQ-9 
score for depression was also higher for mTBI compared to con-
trols, but the difference did not reach significance (p = 0.076). 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


FigUre 1 | The analysis of weighted phase lag index (WPLI) for control and mild traumatic brain injury (mTBI) groups. (a) The WPLI spectra averaged across all 
electrode pairs. Shaded areas indicate the standard error of mean across participants at each frequency. (B) A bar plot comparing the mean value of WPLI spectra 
within low-gamma frequency (25–40 Hz) between control and mTBI groups averaged over all electrode pairs. (c,D) Low-gamma phase synchrony (measured by 
WPLI) for different electrode pairs for the control and mTBI groups, respectively. Line thickness is proportional to synchronization strength. Significant connections 
(p < 0.05) are indicated by red lines. (e) The difference of low-gamma phase synchrony between mTBI and control groups for different electrode pairs. The electrode 
pairs with significant smaller low-gamma phase synchrony in mTBI group compared to control group (p < 0.05) are indicated by green lines.
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The PSQI score for sleep quality over the past month was not 
statistically different between the two groups (p > 0.05).

eeg Phase synchronization between 
Brain regions
Using the WPLI spectra averaged across all electrode pairs, 
comparisons between the control and mTBI groups revealed that 
the mean WPLI value in low-gamma frequency band (25–40 Hz) 
was significantly smaller (p = 0.0082) in those with a history of 
mTBI (Figures 1A,B). Moreover, application of testing using sur-
rogate data found that the mean WPLI value in the low-gamma 
frequency band was significantly larger than zero for the control 
group (p < 0.001), but not significantly different from zero for the 
mTBI group (p > 0.05). The mean WPLI values in theta (4–7 Hz), 
alpha (8–13 Hz), and beta (15–23 Hz) frequency bands were not 
significantly different between two groups (p > 0.05).

The phase synchronization (measured by WPLI) at low-
gamma frequency for different electrode pairs are displayed in 
Figures 1C,D for the control and the mTBI groups, respectively. 
The synchronization strength is indicated by line thickness and 
the significance of synchronization is indicated by red color.  
For the control population all pairs of electrodes except the 
C3-C4 pair exhibited significant (that is, greater synchronization 
than observed with surrogate data) low-gamma synchronization 
(Figure  1C). In contrast, none of the electrode pairs showed 
significant low-gamma synchronization for the mTBI cases 

(Figure  1D), suggesting a global reduction of synchroniza-
tion instead of a reduction for only one or two electrode pairs.  
By comparing the two groups, we revealed that the reduction of 
low-gamma synchronization in the mTBI group was significant 
for the Cz-Pz (p = 0.0042, uncorrected), Fz-C3 (p = 0.023, uncor-
rected), C3-Pz (p = 0.017, uncorrected), and C4-Pz (p = 0.017, 
uncorrected) electrode pairs (see Figure 1E, significant electrode 
pairs were indicated by lines in green color).

DTi White Matter integrity
Region of interest-based comparison revealed reduced FA in the 
white matter of the right inferior cerebellar peduncle (p = 0.0015, 
uncorrected, after correction p = 0.042) in those with a history of 
mTBI (Figure 2). The left inferior cerebellar peduncle ROI also 
showed a reduction of FA but did not reach significance after 
correction (p  =  0.026, uncorrected, after correction p  >  0.05). 
No significant differences were found for other ROIs (p > 0.05, 
uncorrected). The comparison results for all ROIs are shown in 
Table 2.

correlation between eeg Phase 
synchronization and White Matter 
integrity
We have identified reduced low-gamma phase synchronization 
from the EEG data and reduced white matter integrity of the 
right inferior cerebellar peduncle from the DTI data for those 
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FigUre 3 | Scatter plot showing the correlation between mean fractional 
anisotropy (FA) of right ICP and the normalized weighted phase lag index 
(WPLI) at low-gamma frequency among the mild traumatic brain injury cases.

FigUre 2 | The analysis of fractional anisotropy (FA) for control and mild traumatic brain injury (mTBI) groups. (a) Image showing the inferior cerebellar peduncle 
region of interest. (B) A bar plot comparing the mean FA value of right ICP between control and mTBI groups.

TaBle 2 | Group results for fractional anisotropy (FA) for each ROI.

rOi side Fractional anisotropy p-Value

mTBi  
(n = 12)

controls 
(n = 17)

Mean sD Mean sD

Corpus callosum Front 0.377 0.009 0.361 0.011 0.31
Posterior 0.422 0.005 0.415 0.008 0.49
Superior 0.420 0.006 0.412 0.008 0.44

Cingulum Left 0.345 0.009 0.337 0.007 0.46
Right 0.349 0.006 0.345 0.006 0.71

Corticopontine tract Left 0.419 0.007 0.412 0.009 0.58
Right 0.417 0.006 0.417 0.008 0.96

Corticospinal tract Left 0.432 0.012 0.422 0.011 0.53
Right 0.408 0.009 0.408 0.009 0.96

Fronix Left 0.294 0.004 0.296 0.007 0.86
Right 0.297 0.006 0.300 0.006 0.92

Inferior cerebellar 
peduncle

Left 0.273 0.004 0.289 0.005 0.026*
Right 0.265 0.003 0.285 0.004 0.0015**

Inferior fronto-
occipital fasciculus

Left 0.341 0.005 0.339 0.008 0.77
Right 0.344 0.006 0.341 0.007 0.76

Inferior longitudinal 
fasciculus

Left 0.361 0.007 0.358 0.009 0.85
Right 0.353 0.006 0.349 0.009 0.76

Middle cerebellar 
peduncle

0.334 0.005 0.332 0.004 0.78

Optic radiation Left 0.399 0.007 0.392 0.010 0.60
Right 0.378 0.007 0.377 0.011 0.96

Superior cerebellar 
peduncle

Left 0.322 0.007 0.331 0.008 0.42
Right 0.289 0.005 0.303 0.007 0.17

Superior fronto-
occipital fasciculus

Left 0.357 0.006 0.351 0.008 0.59
Right 0.344 0.007 0.343 0.007 0.94

Superior longitudinal 
fasciculus

Left 0.375 0.004 0.368 0.009 0.53
Right 0.360 0.005 0.355 0.008 0.65

Uncinate fasciculus Left 0.279 0.011 0.281 0.009 0.89
Right 0.291 0.007 0.301 0.009 0.43

*p < 0.05 before correction.
**p < 0.05 after correction.
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with a history of mTBI. The correlation analysis further revealed 
that, among mTBI cases, these two measures were significantly 
correlated (r = 0.68, p = 0.016) (Figure 3). Weaker low-gamma 

phase synchronization (averaged across all electrode pairs) cor-
responded to smaller FA value of the right inferior cerebellar 
peduncle. Conversely, for controls there was no significant cor-
relation between the two measures (p > 0.05).

correlation between Physiological  
and Psychological Measures
Exploration of the relationship between low-gamma phase syn-
chronization and psychological measures (CAPS, PCL-M, PHQ-
9, and PSQI) yielded no significant correlations for either group 
(p > 0.05). Higher low-gamma phase synchronization tends to 
associate with lower CAPS Criterion D subscore for Hyperarousal 
in mTBI group, but the correlation (r = −0.43, p = 0.11) was not 
statistically significant. Exploration of the relationship between 
the FA value of the right inferior cerebellar peduncle and the 
psychological measures also yielded no significant correlations 
for either group (p > 0.05).

DiscUssiOn

In the present study, we investigated the impact of mTBI on 
the intrinsic synchronization of EEG activity and examined the 
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association between the disruption of EEG phase synchronization 
and the disruption of white matter integrity in a cohort of military 
service members. Applying debiased WPLI, a newly developed 
measure of neural synchronization which is less sensitive to the 
effects of volume conduction, we found that the service members 
with a history of mTBI exhibited diminished EEG phase synchrony 
at low-gamma frequency (25–40 Hz) across scalp regions relative 
to the controls suggesting disrupted functional coordination 
between brain regions as a consequence of mTBI. Moreover, we 
found that for the mTBI cases, the diminished low-gamma phase 
synchrony was significantly correlated with the white matter 
integrity (FA) of the inferior cerebellar peduncle, which was also 
found significantly diminished in the mTBI cases relative to the 
controls. These findings yield evidence for a correlation between 
the impairment of white matter integrity and the impairment of 
functional synchronization in the brain after mTBI.

Phase synchronization of neural oscillations is widely acknowl-
edged as a fundamental mechanism that coordinates distributed 
processing of neuronal groups (16, 46–48). Several studies have 
reported diminished phase synchronization in mTBI patients 
(22–24), suggesting inefficient communication between brain 
regions due to head injury. Particularly, one study (23) in soldiers 
after blast-related mTBI identified diminished frontal phase syn-
chrony in various frequency bands and found that phase synchrony 
in high frequency (beta and gamma) bands were associated with 
the integrity of white matter tracts of the frontal lobe. To the best 
of our knowledge, this is the only other existing study that has 
examined the relationship between phase synchronization and 
white matter integrity of the human brain after mTBI. Although 
these initial findings were intriguing and provided insight to 
the structural-functional connection, the results of that study 
are limited in several ways. First, the study used PLV which is 
prone to the effects of volume conduction when computing EEG 
phase synchrony. Second, the study did not reveal any deficiency 
of the white matter tracts in blast injured group which may be 
due to their small sample size (nine mTBI and eight controls). 
Third, the controls were from a civilian population, and therefore 
may not represent valid controls for a military population. Our 
study advanced this line of research by (1) performing a nested 
case–control comparison with a larger sample size, (2) applying 
a measure of phase synchronization robust to volume conduc-
tion, and (3) showing a correlation between disrupted neural 
synchronization and deficient axonal connection in the human 
brain after mTBI.

Synchronization in the gamma frequency is mostly viewed 
as supporting local communications within one cortical area  
(16, 49, 50); however, long-range gamma coupling across widely 
separated brain regions has been observed in attention (51), 
learning (52), and conscious perception (53, 54), suggesting that it 
plays a role in large-scale neural coordination, perhaps reflecting 
the synchronization of neural assemblies involved in integration 
of sensory processing and sensory-motor coordination (55, 56). 
The mechanism by which long-range gamma synchronization 
is generated remains unclear but is likely to involve interneuron 
networks. Diminished global gamma synchronization has been 
posited as a key feature in schizophrenia (57, 58) where the 
integration of sensory input with stored information is disturbed. 

These pieces of evidence suggest that the disrupted gamma syn-
chronization for the mTBI group may indicate a suboptimal brain 
function of integration due to head injury.

The finding of reduced anisotropy of the inferior cerebellar 
peduncle is consistent with the notion that axonal injury is a major 
neuropathological consequence of mTBI. Cerebellar damage is 
often seen after TBI even when the initial injury does not directly 
involve this structure (59). Injury to cerebellar white matter has 
been characterized in both animal models and human studies of 
mild brain trauma (60–63). Specifically, studies of blast-related 
mild TBI in military personnel (64, 65) consistently reported 
reduction in anisotropy of the cerebellar peduncle. The evidence 
suggests that the cerebellar axonal pathways may be particularly 
vulnerable to blast exposure, which is the type of injury most 
common in our study population.

The correlation between gamma synchronization and anisot-
ropy of the inferior cerebellar peduncle in the mTBI group sug-
gests that the disruption of gamma synchronization may be the 
functional expression of the cerebellar white matter pathology. 
Cerebellar inactivation has been shown to disrupt the gamma 
coherence between the sensory and the motor cortices in rats dur-
ing free whisking (a rhythmic forward and backward motion of the 
whiskers) (66), providing direct evidence for the cerebellar con-
trol of cortical gamma coupling. The inferior cerebellar peduncle, 
although contains mainly fibers entering the cerebellum, it also 
carries information leaving the cerebellum to the vestibular nuclei 
in the brainstem (67), which plays an important role in modulat-
ing the coherent activity in corticothalamic networks (68). It is 
possible that the deficiency of the inferior cerebellar white matter 
affects the integrity of the cortical–thalamic–cerebellar circuitry 
and thereby leads to a global disruption of gamma synchroniza-
tion. Studies in schizophrenia provide indirect support for this 
hypothesis. Dysfunction in the cortical–thalamic–cerebellar 
circuitry (69, 70) and disruption in gamma synchronization  
(57, 58) have both been recognized as key features of impaired 
coordination and integration of mental processes in schizophre-
nia, suggesting a potential linkage between the two. Yet, it is also 
possible that the identified correlation reflects only covariation 
of the two measures due to the influences from common factors 
rather than a direct link. Nevertheless, the correlation demon-
strated here is an important first step toward linking anatomical 
and functional pathophysiology following mTBI.

Analyses of possible confounding factors in the study yield 
no evidence that factors other than head injury explained the 
diminished gamma synchronization. The mTBI and controls are 
all military service members with similar age, gender, handed-
ness, and deployment experience, suggesting that the findings 
are unlikely due to demographic influence. The sleep quality 
was also comparable between the two groups and thus ruled out 
potential sleep confounds. The psychological measures of PTSD 
and depression were found elevated in the mTBI group; however, 
the correlations with gamma synchronization were not signifi-
cant, indicating that the diminished gamma phase synchrony is 
unlikely mediated by psychological stress. One limitation of the 
study is that we did not perform neuropsychological tests for 
assessing cognitive functions. It is therefore unclear whether the 
diminished gamma synchronization would correlate with any 
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cognitive impairment. Yet, linking synchronization measures 
to neuropsychological performance has previously proven chal-
lenging (23). It is possible that the brain has incorporated certain 
coping mechanisms for the damage (71), leading to the absence 
of cognitive impairments despite the abnormalities in neural 
synchronization and axonal connection.

There is a great need for enhancement in outcome measures 
associated with mTBI, as the “gold standard” diagnostic criteria 
for TBI have not yet been established (72). Specifically, for mild 
TBI, conventional imaging modalities such as CT and MRI 
frequently failed to show any difference between head-injured 
patients and healthy individuals, even with patients experiencing 
persistent cognitive symptoms (73). DTI is a promising method 
for characterizing microstructural changes in mTBI, but such 
advanced technique is not ubiquitously available. In contrast, 
EEG technology is ubiquitous, portable and has been ruggedized 
for use in far forward clinical environments, and thus offers the 
potential for significant operational advantages over imaging 
technology. Our findings of diminished EEG gamma synchroni-
zation and its correlation with white matter abnormality in mTBI 
may prove useful in improving the diagnostic, monitoring, and 
treatment capabilities for mTBI. Caution must be exercised in 
the interpretation of these results. The results presented here do 
not demonstrate that gamma synchronization abnormalities will 
necessarily provide a successful diagnostic biomarker for mTBI, 
because statistically significant group separations do not ensure 
success as a classifier (74). The clinical aspects of the measure, 
such as the diagnostic sensitivity and specificity and the associa-
tion with recovery and treatment, and the comparison of the util-
ity of WPLI versus the conventional synchronization measures, 
require further study.

Significant limitations of this study should be noted explicitly. 
Because the injuries were sustained in theater, there was a consid-
erable heterogeneity in both the type of injury and the time from 
injury to evaluation. Additionally, the number of electrode sites 
is limited. Future studies using high-density EEG/MEG with full 
scalp coverage are desired. Moreover, the sample size was small, 
largely restricted to males, and the results do not have the statis-
tical power to identify gamma synchronization as a diagnostic 
biomarker for mTBI.

cOnclUsiOn

Both mTBI and controls were from the same cohort of military 
service members and were evaluated within two months of 

their return from a deployment in either Iraq or Afghanistan. 
Synchronization at low-gamma frequency, as quantified by the 
WPLI, was significantly decreased in the mTBI cases compared 
against controls, and the disrupted low-gamma synchronization 
was significantly correlated with the white matter integrity of 
the inferior cerebellar peduncle which was also significantly 
reduced in the mTBI group. These findings yield evidence for 
a correlation between the impairment of white matter integrity 
and the impairment of functional synchronization in the brain 
after mTBI.
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