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The search for the genetic foundation of multiple sclerosis (MS) severity remains elusive. 
It is, in fact, controversial whether MS severity is a stable feature that predicts future 
disability progression. If MS severity is not stable, it is unlikely that genotype decisively 
determines disability progression. An alternative explanation tested here is that the 
apparent instability of MS severity is caused by inaccuracies of its current measurement. 
We applied statistical learning techniques to a 902 patient-years longitudinal cohort 
of MS patients, divided into training (n = 133) and validation (n = 68) sub-cohorts, to 
test four hypotheses: (1) there is intra-individual stability in the rate of accumulation of 
MS-related disability, which is also influenced by extrinsic factors. (2) Previous results from 
observational studies are negatively affected by the insensitive nature of the Expanded 
Disability Status Scale (EDSS). The EDSS-based MS Severity Score (MSSS) is further 
disadvantaged by the inability to reliably measure MS onset and, consequently, disease 
duration (DD). (3) Replacing EDSS with a sensitive scale, i.e., Combinatorial Weight-
Adjusted Disability Score (CombiWISE), and substituting age for DD will significantly 
improve predictions of future accumulation of disability. (4) Adjusting measured disability 
for the efficacy of administered therapies and other relevant external features will further 
strengthen predictions of future MS course. The result is a MS disease severity scale 
(MS-DSS) derived by conceptual advancements of MSSS and a statistical learning 
method called gradient boosting machines (GBM). MS-DSS greatly outperforms MSSS 
and the recently developed Age Related MS Severity Score in predicting future dis-
ability progression. In an independent validation cohort, MS-DSS measured at the first 
clinic visit correlated significantly with subsequent therapy-adjusted progression slopes 
(r = 0.5448, p = 1.56e−06) measured by CombiWISE. To facilitate widespread use of 
MS-DSS, we developed a free, interactive web application that calculates all aspects of 
MS-DSS and its contributing scales from user-provided raw data. MS-DSS represents 
a much-needed tool for genotype-phenotype correlations, for identifying biological pro-
cesses that underlie MS progression, and for aiding therapeutic decisions.
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Table 1 | Patient demographics and other clinical characteristics.

Training 
(N = 133)

Validation 
(N = 68)

Total 
(N = 201)

Demographics

age (years)
Mean ± SD 48.5 ± 12.0 49.0 ± 10.9 48.6 ± 11.6
Median 49.2 49.9 49.5
Range 24.0–67.8 23.2–70.3 23.2–70.3
gender, no. of patients (%)
Female 66 (49.6) 34 (50.0) 100 (49.8)
Male 67 (50.4) 34 (50.0) 101 (50.2)
race, no. of patients (%)
White 116 (87.2) 60 (88.2) 176 (87.6)
Other 17 (12.8) 8 (11.8) 25 (12.4)
smoking history, no. of patients (%)
Yes 80 (60.2) 41 (60.3) 121 (60.2)
No/unknown 53 (39.8) 27 (39.7) 80 (39.8)
Family history of multiple sclerosis (Ms), no. of patients (%)
No 87 (65.4) 48 (70.6) 135 (67.2)
Mild (1 distant relative with MS) 22 (16.5) 6 (8.8) 28 (13.9)
Moderate (>1 distant relative 
with MS)

7 (5.3) 3 (4.4) 10 (5.0)

Strong (first degree relative with 
definite MS)

10 (7.5) 6 (8.8) 16 (8.0)

Unknown 7 (5.3) 5 (7.4) 12 (6.0)

Other clinical characteristics

age at disease onset (years)
Mean ± SD 36.5 ± 11.6 38.5 ± 11.1 37.1 ± 11.4
Median 35.9 39.4 37.2
Range 7.9–63.7 16.5–60.1 7.9–63.7
Disease duration (years)
Mean ± SD 12.0 ± 10.2 10.5 ± 9.2 11.5 ± 9.9
Median 9.4 7.7 8.7
Range 0.1–39.5 0.1–42.3 0.1–42.3
eDss
Mean ± SD 4.0 ± 2.3 3.9 ± 2.2 3.9 ± 2.2
Median 4 3 4
Range 0.0–7.5 0–6.5 0.0–7.5
Msss
Mean ± SD 5.1 ± 2.6 5.2 ± 2.4 5.1 ± 2.5
Median 5.6 5.0 5.4
Range 0.1–9.8 0.8–9.7 0.1–9.8
combiWise
Mean ± SD 31.0 ± 18.3 29.2 ± 16.0 30.4 ± 17.5
Median 32.7 25.9 30.2
Range 1.6–79.5 3.9–53.1 1.6–79.5
cOMris-cTD*
Mean ± SD 12.9 ± 6.5 12.7 ± 6.1 12.8 ± 6.3
Median 12.8 12.9 12.9
Range 0.0–29.9 2.1–28.5 0.0–29.9

Data are mean ± SD, median, and range or n (%). Characteristics labeled with an (*) 
were calculated by excluding missing data. Percentages may not sum to 100 due to 
rounding.
EDSS, Expanded Disability Status Scale; MSSS, MS Severity Score; CombiWISE, 
Combinatorial Weight-Adjusted Disability Score; COMRIS-CTD, Combinatorial MRI 
Score of CNS tissue destruction.
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inTrODUcTiOn

Multi-centric genetic consortia identified more than 200 multiple 
sclerosis (MS) susceptibility genes, but validated no gene variants 
associated with MS severity (1, 2). The aggressiveness of a patient’s 
MS course can be measured by the MS Severity Score (MSSS) (3), 
which relates Expanded Disability Status Scale (EDSS) (4) to MS 
disease duration (DD). A newer version of the EDSS-based MSSS, 
called the Age Related MS Severity Score (ARMSS), substitutes 
age for DD (5). However, it is unclear if MS severity represents a 
stable disease phenotype (6). Consequently, our ability to provide 
reliable prognostic information to patients is limited.

Large natural history studies have shown that past MS course 
does not predict future rate of disability accumulation once a 
patient reaches an EDSS of 6 (6, 7). This suggests that MS sever-
ity is either not a stable feature or represents a stable phenotype 
only for low-to-moderate disability levels. This understanding is 
essential because only stable features can be successfully used as 
outcomes for statistical learning techniques to identify genes, bio-
markers, and/or biological processes that hasten MS progression.

Consequently, the purpose of this longitudinal study was to 
determine if MSSS (or ARMSS) can reliably predict future rates 
of disability accumulation measured by EDSS, and, if they cannot, 
to develop and validate a model that more reliably predicts MS 
severity for both clinical and research applications.

MaTerials anD MeThODs

Patients
The study was approved by the Institutional Review Board 
and all patients signed an informed consent. Participants were 
selected from the prospectively acquired natural history pro-
tocol 09-N-0032 (Clinicaltrials.gov Identifier NCT00794352): 
“Comprehensive multimodal analysis of patients with neuroim-
munological diseases of the CNS” based on the following criteria: 
(1) confirmed diagnosis of MS and (2) longitudinal follow-up 
consisting of three or more clinic visits with recorded CombiWISE 
values spanning ≥1 year or two or more clinic visits with recorded 
CombiWISE values spanning ≥3  years. We excluded clinical 
visits associated with MS exacerbation because these would 
overestimate the amount of sustained disability progression, as 
a large proportion of exacerbation-related disability is reversible. 
The mean length of follow-up was 4.49  ±  2.90  years. All MS 
subjects fulfilling these criteria as of 5/26/2017 were included in 
this analysis. Pertinent inclusion criteria for 09-N-0032 protocol 
are (1) presentation with a clinical syndrome consistent with an 
immune-mediated central nervous system (CNS) disorder, (2) 

neuroimaging evidence of inflammatory and/or demyelinating 
CNS disease, and (3) 12–75 years of age at the time of enrollment. 
The final diagnosis was assigned after thorough diagnostic work-
up as described (8). Patient demographics and other clinical 
characteristics are provided in Table 1.

Abbreviations: ARMSS, age related multiple sclerosis severity score; CDP, con-
firmed disability progression; CNS, central nervous system; CombiWISE, com-
binatorial weight-adjusted disability score; COMRIS-CTD, combinatorial MRI 
score of CNS tissue destruction; DD, disease duration; DMT, disease modifying 
therapy; EDSS, expanded disability status scale; GBM, gradient boosting machine; 
MRI, magnetic resonance imaging; MS-DSS, MS disease severity scale; MSSS, MS 
severity score; NIH, National Institutes of Health; 9HPT, 9-hole peg test; PPMS, 
primary progressive multiple sclerosis; QC, quality control; r, Pearson correlation 
coefficient; R2, coefficient of determination; RRMS, relapsing-remitting multiple 
sclerosis; SNRS, Scripps neurological rating scale; T25FW, timed 25-foot walk.
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Data collection
All data were prospectively acquired and entered into the 
research database. Clinicians acquired the EDSS (4) and Scripps 
Neurological Rating Scale (SNRS) (9), while a different set of 
investigators acquired the Timed 25-Foot Walk (T25FW) and 
9-Hole Peg Test (9HPT) scores. From these data, the research 
database automatically computed the CombiWISE score based 
on the published formula (10):

 

CombiWISE EDSS SNRS
T25FW

= + ( ) − ( )
+ (
33 166 3 803 0 407
2 409 2

. . .
. log ( ))) + ( )

+ ( ) + (
 T25FW

NDH-9HPT NDH
FAIL

FAIL

18 056
1 305 10 7512

.
. log ( ) . )),  

(1)

where log2(T25FW) is the logarithm (base 2) of the T25FW, 
T25FWFAIL is binary (0 for completed test, 1 for failed test), 
log2(NDH-9HPT) is the logarithm (base 2) of the non-dominant 
hand 9HPT, and NDHFAIL is binary (0 for completed test, 1 for failed 
test). Prospectively acquired MRI scans were semi-quantitatively 
rated according to the published protocol (11) and grades were 
entered into the research database, which automatically calculates 
Combinatorial MRI Scale of CNS Tissue Destruction (COMRIS-
CTD) as described (11).

While current disease modifying therapies (DMTs) were 
entered into the database prospectively at the time of each clinical 
visit, detailed history of past DMTs, smoking, and family history 
were gathered from prospectively acquired patient questionnaires 
and clinic notes. When such detailed history data were missing, 
an investigator obtained them retrospectively over the phone or 
during a follow-up clinic visit. All data underwent weekly quality 
control (QC), after which the data were locked in the database.

For analysis, QC’d data were exported into Excel and then 
imported into the statistical software R v3.3.1 (RStudio v1.0) (12, 
13). To ensure that both training and validation cohorts were rep-
resentative of the underlying population, we used the following 
methods to construct training and validation datasets: patients 
were first separated based on their race (Caucasian and non-
Caucasian) and gender (male and female). Within each of these 
four groups, patients were binned according to whether they were 
above or below the median measurements for therapy-adjusted 
CombiWISE/age (derived from data collected at the first clinic 
visit; see definition later in Section “Materials and Methods”) 
and age at first clinic visit. Within each of these 12 groupings, 
approximately two-thirds of patients were randomly selected as 
a training dataset, leaving the remaining one-third of patients as 
a validation dataset. This procedure balanced the distribution of 
the main demographic features and disability between the train-
ing and validation cohorts.

adjusting for Therapeutic efficacy
In a previous study (14), we performed a meta-analysis of 38 
randomized, blinded clinical trials of immunomodulatory 
therapies in MS to test the hypothesis that efficacy of current 
immunomodulatory DMTs on disability progression decreases 
with age. After fitting a weighted regression with an interaction 
term, treatment efficacy was found to be highly associated with 

age, with differences in outcome (inhibition of disability progres-
sion) dependent on drug classification into high- or low-efficacy 
categories [R2 (coefficient of determination) = 0.6757, p-value for 
interaction <0.0001].

Therefore, to adjust measured disability values (i.e., 
CombiWISE) and their longitudinal change for the average 
age-adjusted therapeutic efficacy of administered DMTs, we used 
the weighted linear regression from the previously described 
meta-analysis. We used the following strategies for adjustment:  
1. cross-sectional disability data collected at first clinic visit and 
utilized for predicting future disability course were adjusted for 
all past treatments received before the first National Institutes 
of Health (NIH) clinic visit. We applied an identical strategy for 
adjusting cross-sectional disability data measured at the last clinic 
visit to determine whether MS disease severity scale (MS-DSS) at 
the last clinic visit also correlated with measured longitudinal data. 
2. We then measured progression slopes derived from disability 
measurements obtained at all visits—this represented the “future” 
disability progression we wanted to predict from single-visit 
data. Because most patients were treated during this longitudinal 
follow-up, we also had to adjust these “future” progression slopes 
for de facto “future” treatments. Mathematically, the process of 
adjustment for therapeutic efficacy can be described as follows.

First, we calculated the cumulative efficacy across the entire 
treatment period of duration tn − t0, using the following formula:

Eff
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where t0 is the age at the first visit, tn is the age at the last visit, and 
each term Effi represents therapeutic efficacy generated from the 
following linear models:

Untreated/Unknown Efficacy Effi: , ,( )t ti i− =1 0  (3)

Low-Efficacy Eff: , . . ,i i i
i it t t t

( )−
−= −

+







 +1

11 50
2

83 71
 

(4)

High-Efficacy Eff: , . . ,i i i
i it t t t

( )−
−= −

+







 +1

14 34
2

206 39
 

(5)

where the term (ti + ti-1)/2 is an average of two time points. The 
dichotomization of drugs into low- versus high-efficacy was 
described in the meta-analysis (14) and will be also mentioned 
in the results. All negative values for efficacy were assumed to 
be 0.

Measured progression slopes may be positive (i.e., patient accu-
mulates disability) or negative (i.e., patient is repairing previously 
accumulated disability). If a patient remained untreated, then the 
measured progression slope quantifies the true progression slope. 
However, if a treated patient continued to accumulate clinical 
disability, then the true progression without therapy would be 
equivalent to shifting the measured slope upward by a magnitude 
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that corresponds to the efficacy of the administered DMT [i.e., 
Eff(t0, tn)]. This, in effect, increases the rate of progression to 
provide an estimate of expected disease accumulation without 
therapy. Therefore, adjusted CombiWISE slopes were calculated 
by adding the measured CombiWISE slopes (fit by simple linear 
regression) to the percent adjustment due to efficacy, as follows:

 

Adjusted CW Slope  Measured CW Slope 
 Adjusted CW Slope

=
+ ( )) ( )⋅ Eff t tn0 , .

 
(6)

Solving for the adjusted CombiWISE slope gives

 
Adjusted CWSlope Measured CW Slope

Eff
=

−( )1 0( )t tn,
.

 
(7)

For patients who improved while taking DMT, the true pro-
gression without treatment would be equivalent to shifting the 
negative measured slope upward by a magnitude, Eff(t0, tn), of the 
absolute value of the measured slope. Since the slope is negative, 
this is equivalent to subtracting the product of the measured slope 
and efficacy and, in effect, decreases the expected rate of improve-
ment to model disease accumulation without therapy. Therefore, 
the adjusted CombiWISE slopes were similarly calculated by sub-
tracting the percent adjustment due to efficacy from the measured 
CombiWISE slopes, as follows:

 

Adjusted CW Slope  Measured CW Slope 
Measured CW Slope

=
− ( )) ( )⋅ Eff t tn0 , . (8)

Factoring the right-hand side gives

 Adjusted CW Slope  Measured CW Slope Eff= ⋅ −( )1 0( )t tn, . (9)

We, then, adjusted the first measured CombiWISE, CWmeasured 
(t0), and last measured CombiWISE, CWmeasured (tn), upward, as 
follows:

 
CW CW

Effadjusted
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t
t
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(10)

and
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t
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n

n

=
−( )1 0,

,
 

(11)

where Eff(0, t0) represents the total cumulative efficacy from 
birth to the first clinic visit, and Eff(0, tn) represents the total 
cumulative efficacy from birth to the last clinic visit. Functions 
within the R script were used to generate all therapy adjustments. 
The Supplementary Material contains the utilized R code in its 
entirety.

Optimization of Ms-Dss by statistical 
learning
A Gradient Boosting Machine [GBM (15, 16)] was used to 
develop a model predicting therapy-adjusted CombiWISE Slopes 
from baseline covariates collected during a patient’s initial visit. 
GBM’s are sequentially built using regression trees. The current 

tree is built using residuals from the previous tree’s predictions, 
and the predictions are iteratively updated by adding the current 
tree’s prediction (times a shrinkage parameter between 0 and 1)  
to the previous tree’s prediction. For each tree constructed, a 
random sample containing half of the observations is withheld 
from the training cohort to introduce randomness into the mod-
eling process (called the out-of-bag or OOB sample). The main 
tuning parameters for a GBM are the depth of the individual 
trees (sometimes called the interaction depth, typically between 
1 and 4), the shrinkage parameter (typically small, less than 
0.1), and the number of trees. Using the gbm R package (17), 
we selected an interaction depth of 2, a conservative shrinkage 
parameter of 0.001, and used a five-fold cross validation to select 
the number of trees. The relative influence of each of the vari-
ables was computed by examining the improvement in squared-
error from splits within each individual tree and averaging these 
improvements across all trees in the ensemble.

resUlTs

Msss and arMss Do not Predict 
Development of Future Disability 
Measured with eDss
We calculated patient-specific linear regression slopes (“pro-
gression slopes”) from clinical scales (EDSS and CombiWISE) 
collected at each clinic visit. EDSS measured during the first 
clinic visit was then used to calculate MSSS (3) and ARMSS (5) 
as described.

To determine whether MSSS predicts future disease severity 
measured by EDSS progression slopes, we assessed the correlation 
between patient-specific MSSS derived from first visit data and 
EDSS progression slopes derived from subsequent longitudinal 
follow-up. The resulting correlation in the full cohort (n = 201) 
was poor and not statistically significant (r = 0.0301, p = 0.672; 
Figure  1A). A poor predictive result was also observed for 
ARMSS, which ranks EDSS based on age (r = 0.0504, p = 0.478; 
Figure 1B).

We hypothesized that these null results were due to the insen-
sitivity of EDSS to correctly measure MS progression in intervals 
shorter than 10  years. To test this hypothesis, we investigated 
whether MSSS and ARMSS predict future progression slopes 
using a more sensitive and continuous scale, CombiWISE (10). 
We found a statistically significant, albeit weak, correlation 
between both MSSS and measured CombiWISE progression 
slopes (r  =  0.2821, p  =  4.97e−05; Figure  1C) and ARMSS 
and measured CombiWISE progression slopes (r  =  0.2948, 
p = 2.15e−05; Figure 1D).

combiWise Progression slopes explain a 
larger Proportion of Variance than eDss 
Progression slopes
While EDSS and CombiWISE progression slopes are strongly 
correlated (r = 0.7768, p < 2.2e−16; Figure 2A), most patients 
with EDSS progression slopes of 0 (i.e., EDSS “stable” patients 
highlighted in blue) had non-zero CombiWISE progression 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


FigUre 1 | MS Severity Score (MSSS) and Age Related MS Severity Score (ARMSS) predict development of future disability measured with CombiWISE slope, but 
not Expanded Disability Status Scale (EDSS) slope. (a,b) Cross-sectional MSSS and ARMSS measured at the first clinic visit do not predict future accumulation of 
disability measured by EDSS regression slopes. (c,D) Cross-sectional MSSS and ARMSS measured at the first clinic visit correlate with longitudinal CombiWISE 
regression slopes derived from subsequent longitudinal follow-up. MSSS, ARMSS, and CombiWISE values were calculated according to published formulas (3, 5, 
10), and subsequent EDSS and CombiWISE regression slopes were derived using least squares fitting (see Materials and Methods). Patients were prospectively 
followed for an average of 4.49 years. Correlations are shown for the entire cohort (n = 201).
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slopes (Figure  2B). Of these patients, two-thirds progressed 
in CombiWISE, as demonstrated by the positively skewed 
distribution of CombiWISE progression slopes for patients with 
unchanged EDSS (Figure 2B).

The proportion of variance explained (R2) reflects how well 
the regression lines, as a function of time, explain the measured 
responses for each patient. The full cohort data (Figure  2C) 
demonstrated unequivocal superiority of CombiWISE over 
EDSS in its ability to reliably measure MS disability progres-
sion slopes. A higher proportion of variance was explained on 
average for CombiWISE than for EDSS (Figure  2C; mean of 
differences = 0.1357, 95% CI =  [0.089, 0.182], p = 2.84e−08). 
Figure  2D shows the distribution of the pairwise differences, 
reinforcing the improved representation of the changes over 
time possible when using CombiWISE as a response over EDSS. 
Representative examples of individual patients (Figure  2E) 
provide visual clues as to why CombiWISE is a better scale. In 
the second example, a representative patient with stable disease 

based on EDSS (i.e., EDSS slope of 0) had a clear linear progres-
sion of disability measured by CombiWISE (Figure 2E, middle 
panels).

substituting Measured combiWise/age 
for Msss improves Predictive Power
It is impossible to measure MS onset and, therefore, disease 
duration (DD), with high precision. Since, in natural history 
cohorts, MS patients reached major disability milestones around 
the same age (and not around the same DD) (6), we hypothesized 
that replacing DD with age and replacing EDSS with CombiWISE 
would further strengthen predictions of future progression rates. 
The same hypothesis led previously to ARMSS, which demon-
strated comparable, but not superior, power to detect disability 
differences when compared to MSSS (5).

Indeed, measured CombiWISE/age outperformed both MSSS 
and ARMSS in predicting future CombiWISE progression [MSSS: 
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FigUre 2 | CombiWISE measures multiple sclerosis (MS) progression more accurately than Expanded Disability Status Scale (EDSS). (a) Patient-specific 
progression rates measured by EDSS and CombiWISE regression slopes strongly correlate. (b) Frequency distribution of measured CombiWISE slopes for patients 
with no reported change in EDSS [highlighted blue points in (a)]. The histogram demonstrates the insensitivity of EDSS; patients can progress as much as 4 
CombiWISE units/year (or improve by up to 2 CombiWISE units/year) with no change in EDSS. (c) Boxplots depict the proportion of variance explained for 
CombiWISE versus EDSS regressions. The median is indicated with a solid black line, and the mean is indicated with a dashed blue line. The bottom and top of the 
box denotes the first and third quartiles, respectively. The whiskers indicate the 10th and 90th percentiles. A two-tailed paired t-test indicated strong evidence of a 
mean difference of 0.1357 (95% CI, 0.089–0.182) in R2 values between the CombiWISE and EDSS regressions. (D) Histogram of difference in R2 values between 
CombiWISE and EDSS regressions suggests that the values are relatively normally distributed. (e) Representative patient examples illustrate higher accuracy of 
linear regressions (solid blue lines with dashed 95% CI; upper panels) derived from longitudinal CombiWISE measurements (no fill circles; upper panels) in 
comparison to linear regressions (solid black lines; lower panels) derived from longitudinal EDSS measurements (black filled circles; lower panels) from the same 
three MS patients.
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r  =  0.2821, p  =  4.97e−05 (Figure  1C); ARMSS: r  =  0.2948, 
p  =  2.15e−05 (Figure  1D); measured CombiWISE/age: 
r = 0.3093, p = 7.90e−06 (Figure 3A)].

adjusting Disability Measures for the 
effects of administered Treatments
Although using cross-sectional CombiWISE/age values strength-
ened correlations with subsequent CombiWISE slopes, this model 

could still explain only a small proportion of the variance in these 
slopes. Therefore, we sought other sources of error that could 
potentially be eliminated. One apparent source of error involves 
disregarding the effects of DMTs, as clinical trials convincingly 
demonstrated that (at least some) DMTs inhibit rates of disability 
progression.

We recently performed a meta-analysis of all randomized, 
blinded clinical trials (38 trials, >28,000 MS patients) of immu-
nomodulatory MS drugs that reported efficacy on disability 
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FigUre 3 | Therapy-adjusted CombiWISE/age is a better predictor of future disability than measured CombiWISE/age. (a) Patient-specific CombiWISE progression 
slopes moderately correlate with cross-sectional CombiWISE/age measured at the first clinic visit. CombiWISE values were calculated based on a published formula 
(10), and subsequent regression slopes were derived using least squares fitting from an average follow-up of 4.49 years. (b) In this hypothetical example, the patient 
began the multiple sclerosis disease process at time tonset and was treated with past therapy (P-Th) prior to his/her first clinic visit at t1st visit. During this visit, we 
collected data used for estimating future disease course (i.e., MS disease severity scale). During subsequent longitudinal follow-up, this patient received high-efficacy 
therapy for duration T1. S/he then remained untreated for duration T2 before beginning low-efficacy therapy (LE-Th3) for duration T3. The mean-therapeutic efficacy 
(see Materials and Methods) for each treatment period was calculated as a function of the average age within that period and then weighted by the treatment 
duration. Any untreated periods were assumed to have zero efficacy so that the sum of all weighted products was unchanged by periods of no treatment. The final 
cumulative efficacy during longitudinal follow-up was then calculated as the ratio of this sum to the follow-up duration (T1 + T2 + T3). The slope of the measured CW 
regression (pink line) was adjusted by this patient-specific cumulative efficacy to derive an adjusted slope for future therapies (slope of blue line). For example, if the 
cumulative efficacy during longitudinal follow-up was 30%, the slope of the regression line of measured CW values would represent 70% of the new therapy-adjusted 
slope. An analogous adjustment was made for the sum of past treatments to derive the yellow point (CombiWISE at first clinic visit adjusted for all past therapies). 
The yellow line depicts the patient’s disease progression had s/he remained untreated (i.e., no past or future therapies). This line has the same slope as the blue line, 
but a higher intercept at t1st visit due to adjustments for the cumulative efficacy of all past therapies. (c) After adjusting both variables for the effects of administered 
therapy (see Materials and Methods), the correlation between cross-sectional CombiWISE/age and longitudinal progression slopes improved.
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progression (14) to test the hypothesis that age has a major effect 
on the efficacy of administered DMTs. This meta-analysis con-
firmed that the efficacy of these drugs decreases as a patient ages, 
with age alone explaining approximately 42% of the variance seen 
in drug efficacy. We fit a regression, weighted for sample size and 
trial duration, to clinical trial data in FDA-approved drugs (for 
approved indications) and treated this regression as the average 
patient on an average DMT. Within each drug type, we also aver-
aged the weighted residuals (difference between the observed 
and predicted efficacies) from all clinical trials of that particular 
drug and used the sign of this average to dichotomize the groups. 
Drugs for which the average weighted residuals were below the 
regression line (i.e., negative averages of weighted residuals from 
all clinical trials of the particular drug, implying that this drug 
has lower than average efficacy of all drugs combined) were clas-
sified as low-efficacy (glatiramer acetate, teriflunomide, all inter-
feron beta preparations, dimethyl fumarate, and fingolimod). 
Analogously, drugs with average weighted residuals above the 
regression line (i.e., positive averages of weighted residuals from 
all clinical trials of the particular drug, implying that this drug has 
higher than average efficacy of all drugs combined) were classified 
as high-efficacy (natalizumab, daclizumab, alemtuzumab, mitox-
antrone, and ocrelizumab). We used this dichotomization and a 
step-down testing procedure to arrive at a model that included 
the interaction between age and efficacy categorization (0 for 
low and 1 for high). This model was an improvement over the 
previous regression only on age (R2 = 0.6757 versus R2 = 0.4163, 
t-test = −3.464 for interaction on 36 DF, p = 0.002) and justified 
exploring the two efficacy categorizations separately, to produce 
the models summarized in Section “Materials and Methods” 
(Eqs 3–5). We used these regressions to adjust patient-specific 
cross-sectional CombiWISE values measured at the first and 
last clinic visit for all prior treatments. Analogously, we adjusted 
raw CombiWISE progression slopes for all treatments received 
during longitudinal follow-up. These adjustments are described 
in the next section.

Therapy-adjusted combiWise/age better 
Predicts Therapy-adjusted combiWise 
slopes
Conceptually, to adjust measured CombiWISE progression 
slopes, we divided each treatment period into therapeutically 
homogeneous segments. For example, if a patient received two 
treatments separated by a period of no therapy, the longitudinal 
follow-up would be divided into three segments (Figure 3B). We 
computed the patient’s mean age as an average of the initiation 
and termination ages within each treatment period and then 
used this age as input for Eqs  3–5. For untreated patients, the 
therapeutic efficacy was assumed to be 0 (Eq. 3). By averaging 
the therapeutic efficacies within each treatment period propor-
tional to the duration of each treatment period (Figure 3B), we 
derived a cumulative efficacy for the entire longitudinal follow-
up. The measured progression slope was then adjusted by this 
patient-specific cumulative efficacy to derive a “therapy-adjusted 
CombiWISE Slope,” which represents a predicted progression 
slope had the patient remained untreated.

Similarly, to adjust cross-sectional CombiWISE scores 
obtained at the first or last clinic visit for all preceding treat-
ments, we calculated the cumulative efficacy of past treatments. 
Because exact MS onset cannot be determined for most patients, 
we used time from birth to the time of cross-sectional visit for 
these adjustments.

Using therapy-adjusted data improved the correlation 
between cross-sectional CombiWISE/age and subsequent lon-
gitudinal progression slopes from measured values (r = 0.3093, 
p = 7.90e−06; Figure 3A) to therapy-adjusted values (r = 0.3468, 
p = 4.55e−07; Figure 3C).

Using statistical learning with Known  
and newly Developed Variables to  
Derive Optimized Ms-Dss Model
Finally, we asked whether we could further enhance the predic-
tive power of future disability progression from a single cross-
sectional measurement by using unbiased statistical learning. 
Because statistical learning uses measured data to obtain new 
knowledge, the validity of a model derived from such learning is 
best assessed on a new dataset not utilized for the modeling. This 
ensures that the model is generalizable to an entire population and 
not limited to the sample on which the model was trained. Thus, 
we split the cohort of 201 MS patients into training (n = 133) and 
independent validation (n = 68) cohorts using stratification based 
on therapy-adjusted CombiWISE/age (at first visit), age (at first 
visit), race, and gender to ensure that both training and validation 
cohorts were representative of the underlying population.

In addition to variables that were previously hypothesized or 
shown to affect disability progression such as gender, smoking, 
and race, we selected new features for statistical learning based on 
clinical knowledge. We hypothesized that the following features 
may negatively influence recovery from CNS lesions and, there-
fore, speed up accumulation of disability: age and the amount of 
CNS tissue destruction reflected by baseline disability (measured 
by CombiWISE) and/or quantified by MRI using published 
Combinatorial MRI Scale of CNS Tissue Destruction [COMRIS-
CTD (11)]. Both factors diminish available reserves for restoring 
lost function by plasticity, while aging limits both plasticity and 
remyelination. Although MS susceptibility alleles do not seem to 
strongly affect MS severity (1, 2), we wanted to formally test the 
contribution of family history of MS in our model. Finally, we 
tested new features related to therapy: (1) number of DMTs taken 
for less than 6 months. We hypothesized that this feature reflects 
either side-effects or lack of therapeutic efficacy and, therefore, 
may positively correlate with MS severity. (2) Difference between 
therapy-adjusted and measured CombiWISE at the first clinic 
visit. We hypothesized that patients who benefited strongly from 
previous treatments may have better-than-average benefit from 
subsequent treatments. (3) Delay between onset of neurological 
symptoms attributable to MS and initiation of therapy. Since 
compartmentalization of MS inflammation is a continuous 
process that starts at MS initiation (18) and because compart-
mentalized inflammation is inadequately targeted by current 
DMTs (19), we hypothesized that delay in initiation of effective 
therapy will enhance the rate of disability accumulation, (4) the 
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cumulative efficacy of therapy from first to last visit, and (5) the 
type of therapy received (i.e., none/unknown, low only, high only 
or both). While these final two features are, de facto, contained 
in our mathematical adjustment for the efficacy of administered 
therapies, we included them in the model to test whether these 
independent features provide any additional information not 
captured by linear regression(s).

We selected GBM for statistical learning, which can handle 
observations with missing predictors, and are known for their 
excellent predictive ability (15, 16). They can also effectively deal 
with interactions between selected features, which are likely to 
occur in the MS-DSS model.

The GBM model greatly outperformed simple linear regres-
sion based on therapy-adjusted CombiWISE/age, achieving a 
correlation of r =  0.6589, p =  6.62e−18 in the training cohort 
(Figure 4A).

As demonstrated in Figure 4B, the GBM trained on a train-
ing cohort (n = 133) assigned higher influence to new variables, 
such as measured CombiWISE, COMRIS-CTD, and difference 
between adjusted CombiWISE and unadjusted CombiWISE, 
than to known dichotomous modifiers of MS disease course, such 
as gender, smoking, or race. Family history of MS contributed 
only marginally to the MS-DSS model. Although age also had 
only marginal importance in the model, one should not forget 
that age is also present in the most influential variable in the 
model, therapy-adjusted CombiWISE/age, and in the math-
ematical adjustments of administered treatments. To simplify the 
MS-DSS model, we retrained the GBM model on a reduced set 
of covariates, including all variables determined to have relative 
influence above 4.0 and excluding all those with little to no rela-
tive influence. The final reduced model included the following list 
of variables, all measured at the first clinic visit: therapy-adjusted 
CombiWISE/age, measured CombiWISE, COMRIS-CTD, time 
from disease onset to first therapy, difference between adjusted 
CombiWISE and unadjusted CombiWISE, age, and family his-
tory of MS. This final model achieved a correlation of r = 0.5448, 
p = 1.56e−06 in an independent validation cohort (Figure 4C).

Data required to compute Ms-Dss can 
be Obtained Post Hoc and Used to 
accurately Predict Ms severity
While predicting future MS course is important in clinical applica-
tions, reliable measurement of MS severity is absolutely required 
in scientific efforts to identify biological processes and genetic 
modifiers that determine the speed of CNS tissue destruction. 
Our primary goal in MS-DSS development was to facilitate such 
studies. However, most historical cohorts with stored biological 
samples lack the data necessary for calculating CombiWISE or 
MS-DSS. It is likely that a significant portion of patients from 
these historical cohorts can be called back for a comprehensive 
follow-up visit that would allow collection of all data necessary 
for computing therapy-adjusted CombiWISE/age. Therefore, 
we asked how well both therapy-adjusted CombiWISE/age 
and MS-DSS computed at the last clinic visit correlated with 
prospectively acquired clinical data and whether both measures 
outperformed MSSS in this regard (Figure 5).

In both the training cohort and the validation cohort, MSSS 
measured at the last clinic visit had a moderate and significant 
correlation with previous disease progression measured by EDSS 
(Training: r  =  0.3205, p  =  1.70e−04; Validation: r  =  0.3595, 
p = 0.003; Figure 5A). However, the correlation between therapy-
adjusted CombiWISE/age and therapy-adjusted CombiWISE 
slopes markedly improved (Training: r = 0.5556, p = 3.85e−12; 
Validation: r = 0.6651, p = 6.14e−10; Figure 5B). MS-DSS also 
correlated strongly with therapy-adjusted CombiWISE slopes 
(Training: r  =  0.6101, p  =  6.35e−15; Validation: r  =  0.6825, 
p = 1.45e−10; Figure 5C).

interactive Web application for computing 
Ms scales
In previous manuscripts (10, 11), we provided formulas and 
datasheets for computing COMRIS-CTD and CombiWISE; 
however, GBM-based modeling is not amenable for this type 
of public distribution. Therefore, we developed a user-friendly 
web interface using the Shiny package in R (20). Screenshots of 
the application (Figures  6–11) demonstrate the main features 
of this interface, which allows any user to readily compute all 
values from current and previously developed scales, including 
CombiWISE (10), COMRIS-CTD (11) and now MS-DSS, with-
out any mathematical knowledge or programming skills. The user 
can access tabs and monitor data updates through the Dashboard 
page (Figure 6), and, within each submenu (Figures 7–10), the 
application displays the results in tabular form, allowing the 
user to parse through the dataset and examine output. If the 
user attempts to enter non-numeric data (e.g., fifteen instead 
of 15) or nonsensical data (e.g., 0 second trial), the application 
generates a gentle warning message (Figure 11A), and if the user 
attempts to proceed to the adjusted CombiWISE/age or MS-DSS 
tabs without completing the preceding tabs, the application will 
generate a notice to redirect the user (Figure  11B). A pop-up 
help menu is available beside each scale computation, and (where 
applicable) the images within each help menu are active links to 
the published article for that scale (Figure 11C). When the neces-
sary computations are complete, the user can export individual 
datasets or an entire data summary as a CSV file (Figure 11D). 
The MS-DSS application can accessed at https://bielekovalab.
shinyapps.io/msdss/.

DiscUssiOn

Statistical learning is an indispensable technique for analyzing 
clinical data if the collected data has sufficient power to reliably 
measure existing relationships. Statistical power depends on the 
effect sizes of the processes we desire to investigate, the quantity 
of available measurements, and the precision of these measure-
ments. Effect size is biologically determined, and, thus, cannot 
be modified by experimental design. Effect sizes tend to be small 
when considering individual elements, such as genes, proteins, 
or metabolites, in human polygenic diseases (21). Increasing the 
quantity of measurements (e.g., number of patients, frequency 
of visits, and length of follow-up in longitudinal studies) can 
compensate for small effect sizes, but cannot (or only to a limited 
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FigUre 4 | MS disease severity scale (MS-DSS) (at first clinic visit) is a strong predictor of future disability measured with therapy-adjusted CombiWISE slopes.  
(a) Cross-sectional MS-DSS measured at the first clinic visit strongly correlates with longitudinal therapy-adjusted CombiWISE regression slopes in the training 
cohort. (b) Relative influence of individual features in MS-DSS model. The Gradient Boosting Machine assigned importance to the following variables measured at 
the first clinic visit: therapy-adjusted CombiWISE/age, measured CombiWISE, COMRIS-CTD, time from disease onset to first therapy, difference between adjusted 
CombiWISE and unadjusted CombiWISE, age, and family history of MS. Known dichotomous classifiers of MS such as gender, race (Caucasian or non-Caucasian), 
and smoking history were determined to have little if any influence on model results. (c) Cross-sectional MS-DSS measured at the first clinic visit also strongly 
correlates with longitudinal therapy-adjusted CombiWISE regression slopes in the validation cohort. CombiWISE values were calculated based on a published 
formula (10), and subsequent therapy-adjusted CombiWISE slopes were derived using least squares fitting (see Materials and Methods) for patients with an average 
follow-up of 4.49 years.
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degree) compensate for measurement imprecision. Despite this 
fact, greater emphasis is typically placed on increasing sample 
size than on optimizing measurement precision. This strategy not 
only inflates costs but may not yield the desired knowledge. If the 
measurement error exceeds the effect size, distinguishing biologi-
cal relationships from measurement noise can become impossible, 
irrespective of sample size. Thus, it is essential that we understand 
the source and extent of measurement noise and use this knowledge 
to meaningfully improve measurement tools and thus decrease 
necessary sample sizes. This strategy is a win–win situation both 
for science and clinical care: decreasing sample size will promote 
more cost-effective science, while increasing precision will shift 
prediction accuracy from a group-level to a patient-level.

Our finding, that EDSS lacks the sensitivity to reliably measure 
disease progression in intervals shorter than 10  years, agrees 
with a recent observational study of 17,365 MS patients that 
measured a median annualized EDSS change of 0.1 (22), which 
corresponds to a one-point increase in EDSS occurring, on aver-
age, every 10 years. Consequently, the observed inability of the 
past disease course reflected by MSSS or ARMSS to predict future 
EDSS progression in longitudinal studies shorter than 10 years 
is, to a large degree, an artifact of the insensitive measurement 
of this discrete scale. When disability progression rates were 
measured in the same patients by the continuous CombiWISE 
scale, we observed a statistically significant, albeit weak, cor-
relation between MSSS (or ARMSS) and CombiWISE slopes. 
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FigUre 5 | Therapy-adjusted CombiWISE/age and MS disease severity scale (MS-DSS) (at last clinic visit) are strong predictors of prior disability measured with 
therapy-adjusted CombiWISE slopes. (a) Cross-sectional MS Severity Score (MSSS) measured at the last clinic visit moderately correlates with longitudinal 
Expanded Disability Status Scale (EDSS) regression slopes. (b,c) The correlation markedly improves when using both cross-sectional therapy-adjusted 
CombiWISE/age (b) and subsequent MS-DSS (c) to predict therapy-adjusted CombiWISE regression slopes. Results are shown separately for the training cohort 
(Left panels; n = 133) and validation cohort (Right panels; n = 68). MSSS and CombiWISE values were calculated using published formulas (3, 10), and subsequent 
EDSS and therapy-adjusted CombiWISE regression slopes were derived using least squares fitting for patients with an average follow-up of 4.49 years.
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FigUre 7 | COMRIS submenu within the Shiny web application. This submenu allows the user to calculate four COMRIS values (COMRIS-CTD, COMRIS-PDO-
EDSS, COMRIS-PDO-SNRS, and COMRIS-CDO-SDMT) by semi-quantitative grading of 9 MRI categories from 1.5T or 3T MRI. Each drop-down menu allows the 
user to select the lesion load or level of atrophy necessary to grade the MRI. Users who are unfamiliar with COMRIS can click the help menu beside each drop down 
for a brief description of the grading procedure and a link to the published article (11).

FigUre 6 | Dashboard (home page) within Shiny web application. Dashboard page introduces users to the application and allows them to monitor the status of 
each menu by dynamically updating the number of patient entries. Users navigate between four submenus (COMRIS (11), CombiWISE (10), therapy-adjusted 
CombiWISE/age, and MS-DSS). Within each submenu, the user is asked to input both continuous and categorical patient-specific features using the sliding scales, 
free text, and drop-down options. As the user enters data within each tab, results from intermediate computations are displayed in tabular form, enabling the user to 
parse through the dataset and examine output. This user-friendly interface was developed using the Shiny package in R (20).
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FigUre 8 | CombiWISE submenu within the Shiny web application. This submenu allows the user to input values for four scales [Expanded Disability Status Scale 
(EDSS), SNRS, Timed 25-Foot Walk (T25FW), and 9-Hole Peg Test (9HPT)] to compute CombiWISE (10). The values for EDSS (0, 1–10, incrementing by 0.5 where 
0 is no disability and 10 is deceased) and SNRS (0–100, incrementing by 1.0 where 100 is no disability and 0 is deceased) are entered via sliding scales, and the 
T25FW and 9HPT are entered as free text. The T25FW and 9HPT have maximum time limits of 180 s (3 min) and 300 s (5 min), respectively. If these limits are 
surpassed, the application will prompt the user to round the value to the testing limit. The application controls for the entry of nonsensical data (e.g., 0 s trial) or 
non-numeric data (e.g., fifteen rather than 15) as demonstrated in Figure 11.

FigUre 9 | Therapy-adjusted CombiWISE/age submenu within the Shiny web application. This submenu allows the user to enter the patient’s medication history as 
needed for calculation of MS disease severity scale (MS-DSS) in the final tab. The medication history can be edited by adding or removing medications or amending 
the dates of administration. The list of medications only includes those that fulfill criteria for low- or high-efficacy as detailed in a recent meta-analysis of randomized, 
blinded clinical trials of immunomodulatory therapies in MS (14). If a patient has received a drug that is not listed in the drop-down menu, the program will treat this 
medication as zero efficacy in the calculation of MS-DSS.
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FigUre 10 | MS disease severity scale (MS-DSS) submenu within Shiny web application. This submenu allows the user to compute MS-DSS by entering 
information regarding family history and age at disease onset. All other features required for MS-DSS are computed on the server side of the application using the 
previously entered demographic information, medication history, auxiliary and neurological scales, and MRI grades. If the user does not have MRI grades within the 
past year, the application will treat this information as missing and use other available features to compute MS-DSS.
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FigUre 11 | Quality control, help menus, and export within the Shiny web application. (a) If the user enters data that are non-numeric (e.g., ten instead of 10) or 
outside of the scope of the calculation (e.g., 0 second trial), the application will automatically generate a warning message with specifics regarding the error and 
directions on how to proceed. (b) The user must complete the COMRIS (11) and CombiWISE (10) tabs before proceeding to the therapy-adjusted CombiWISE/age or 
MS-DSS tabs. A notice is generated if the user attempts to access these tabs without having at least one entry within the preceding tabs. (c) A pop-up help menu is 
available beside each drop down or text box to assist users who are unfamiliar with the scales. Each help menu displays an image which is an active link to the 
published article from which the scale was derived. (D) When the desired computations are complete, the users can access the “Download Data” menu to export select 
or combined data sets.
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Furthermore, in measurements of disability accumulation, it was 
possible to explain, on average, a larger portion of CombiWISE 
change over time than for EDSS, providing unequivocal evidence 
for the superiority of CombiWISE.

Another source of imprecision comes from assessing DD. There 
is a wealth of knowledge regarding subclinical formation of MS 
lesions (e.g., in patients with radiologically isolated syndrome) 
and equally subclinical loss of neurological functions that a patient 
may not perceive as disability, depending on his/her physical and 
cognitive activity levels. This makes exact determination of MS 
onset impossible. On the other hand, large observational studies 
demonstrated that EDSS disability milestones are accumulated 
generally as a function of age rather than DD (6, 23). This has 
been interpreted as evidence that accelerated aging, rather than 
MS-specific processes, such as inflammation, drive disability 
accumulation in MS. An alternative interpretation, supported 
by migration studies (24), genetic data (2), biomarker studies 
(18), and this paper, is that all MS subtypes represent a single 
disease process. This process is initiated, on average, at the same 
age in late childhood/early adulthood, but with an individually 
variable duration of the subclinical stage. Thus, adjusting dis-
ability measurements for age, rather than DD, lowers the error 
rate and strengthens the predictive power of MS-DSS. Even for 
the ARMSS/MSSS comparison, we observed slightly better per-
formance of ARMSS (which uses age) compared to MSSS (which 
uses DD).

Another apparent source of error stems from the disregard 
of administered therapies in MSSS computation. We utilized a 
regression model from a recent meta-analysis of randomized, 
blinded clinical trials of MS DMTs (14) to adjust disability 
values for prior therapy. This adjustment removed the confound-
ing effects of therapy to provide a better measure of patient 
progression rates. The improvement in correlations between 
measured CombiWISE/age and measured CombiWISE slopes 
versus therapy-adjusted CombiWISE/age and therapy-adjusted 
CombiWISE slopes were only modest. However, when testing the 
GBM model with unadjusted versus therapy-adjusted features, 
the therapy adjustments resulted in a more robust model with 
heightened predictive power. We believe that therapy adjustment 
represents a significant advance to the MS-DSS model, but its 
true value may have been underestimated in the current study. 
Our natural history protocol focuses on diagnostic work-up of 
neuroimmunological disorders, so most relapsing-remitting 
multiple sclerosis patients were untreated at their first clinic 
visit. The second large group of participants in our natural 
history protocol are patients with progressive MS (especially 
untreated primary progressive multiple sclerosis patients) who 
were screened into our progressive MS trials. Thus, this large 
proportion of patients was also mostly untreated. Consequently, 
a relatively small portion of patients underwent adjustments for 
past treatment, and, due to the advanced age of the progressive 
MS cohort, these patients also had no adjustment or only minor 
adjustment for therapy received during the follow-up period. 
Therapy adjustment also allows clinicians (and patients) to use 
the MS-DSS web app to predict average effect(s) on disability 
progression for low- versus high-efficacy therapy in comparison 
to remaining untreated.

The final step in the refinement of MS-DSS was the applica-
tion of unbiased statistical learning. We used features that were 
previously shown to influence MS severity, such as gender and 
smoking. We also tested new features that, based on clinical 
knowledge, we considered likely to influence the rate of MS pro-
gression. Our hypothesis, that an increase in CNS tissue destruc-
tion (reflected by COMRIS-CTD and CombiWISE) will hasten 
disease progression because it limits functional recovery (i.e., 
formation of new synapses/circuits), was strongly supported by 
the GBM relative influence metrics, which selected these features 
above currently known modifiers of MS course. Similarly, delayed 
initiation of treatments was the fourth most important feature in 
GBM model, validating our hypothesis that such delay promotes 
establishment of compartmentalized inflammation and enabling 
us to identify patients with inadequate efficacy of administered 
DMTs. Analogously, the difference between therapy-adjusted 
CombiWISE and measured CombiWISE may reflect the ben-
eficial effect of past treatments and, therefore, identify types of 
MS that are amenable to immunomodulation. It is important 
to recognize that none of the new features had better power in 
predicting future disability progression than therapy-adjusted 
CombiWISE/age. Thus, the new features are important modi-
fiers that strengthen the predictive power of therapy-adjusted 
CombiWISE/age.

We acknowledge the following limitations: (1) our cohort was 
small in comparison to previous studies of MS severity models 
(3, 5) and the length of follow-up was limited. To mitigate this 
effect and to assure general reproducibility, we employed an 
independent validation cohort, not utilized for model develop-
ment. The level of statistical significance in this comparatively 
smaller cohort indicated that, thanks to the high sensitivity of 
CombiWISE, we were not underpowered to detect meaningful 
relationships. (2) We employed a careful partitioning strategy 
described in the methods to balance the distribution of variables 
that we hypothesized a  priori would be important for predict-
ing disease progression. This ensured that the dataset used for 
model construction (and prediction of disease progression) was 
representative of a broad range of subjects. We acknowledge that 
this represents only one of several possible patient partitions. To 
estimate the variability in the model construction using entirely 
random training/validation splits, we considered 5,000 random 
partitions of the training and validation datasets. For each parti-
tion, a GBM model was constructed using the training dataset, 
predictions were made on the validation dataset, and the cor-
relation between adjusted CombiWISE slopes and model predic-
tions were recorded. The resulting distribution of the validation 
correlations from the retrained GBM models demonstrated 
that our obtained result falls in the top 97.1% of the results of 
such random training/validation cohort partitions. The mean 
validation correlation in these randomly re-constructed training/
validation splits was 0.37 ± 0.10, which is still substantially bet-
ter than performance of MSSS or ARMSS and marginally better 
than therapy-adjusted CombiWISE/age. (3) We made multiple 
assumptions in model construction that either generalize or 
oversimplify complex processes that contribute to disease pro-
gression. Nevertheless, the congruency between modeling and 
validation cohorts, and the statistical significance of individual 
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comparisons with MSSS and ARMSS, provides assurance that 
the assumptions introduced in MS-DSS are consistent with the 
biological behavior of the MS disease process. (4) Because our 
dataset lacks a pediatric population, MS-DSS will not reliably 
measure MS progression in patients below age 21. Instead, we 
hope that pediatric MS centers will adopt our methodology to 
devise predictive models for pediatric patients.

We also acknowledge that the current MS-DSS model might 
be further improved by adding biological data. As of this study, 
all models of MS severity, including MSSS, ARMSS, and MS-DSS, 
are based on the behavior of an average MS patient. However, as 
depicted in the Figure 12, behind every statistical average lies a 
distribution (e.g., Gaussian) from which this average is derived. 
The exact location a patient falls on this distribution is deter-
mined by patient-specific biological or environmental factors. 
The wider the spread in this distribution, the more imprecise the 
patient-specific predictions are when derived from a model that 
captures only group behaviors. Therefore, it is not surprising that, 

without inputting patient-specific data (e.g., genotypes, protein, 
and metabolic biomarkers), the prognostic power of MS-DSS can 
be only moderate. Based on the results of this study, we expect 
that inclusion of patient-specific biological features will serve to 
further strengthen the predictive power of MS-DSS. However, 
identification and validation of biological features that predict 
response to treatment or progression rates is missing precisely 
because we have, thus far, lacked a sensitive MS severity scale nec-
essary for generating this knowledge in reasonably sized cohorts.

We have also demonstrated that therapy-adjusted 
CombiWISE/age can be applied “backwards” without any loss 
of sensitivity by collecting CombiWISE measurements at the 
post-treatment stage and adjusting these measurements for 
previous therapeutic history. This allows utilization of existing 
MS sample repositories given that the patients can be called back 
and re-examined. For the patients who cannot be re-examined, 
there are two additional solutions if only SNRS is missing: (1) 
SNRS can be generated retrospectively from a documented 

FigUre 12 | Explanation of additional sources of variation in the MS disease severity scale (MS-DSS) model. Every adjustment we made to the MS-DSS model is 
based on average values from large populations. Underlying each of these statistical averages lies a distribution (e.g., Gaussian) represented by the bell-shaped 
curves. The precise location of a patient within these distributions depends on patient-specific genetic, biological, and environmental factors. We will describe three 
types of theoretical patients that may be highly informative, even though each represents a rare variant. Assume that a patient P1 has precisely average behavior on 
all distributions. S/he will have an average age of multiple sclerosis (MS) onset (tonset), average response to high-efficacy therapy (HE-Th1), and average response to 
low-efficacy therapy (LE-Th3). Furthermore, assume that patient P2 has unusually severe MS behavior, and patient P3 has unusually mild MS behavior. When 
compared to the average patient (P1), P2 experienced MS onset at an early age and did not respond well to high- or low-efficacy therapy; whereas, P3 experienced 
MS onset at a later age and responded well to high- or low-efficacy therapy. Finally, all patients will end within the blue distribution, which comprises all variation 
demonstrated by the green distributions and is, therefore, the broadest. Within this distribution, P1 will fall precisely at the MS-DSS predicted average (peak); 
whereas, P2 will have higher than average MS-DSS predicted disability, and P3 will have lower than average MS-DSS predicted disability. The resulting behavior of 
P2 and P3 within each of these distributions can be attributed to a variety of patient-specific factors that are not included in MS-DSS model, such as genetic 
predisposition to more aggressive (P2) or milder (P3) MS, and environmental factors such as EBV infection, smoke exposure, low vitamin D, obesity, lack of exercise, 
etc. The MS-DSS model cannot make more accurate individual predictions until we understand all genetic, biological, and environmental modifiers and include them 
in the model.
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neurological exam, or (2) if a detailed neurological exam is not 
available, SNRS can be successfully approximated from any 1.5T 
or 3T brain and upper spinal cord MRI using COMRIS-based 
models (11).

The final limitation of MS-DSS, which may hinder its 
widespread acceptance, is its complexity. The user-friendly 
web application that we have developed allows any user, devoid 
of knowledge in mathematics, statistics or programming, to 
derive all scales that we have developed [COMRIS-CTD (11), 
CombiWISE (10) and now MS-DSS]. In addition, the application 
allows clinicians (and patients) to design potential therapeutic 
regimens and then use these data to extrapolate average dis-
ability progression in an untreated versus treated state. For 
COMRIS-CTD, the application utilizes widgets and help menus 
to guide the clinician through semi-quantitative MRI rating, a 
process that can easily be performed by any MS-trained clini-
cian. To compute CombiWISE, the user must input four different 
scales (EDSS, SNRS, T25FW, and 9HPT). The aforementioned 
tabs must be completed to proceed to calculation of MS-DSS. 
If the user fails to complete these tabs, the program will block 
progress through the application until the necessary informa-
tion is entered, as both scales are required for computation of 
MS-DSS. If the user enters MRI data that are within a year of 
the visit date, the application will use this COMRIS data within 
the MS-DSS model. Otherwise, the information will be treated 
as missing data and the computation will proceed using all other 
available features. This process may seem overwhelming to 
clinicians or investigators who are accustomed to only collect-
ing EDSS. Unfortunately, precision cannot be achieved without 
collecting multiple features that together capture the complexity 
of the disease process. EDSS alone cannot be the sole basis of 
a highly reproducible model of MS severity, unless the average 
follow-up spans decades. Unfortunately, with the current motil-
ity of the world-wide human populations, the attrition rates of 
such long-term cohorts are unacceptably high. Also, the cost and 
practicalities of maintaining such large, long-term cohorts are 
exceedingly demanding. Instead, we can achieve progressively 
higher levels of precision if we collect data capable of explaining 
residual variance. Only then can we hope to achieve precision 
that will allow us to learn from smaller cohorts and apply this 
knowledge to individual patients. Precision medicine demands 
precise/complex measurements.

In conclusion, MS-DSS has the potential to correctly identify 
relationships between MS severity and genes, proteins, or metab-
olites in significantly smaller cohorts than required for MSSS 
or its ARMSS analog. While MS-DSS can aid decisions about 

personalized treatments in its current form, future enhancements 
of the model with patient-specific biological data will unques-
tionably strengthen its individualized predictive power.
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