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Traumatic brain injury (TBI) is a multidimensional and highly complex disease commonly 
resulting in widespread injury to axons, due to rapid inertial acceleration/deceleration 
forces transmitted to the brain during impact. Axonal injury leads to brain network 
dysfunction, significantly contributing to cognitive and functional impairments frequently 
observed in TBI survivors. Diffuse axonal injury (DAI) is a clinical entity suggested by 
impaired level of consciousness and coma on clinical examination and characterized 
by widespread injury to the hemispheric white matter tracts, the corpus callosum and 
the brain stem. The clinical course of DAI is commonly unpredictable and it remains a 
challenging entity with limited therapeutic options, to date. Although axonal integrity may 
be disrupted at impact, the majority of axonal pathology evolves over time, resulting from 
delayed activation of complex intracellular biochemical cascades. Activation of these 
secondary biochemical pathways may lead to axonal transection, named secondary 
axotomy, and be responsible for the clinical decline of DAI patients. Advances in the 
neurocritical care of TBI patients have been achieved by refinements in multimodality 
monitoring for prevention and early detection of secondary injury factors, which can be 
applied also to DAI. There is an emerging role for biomarkers in blood, cerebrospinal 
fluid, and interstitial fluid using microdialysis in the evaluation of axonal injury in TBI. 
These biomarker studies have assessed various axonal and neuroglial markers as well 
as inflammatory mediators, such as cytokines and chemokines. Moreover, modern neu-
roimaging can detect subtle or overt DAI/white matter changes in diffuse TBI patients 
across all injury severities using magnetic resonance spectroscopy, diffusion tensor 
imaging, and positron emission tomography. Importantly, serial neuroimaging studies 
provide evidence for evolving axonal injury. Since axonal injury may be a key risk factor 
for neurodegeneration and dementias at long-term following TBI, the secondary injury 
processes may require prolonged monitoring. The aim of the present review is to sum-
marize the clinical short- and long-term monitoring possibilities of axonal injury in TBI. 
Increased knowledge of the underlying pathophysiology achieved by advanced clinical 
monitoring raises hope for the development of novel treatment strategies for axonal 
injury in TBI.

Keywords: traumatic brain injury, diffuse axonal injury, monitoring, neurocritical care, neuroimaging, biomarkers, 
microdialysis
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iNTRODUCTiON

Traumatic brain injury (TBI) is a significant cause of morbidity 
and mortality worldwide (1–5). Mortality due to severe TBI 
can reach 40% with high rates of disability among the survivors 
(6–8). Cognitive, behavioral, and emotional impairments are 
common and particularly disabling post-TBI and can persist 
into the chronic stage (9–12). Widespread injury to the white 
matter tracts, a key feature of TBI, disrupts neuronal networks 
and impairs information processing which contributes to the 
cognitive impairments observed post-TBI (9–11).

Axonal injury was initially described by Strich in 1956, who 
observed diffuse axonal degeneration at autopsy of severe TBI 
patients (13). Axonal pathology was later established as a separate 
TBI entity by Adams and colleagues in 1982 (14). When axonal 
damage occurs in multiple brain locations in clinical TBI, it is 
named diffuse axonal injury (DAI) (15–21).

In the preclinical setting, the term traumatic axonal injury 
has been applied to describe axonal damage, with the term DAI 
used to express its clinical counterpart (5, 19). Thus, DAI is a 
clinical entity characterized by radiological and/or histological 
findings suggestive of axonal pathology at certain predilection 
sites, particularly the gray/white matter interface, the corpus 
callosum, and the brain stem (14, 15). DAI remains a challeng-
ing clinical entity with a frequently unpredictable course and 
outcome. To date, there are limited therapeutic options reflecting 
the incomplete knowledge of the underlying pathophysiology of 
DAI. However, it has been established that axonal injury results 
from a highly dynamic process involving a cascade of events that 
may evolve over time leading to progressive white matter atrophy 
with variable clinical impact (19, 22–24). Therefore, detection 
and monitoring of DAI is relevant from the acute to chronic 
phase, in order to evaluate its severity, seek treatment options 
and better predict clinical outcome.

In this review, an overview of the current clinical possibili-
ties for monitoring of DAI is provided. A literature search was 
performed in PubMed, Scopus and ISI Web of Knowledge. 
Experimental/preclinical studies on axonal injury in TBI were 
excluded from the overview with the exception of those describ-
ing key pathophysiological mechanisms. Articles where the 
injury type was not mentioned, was unclear or encompassing 
only focal TBI were also excluded from the analysis. Articles on 
mild, moderate, and/or severe TBI, DAI, and traumatic axonal 
injury were extracted, further screened and were included if the 
investigated mechanisms involved aspects of axonal/white mat-
ter injury. The literature on mild TBI, considered a diffuse TBI 
subtype with features of axonal and white matter pathology, was 
thus also included in our search.

BiOMeCHANiCS AND STRUCTURAL 
CHANGeS iN DAi

The predominant mechanism in the development of axonal 
injury in TBI is mechanical shearing and stretch forces pro-
duced by inertial acceleration/deceleration stresses to the head 
(25–28) (Figure  1). This inertial loading triggers dynamic shear, 

tensile, and compressive strains within the brain. Consequently, 
certain parts of the brain move at a slower pace relative to oth-
ers, leading to deformation of the brain tissue (17, 29). In the 
preclinical TBI setting, unmyelinated axons sustained more 
injury compared to myelinated ones, suggesting that axons are 
unequally vulnerable (30).

Under normal conditions, brain tissue can withstand stretches 
and easily return to its original geometry without any resulting 
injury. In contrast, when the strain is rapidly applied, the brain tis-
sue loses its plasticity and acts stiffer, becoming more vulnerable 
and brittle (31). In particular, axons in the white matter appear 
poorly prepared to withstand injury from rapid mechanical brain 
deformation at time of TBI (17), resulting in injury to the axonal 
cytoskeleton (17, 32, 33). Nevertheless, the development and 
severity of axonal injury is dependent on both the magnitude and 
rate of strain during impact (17).

Primary axotomy in humans is rare with secondary (delayed) 
axotomy being the most likely mechanism leading to axonal 
disconnection (5, 19, 34, 35). Experimental evidence indicates 
that mitochondrial dysfunction (5, 36), as well as TBI-induced 
inflammatory responses, contribute to the secondary axonal 
injury (5, 37, 38). In addition, impaired axonal transport causes 
axonal swelling over time post-injury, leading to the accumulation 
of numerous potential biomarkers which may then be released 
into the surrounding tissue (see later section of this review).

CLiNiCAL FeATUReS AND 
NeUROCRiTiCAL CARe MONiTORiNG  
OF AXONAL iNJURY

Clinical Characteristics
From a clinical point of view, initial loss of consciousness and 
coma as well as later features such as prolonged vegetative state 
or cognitive impairment can be characteristics of both focal TBI 
and DAI, although may be more frequently observed in the latter  
(29, 39). The presence of a decreased level of consciousness 
and coma is commonly a result of axonal injury in the dien-
cephalon and/or the brain stem (29, 40, 41). In DAI survi-
vors, cognitive dysfunction, mood disorders, and behavioral 
problems are frequent and result in a decreased quality of life 
(17, 29, 42). In particular, memory impairment and problems 
in executive functioning are frequent in DAI (43, 44), and so 
is impaired information–processing speed (45). In addition, 
motor weakness may be caused by injury to the pyramidal tract 
(46), which is more frequently encountered in DAI compared 
to focal TBI (29).

By definition, axonal injury is difficult to diagnose using 
only clinical signs and symptoms. Some clinical features of 
axonal injury are presumably to a large extent related to the 
anatomic distribution of DAI. Based on the limited abil-
ity of computed tomography (CT) and standard T1- and 
T2-weighted magnetic resonance imaging (MRI) sequences 
to precisely detect the underlying axonal injury in TBI, it has 
been difficult to confirm and diagnose DAI with certainty 
(17). However, neuropsychology testing after release from 
hospital can detect cognitive and memory deficits as well as 
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FiGURe 1 | Schematic illustration of monitoring options for axonal injury. Biomechanically, traumatic axonal injury results from head impact with rotational 
acceleration-deceleration forces. Detection and monitoring of axonal injury is possible with numerous advanced neuroimaging techniques such as magnetic 
resonance imaging (MRI), including diffusion tensor imaging (DTI) and magnetic resonance spectrometry (MRS), as well as neuromolecular imaging by single-photon 
emission computed tomography (SPECT) and/or positron emission tomography (PET). Axonal injury also results in the secretion of various biomarkers into the 
interstitial fluid (ISF), cerebrospinal fluid (CSF) and the bloodstream which can be detected in ISF using microdialysis, in CSF by sampling through an external 
ventricular drainage or through lumbar puncture, and in serum by blood sampling. These biomarkers provide clues of temporal patterns of axonal injury and ongoing 
secondary injury processes and may be associated with outcome. Monitoring of axonal injury progression may also be achieved by placement of an intracranial 
pressure (ICP) monitoring device for continuous surveillance of ICP, neurophysiological methods such as electroencephalography (EEG) and periodic assessments of 
neurological status including level of consciousness. Furthermore, the genetic profile may add additional information of risk for secondary injury cascades and 
neurodegenerative development.
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slowed mental processing, characteristics which, when com-
bined with knowledge of the underlying injury mechanisms 
(Figure  1) and neuroimaging findings, may be highly sug-
gestive of DAI. These features can help confirm the diagnosis 
of moderate or severe DAI with a relatively high degree of 
certainty in TBI patients (29, 47, 48).

In addition, advanced neuroimaging has recently enabled 
improved visualization of surrogate markers for the histo-
pathological features of DAI, and for subsequent surveillance 
of secondary injury processes. Injury to white matter tracts 
interconnecting cortical regions, disrupting large scale brain 
networks of particular importance for complex cognitive func-
tions (49, 50), are now possible to estimate using modalities like 
diffusion tensor imaging (DTI) and be correlated with cognitive 

and behavioral deficits observed using neuropsychology testing 
(10, 50, 51).

intracranial Pressure (iCP)  
Monitoring of DAi
Intracranial pressure monitoring remains a cornerstone in the 
management of severe TBI patients, although the incidence of 
raised ICP in DAI is not well established. Maximum ICP has been 
correlated to the number of identifiable white matter lesions on 
MRI (52), and a relationship with the Marshall CT classification 
score and ICP levels was suggested (53, 54). In some studies of 
severe DAI patients, ICP was not elevated (55), whereas others 
found increased ICP in most TBI patients (56–58). In an early 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


4

Tsitsopoulos et al. Monitoring of Axonal Injury in TBI

Frontiers in Neurology | www.frontiersin.org November 2017 | Volume 8 | Article 599

study of ICP monitoring in TBI patients, of whom 61 had a 
normal CT scan, no ICP elevations were observed unless the 
patient was aged >40  years, had unilateral or bilateral motor 
posturing or episodes of systolic blood pressure <90 mmHg (59). 
In contrast, another study found elevated ICP despite the absence 
of mass lesions, midline shift, or compressed basal cisterns on the 
initial CT scan (60). Later, less ICP elevations were observed in 
DAI compared to other TBI subtypes and it was suggested that 
ICP monitoring could be omitted in DAI (55). However, in that 
particular study, 10% of patients had ICP >20 mmHg, and two 
patients required treatment for elevated ICP. Similar patterns of 
transient ICP elevations triggered by neurocritical care events in 
DAI patients were also observed (61). Recently, ICP was analyzed 
in MRI-verified DAI patients, and although persistently raised 
ICP during the first 96 hours of monitoring was not seen, 20% 
of patients required treatment for transient ICP elevations (62).

Thus, the use of ICP monitoring in DAI is controversial (63). 
Although it was suggested that individuals with DAI documented 
by neuroimaging may not require treatment for elevated ICP, high 
ICP values were still frequently encountered in such patients. The 
use of ICP monitoring in comatose patients with initial normal CT 
scan or CT scan with minimal findings has also been questioned 
and recommended only in the presence of radiological worsening 
(64). On the other hand, in comatose patients with diffuse TBI 
with evidence of brain swelling on CT scan, ICP monitoring is 
indicated in the early post-injury period (64). It should be also 
noted that DAI patients with effaced basal cisterns on CT scan 
carry a high risk of increased ICP (58, 65).

In summary, studies evaluating the incidence of elevated ICP 
in DAI patients are scarce and provide contradictory results. 
Repeated clinical examinations and neuroimaging may be pos-
sible alternatives for monitoring of DAI patients when the initial 
CT scan is free from or shows only minimal abnormalities, since 
these patients may have a low risk of intracranial hypertension 
(63). Nevertheless, although it has not been firmly shown that 
outcome is improved, ICP monitoring in DAI patients with 
reduced level of consciousness and pathological findings on 
CT scan is recommended in the initial post-injury period  
(64, 66, 67).

Monitoring of Cerebral Blood Flow (CBF) 
and Brain Oxygenation
Perfusion CT or xenon-enhanced CT (Xe-CT) are both rapid 
and widely available techniques for the evaluation of CBF. For 
Xe-CT, a mobile CT scanner enabling bedside measurement of 
CBF is used (68). Although clinical experience in DAI is still 
limited, significant CBF alterations seem less frequent than in 
focal TBI (69–71). These imaging techniques, however, allow only 
intermittent CBF measurements and transient CBF impairment 
in the intervals between examinations cannot be established. 
Continuous monitoring of CBF is possible using thermal dif-
fusion or laser Doppler methods, both requiring insertion of 
an intraparenchymal probe to assess focal CBF in a small brain 
volume (72, 73). Clinical experience with these techniques is still 
limited, and to date, there are no studies specifically evaluating 
local CBF measurements in DAI.

Cerebral blood flow may also be indirectly estimated using 
jugular venous oxygen saturation (Sjvo2) and brain tissue oxy-
genation (PBto2). Sjvo2 can be measured using a fiberoptic probe 
placed in the jugular bulb and ranges between 55–75% under 
normal conditions. Low Sjvo2 values may suggest hypoperfusion 
and ischemia and episodes of desaturation correlate with poor 
outcome (74). On other hand, high values >75% may represent 
hyperemia and also correlate with brain infarctions, since oxygen 
is not extracted from irreversibly injured brain tissue.

PBto2 measurements require a sensor to be inserted in deep 
white matter, and allow regional measurements of cerebral oxy-
genation. In the uninjured brain, PBto2 values are >20  mmHg 
while critical hypoxia may develop with values <10  mmHg. 
Although reductions of PBto2 have been associated with poor 
outcome in TBI (75), and current treatment recommendations 
suggest interventions when PBto2 falls below 15 mmHg (76), no 
studies have to our knowledge focused on the clinical impact of 
PBto2 in DAI patients.

Available methods for CBF measurements as well as brain 
oxygenation cannot be firmly recommended in DAI in view of 
the limited clinical experience with these methods. Nonetheless, 
they are expected to play a greater role in the future especially in 
multifocal/mixed cases with elevated ICP and impaired CPP as a 
complement to ICP-CPP guided treatment protocols.

electroencephalography (eeG)
In TBI patients, continuous EEG (cEEG) has been proven useful 
for the monitoring of seizure activity and the depth of sedation 
especially in those on barbiturate coma (77, 78). The use of cEEG 
in TBI is also indicated for the detection and treatment of non-con-
vulsive seizures (NCS), a common risk in severe TBI patients (79, 
80). Although only low quality evidence exists, cEEG monitoring 
may be recommended in TBI patients with unexplained behavioral 
alterations or sudden changes in mental state and/or altered con-
sciousness, and to rule out NCS especially in penetrating injuries, 
large intracranial lesions, and depressed skull fractures (79).

There is limited data on the use of EEG/cEEG in the moni toring 
of DAI. In a study of 90 patients after diffuse TBI, where EEG 
recording was applied in the early post-injury phase, the EEG 
patterns correlated with prognosis (81). Specifically, most DAI 
patients with “benign” EEG patterns (stage 1; normal records with 
preserved activity, stage 2; reactive with rhythmic theta activity 
dominant, stage 3; usually reactive spindle coma where sleep pat-
terns of stage 2 demonstrated rhythmic spindles) survived while 
most patients with “malignant” EEG findings (low amplitude 
delta activity, burst suppression pattern, alpha pattern coma) 
died (81). Following blast TBI, typically resulting in a degree of 
white matter/axonal injury, reduced EEG phase synchrony in the 
frontal area was associated with axonal injury on DTI (82, 83).

To date, the role of EEG in the monitoring of DAI has not been 
established. Although there is evidence to support that cEEG 
monitoring may be useful for the diagnosis of NCS in severe 
TBI, there is insufficient data in DAI at present. This monitoring 
modality has also not been shown to improve outcome and/or 
alter treatment in DAI patients. To date, it should primarily be 
regarded as a scientific tool awaiting additional studies evaluating 
its clinical role in the multimodality monitoring of DAI.
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FiGURe 2 | Detection of axonal injury with conventional magnetic resonance imaging (MRI) using different MRI sequences. (A) Fluid-attenuated inversion recovery 
(FLAIR) image depicting non-hemorrhagic diffuse axonal injury (DAI)-associated lesions in the subcortical white matter of the right cerebral hemisphere (arrow).  
(B) Diffusion-weighted image (DWI) depicting non-hemorrhagic DAI-associated lesions in the body and splenium of the corpus callosum. (C) T2*-weighted gradient 
echo (T2*GRE) image depicting hemorrhagic DAI-associated lesions in the right thalamus and putamen (arrow). (D) Susceptibility-weighted image (SWI) depicting 
hemorrhagic DAI-associated lesions in the right mesencephalon (arrow) and in the white matter of right temporal lobe.
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NeUROiMAGiNG

In recent years, advances in neuroimaging have facilitated DAI diag-
nostics as well as allowed for more accurate prognosis and monitor-
ing of ongoing, secondary axonal injury. While image acquisition 
speed, accessibility and accuracy in detecting traumatic intracranial 
hemorrhages make CT the leading neuroimaging modality in 
the acute evaluation of TBI patients, its utility in DAI is limited. 
Although traumatic edema of the brain and petechial hemorrhages 
in the white matter indicate DAI, CT is generally insensitive for 
subtle axonal lesions. Hemorrhagic lesions in deep-seated predilec-
tion sites for DAI such as the corpus callosum and the rostral brain 
stem are rarely seen on CT. In addition, non-hemorrhagic lesions, 
which have been linked to poor outcome (84, 85), are not detect-
able (86). As discussed previously, there is a degree of axonal injury 
caused by the initial impact although most axonal pathology in DAI 
is a delayed secondary event evolving over days to weeks resulting 
in clinical deterioration of the patient. Thus, the admission CT in 
combination with the clinical picture following TBI may indicate 

DAI, but for the confirmation of diagnosis, monitoring of the pro-
gression of axonal injury and adequate prognosis, more advanced 
imaging modalities are needed.

Magnetic Resonance imaging
Magnetic resonance imaging is a more sensitive modality for 
visualization of DAI-associated lesions and can detect micro-
scopic amounts of blood, as well as non-hemorrhagic lesions 
secondary to axonal strain (Figure 2). In addition, MRI provides 
means to assess and visually reconstruct white matter tracts fol-
lowing DAI, with high sensitivity for lesion detection using DTI. 
Furthermore, neurochemical alterations following axonal injury 
can be detected with magnetic resonance spectrometry (MRS).

Conventional MRi Sequences  
for DAi Monitoring
Magnetic resonance imaging sequences sensitive to hemor-
rhagic lesions include T2*-weighted gradient echo (T2*GRE) 
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and susceptibility-weighted imaging (SWI). Both sequences can 
detect microhemorrhages, taking advantage of the paramagnetic 
properties of hemoglobin degradation products. The lesions are 
typically seen as small hypointense foci in DAI predilection sites 
and appear larger than their true size due to the magnetic field 
distortion. Hemorrhagic lesions seem to be fairly stable over 
time although some reduction of lesion numbers may be seen in 
the chronic phase following DAI (84, 87). Adding sensitivity of 
microhemorrhage detection in deep-seated brain regions, SWI has 
emerged as a preferred MRI sequence (88, 89) particularly in brain 
regions such as central brain stem previously difficult to assess (62). 
However, this sequence may be more complicated to interpret, 
since deoxygenated blood in veins can mimic hemorrhagic lesions. 
Nonetheless, lesions seen on SWI sequence correlate strongly to 
outcome (62, 90), in contrast to T2*GRE (62, 87, 91).

The Fluid-Attenuated Inversion Recovery (FLAIR) sequence 
facilitates detection of non-hemorrhagic lesions adjacent to 
cerebrospinal fluid (CSF) spaces. This sequence is useful for 
visualizing axonal injuries in periventricular white matter, the 
corpus callosum and the brain stem (84, 85). However, its capac-
ity to visualize axonal injury is highly dependent on the timing. 
Lesions demonstrated in the acute phase represent tissue edema, 
but some seem to disappear already by 3 months post-injury (84). 
On the other hand, FLAIR lesions represent encephalomalacia 
(softening or loss of brain tissue) or tissue gliosis at the long-term, 
chronic phase in DAI (92).

The diffusion-weighted imaging (DWI) sequence is sensitive 
to the microscopic motion of water molecules (93), allowing for 
excellent detection of non-hemorrhagic lesions following axonal 
shearing. Lesions on DWI seem to correlate with initial glasgow 
coma scale (GCS) score and coma duration in DAI (91), and are 
associated with poor outcome in pediatric TBI (94). Specifically, 
the DWI lesion load in the corpus callosum may be of particular 
importance (85). However, similar to the FLAIR sequence, tim-
ing of the MRI scan is imperative when assessing DWI images 
(95) with the number of lesions being significantly reduced at 
3 months post-TBI (84).

MRI can be difficult to obtain, particularly in the critically ill, 
since patients’ transfer to the MRI facility may be prevented by 
clinical instability from intracranial and/or systemic causes. In 
situations where the time for MRI must for clinical reasons be 
extended beyond the acute phase, hemorrhagic lesions depicted 
in particular on SWI sequence seem to have higher prognostic 
value than other MR sequences. It is notable that conventional 
MRI sequences may still be insensitive to microstructural damage 
to axons and injury to white matter tracts of clinical significance 
can still be missed with this imaging modality (96).

Diffusion Tensor imaging
By using image acquisition in multiple directions, the anisotropic 
diffusion of water molecules can be used to create DTI, provid-
ing anatomical reconstruction images of white matter tracts and 
quantitative measurements of axonal injury (97). DTI is more 
sensitive for DAI than conventional MRI, and can be used to 
visualize ultrastructural changes. By adding post-processing tech-
niques to the DTI data, diffusion tensor tractography can visualize 
the three-dimensional anatomy of white matter tracts (98, 99). 

Reduction of fractional anisotropy (FA) and increased diffusivity 
are observed following DAI in numerous studies (100–102), they 
correlate to TBI severity (103, 104) and are strongly associated 
to cognitive and behavioral deficits in both adult and pediatric 
patients (10, 105–110). In addition, DTI detection of axonal injury 
has been cross-validated using microdialysis (MD), where FA 
reduction correlated to interstitial fluid (ISF) tau levels (111). As for 
monitoring of axonal integrity, DTI parameters have shown signs 
of ongoing microstructural changes long after the acute phase  
(105, 107, 112–114). Longitudinal studies suggest continuous 
changes of DTI parameters, where FA decreases over time while 
diffusivity increases following DAI (102, 112–114). Measurable 
deterioration of white matter integrity continues beyond 24 months 
post-injury (105, 112–115), but may stabilize thereafter (105, 115).

In summary, DTI is a robust tool to visualize posttraumatic 
white matter abnormalities. However, variations in data 
acquisition, analysis techniques, spatial location of investigated 
structures, lack of correlation with clinical findings, and costs 
(116) still impede generalized conclusions of its applied utility in 
DAI. Moreover, DAI lesions seen on DTI are currently used pre-
dominantly for diagnostic purposes since patient management 
remains predominantly symptomatic awaiting the implementa-
tion of novel pharmacological treatments.

Magnetic Resonance Spectroscopy
Magnetic resonance spectroscopy takes advantage of the chemical 
shift, a phenomenon caused by variations of proton resonance 
due to the local chemical environment. Although MRS has a 
low spatial resolution in comparison to MRI, it provides a mean 
of detecting and quantifying neurochemical alterations (117). 
N-acetyl aspartate (NAA), a marker for neuronal and axonal 
integrity found in high concentrations in neurons (118), and 
choline (Cho), which is increased after damage to cell membranes 
(119), are well-studied metabolites in relation to TBI. In most 
studies, decreased NAA and increased Cho is observed and in 
mild TBI, the NAA and Cho levels can appreciate axonal injury 
undetected by conventional MRI (120–124). These MRS findings 
are associated with neurocognitive deficits (125–127) and global 
outcomes (120, 121, 128). Longitudinal studies suggest recovery 
of decreased NAA levels in patients with mild DAI and/or better 
outcomes, implying marginal dysfunction of neurons and restora-
tion of function over time (120, 122). However, complete recovery 
of NAA levels may also be possible following severe DAI (129).

Thus, MRS provides a mean for detecting and monitoring 
alterations in brain chemistry following DAI, although its clinical 
utility in DAI patients has still not been well defined. This is likely 
due to the lack of standardized protocols for measurements and 
interpretation of metabolite concentrations, a shortcoming that 
needs to be addressed in future studies.

Neuromolecular imaging
Single-Photon Emission Computed Tomography
Single-photon emission computed tomography (SPECT) uses  
radiopharmaceutical agents to produce images of physiologic  
or pathological processes. For TBI, [99mTc] Hexamethylpropyl-
enamine oxime (HMPAO) and [99mTc] Ethylcisteinate dimer 
are the most widely used agents for evaluating regional cerebral 
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blood flow (rCBF) and indirectly, regional cerebral metabolism 
(130). Following DAI, decreased rCBF commonly involving the 
cingulate gyrus revealed signs of frontal lobe dysfunction, despite 
the absence of distinct anatomical abnormalities (131, 132). One 
plausible explanation to these alterations is deafferentation of 
interconnecting white matter due to widespread axonal damage, 
causing reduction of metabolic activity and eventually neurocog-
nitive deficits (133, 134).

Although SPECT cannot be independently used in the evalu-
ation of DAI due to limited image resolution and sensitivity, it 
provides an available and affordable adjunct measure to other 
anatomical imaging modalities of white matter injury.

Positron Emission Tomography (PET)
Imaging of physiologic and biochemical processes following 
DAI is also possible by PET, using radiopharmaceutical agents 
labeled with positron-emitting radioisotopes such as fluorine-18 
[18F], carbon-11 [11C], and oxygen-15 [15O]. The [18F]-labeled 
fluorodeoxyglucose (FDG) PET is widely used in brain imag-
ing to measure local glucose metabolism, and thus regional 
neuronal activity. Similarly, FDG PET studies of DAI patients 
have revealed regional hypometabolism in medial frontal lobe 
structures including the cingulate gyrus (134), findings associ-
ated with neuropsychological and cognitive symptoms (134, 135). 
Additionally, neuroinflammatory alterations can be studied with 
[11C] PK11195, reflecting microglial activation (136). Using this 
tracer, widespread neuroinflammation post-TBI was observed in 
subcortical structures of DAI patients (136, 137). Furthermore, 
amyloid binding tracers commonly used in Alzheimer’s dis-
ease have recently established PET as a method for imaging 
of amyloid-β (Aβ) also in TBI (138, 139). Aβ retention signals 
were assessed in nine TBI patients, of which four had DAI, and 
appeared to peak within the first week post-injury (138) and cor-
relate with white matter damage. However, in the chronic stage, 
Aβ retention signals were also increased with longer time from 
the initial injury (139).

Future studies will provide knowledge on the topographical 
distribution and temporal patterns of Aβ deposition following 
axonal injury, and their relation to the development of neurode-
generative diseases. Although PET scan is a powerful tool which 
offers superior image resolution, sensitivity, and quantification of 
regional radioactivity concentrations compared to SPECT (140), 
its main disadvantage remains the requirement of an on-site 
cyclotron which considerably increases cost and limits availability.

FLUiD AND STRUCTURAL BiOMARKeRS

Per definition, biomarkers are molecules measurable in biological 
fluids and structures given that the measurable value is related 
to a biological or pathological process in the body (141, 142) 
(Table 1).

Biomarkers may be subdivided into four categories: diagnostic, 
prognostic, predictive, and pharmacodynamic and can potentially 
be used to examine injury severity, monitor pathophysiology of 
injury, explain adaptive and recovery processes, guide manage-
ment, predict response to treatment and estimate prognosis 
following DAI/TBI (141–143). Biomarkers can thus be considered 

a reflection of the mechanisms resulting in axonal injury, where 
the underlying structural changes are to a large extent related to 
the activation of the calpain and caspase enzymes. These enzymes 
belong to the cysteine protease family and play an important role 
in cell necrosis and apoptosis (144–150). They are activated by 
calcium influx leading to cytoskeletal disruption including an 
impaired axoplasmic transport, axonal swelling and eventually 
axonal transection/lysis (35, 151–154).

Thus, following TBI and in particular following axonal injury, 
a delayed axonal transection may occur resulting in the release 
and accumulation of various biomarkers which can be detected 
in plasma, CSF, and ISF using cerebral microdialysis (MD) (141, 
155) and can, therefore, be used for monitoring. Biomarkers 
reviewed more extensively below are neurofilaments, tau, 
Spectrin breakdown products (SBDP) and Aβ and are summa-
rized in Tables 1 and 2.

NFL
Neurofilaments (NF) are important components of the axonal 
cytoskeleton, mainly involved in synapses and neurotransmis-
sion (156). They represent intermediate neuronal filaments 
and include three major subunits: neurofilament light (NF-L), 
neurofilament medium and neurofilament heavy chain (NF-H) 
(156). The latter becomes phosphorylated (pNF-H), likely by 
TBI-induced calcium influx, which can alter axonal integrity 
(156). Of the three subunits, NF-L is rapidly degraded following 
axonal injury (157) making it a rather sensitive and specific bio-
marker for the detection of injured axons (5, 141, 158). Following 
axotomy, phosphorylated neurofilaments (pNF-H) are released 
in CSF and blood, correlating with injury severity and outcome 
both in the pediatric and adult population (159, 160).

Neurofilament light fragments can also be identified in both 
blood and CSF in TBI (143, 161, 162). Following mild and repeti-
tive impacts to the head like those occurring in contact sports 
such as boxing, American football and ice hockey, increased 
levels of NF-L may be associated primarily with injury to long, 
myelinated axons (8, 162–165). Recently, very high levels of NF-L 
compared to controls were found in 10 patients with impaired 
level of consciousness following TBI, with the samples taken 
at least 10  months following injury, results suggesting ongoing 
axonal degeneration (166).

Increased serum and CSF NF-L levels in TBI patients did also 
correlate with clinical outcome although without any predictive 
value for DAI (167). In another study that included 72 patients 
with severe TBI (of which 33 had DAI), initial NF-L levels 
independently predicted clinical outcome (168). Additionally, in 
patients with severe DAI, a 30-fold increase in serum NF-L was 
recently found (169).

Repeated biomarker sampling during the course of the disease 
as well as the correlation with advanced neuroimaging is expected 
to better discern the role of neurofilaments in DAI, their contri-
bution in the pathophysiology of DAI and their prognostic value 
on outcome.

Tau
Tau is a structural protein with six isoforms in humans and is a 
normal constituent of axons. Four distinct isoforms of tau are 
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TABLe 1 | Blood and cerebrospinal fluid (CSF) levels of common axonal injury biomarkers (neurofilament, tau, SBDP and amyloid-β) in clinical TBI.

Reference Biomarker N Type of injury Compartment Biomarker levels—
control group

Biomarker levels—TBi Major findings

Zurek et al. (159) pNF-H 49 Pediatric severe 
TBI (DAI n = 9)

Blood N/A TBI: 12 (12–1,482) pg/ml Increased levels in DAI
DAI: 159 (12–867) pg/ml

Al Nimer et al. (167) NF-L 182 Mild: n = 15 Blood, CSF Serum: 7.9 ng/l Serum: 400 
(181–865) ng/l

Serum NF-L correlated 
negatively to outcome in all TBI 
patients. No predictive value of 
NF-L on outcome in DAI  
patients

Moderate: n = 39 CSF: 138 ± 31 ng/l CSF: 7,026 
(2,610–19,204) ng/lSevere: n = 128 

(DAI: n = 40)

Ljungqvist et al. (169) NF-L 9 DAI Blood 10.8 ± 5.4 pg/ml 347.12 ± 220.65 pg/ml 30-fold increase of NF-L in DAI. 
NF-L levels were related to DTI 
parameters

Zetterberg et al. 
(163)

NF-L 14 Amateur boxers CSF ≤125 ng/l 845 ± 1,140 ng/l Increased in boxers, remained 
elevated at 3 months

Neselius et al. (164) NF-L 30 Olympic boxers CSF 135 ± 51 ng/l 532 ± 553 ng/l Increased in >80% of boxers

Shahim et al. (165) NF-L 31 Professional ice 
hockey players

CSF 238 (128–526) pg/ml 410 (230–1,440) pg/ml Increased levels in players with 
PCS more than 1 year

Shahim et al. (168) NF-L 72 Severe TBI  
(DAI: n = 33)

CSF, blood In CSF not specified In CSF not specified Increased serum levels in TBI 
and predicted poor outcome. 
Similar dynamics in blood and 
CSF

Blood: 13  
(11–17) pg/ml

Blood (GCS 6–8): 196 
(89–413) pg/ml; (GCS 
3–5): 107 (67–190) pg/ml

Shahim et al. (162) NF-L 49 Amateur boxers 
(n = 14)

Blood 9 pg/ml (IQR 7–14) Boxers: 22 pg/ml (IQR 
18–34)

Marked increase in boxers 
7–10 days after bout. Highest 
levels in hockey players at  
144 h post-concussion

Professional 
hockey players 
(n = 35)

Hockey players: Elevated 
values compared to 
controlsb

Bagnato et al. (166) NF-L 10 Severe, persisting 
DOC following 
severe TBI

CSF 1,173 pg/ml (670–3,643) 4,458 ng/ml (695–23,000) Very high levels of NF-L 
compared to controls 
suggesting possible  
ongoing axonal degeneration 
up to 19 months following 
severe TBI

Bazarian et al. (182) c-tau 35 Mild TBI Blood N/A 4.85 ± 9.23 ng/ml C-tau unreliable as a predictor  
of 3-month outcome

Bulut et al. (177) t-tau 60 Mild TBI Blood 86 ± 48 pg/ml 188 ± 210 pg/ml Levels in high-risk patients 
(GCS score 14.3 ± 0.73) were 
significantly higher than in low-
risk patients (14.9 ± 0.33)

Shahim et al. (176) t-tau 28 Concussed 
professional ice 
hockey players

Blood Pre-season: 4.5 pg/ml 
(0.06–22.7)

Post-concussion: 
10.0 pg/ml (2–102)

Peak t-tau immediately 
post-concussion

Shahim et al. (172) tau-A, tau-C 28 Concussed 
professional ice 
hockey players

Blood Values are given in 
graphs (no average)

Values are given in graphs 
(no average)

No significant increase in tau-A 
levels but elevated tau-C levels 
post-concussion compared 
to pre-season. Tau-A levels 
correlated with the duration of 
post-concussive symptoms.

Franz et al. (207) t-tau 29 Severe TBI  
(DAI: n = 7)

CSF (lumbar, 
ventricular)

193 pg/ml (16–326), 
109 pg/ml (69–159)

1,756 pg/ml (35–5,720) Increased tau levels early post-
TBI; peak in second week

Zetterberg et al. 
(163)

t-tau, p-tau 14 Amateur boxers CSF t-tau: 325 ± 97.7 ng/l t-tau: 449 ± 176 ng/l Increased levels of t-tau in 
boxers after a bout mainly  
in those who received many or 
high-impact hits, resolved at 
3 months

p-tau: 46.4 ± 14.5 ng/l p-tau: 37.9 ± 10.2 ng/l

Neselius et al. (164) t-tau, p-tau 30 Olympic boxers CSF t-tau: 45 ± 17 ng/l t-tau: 58 ± 25 ng/l Increased levels of t-tau in 
>80% of boxers. Increasing 
levels during first 6 days, 
resolved after 14 days

p-tau: 23 ± 6 ng/l p-tau: 21 ± 7 ng/l
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Reference Biomarker N Type of injury Compartment Biomarker levels—
control group

Biomarker levels—TBi Major findings

Oliver et al. (178) t-tau 19 American football 
players

Blood t-tau: 3.7 ± 0.9 pg/ml t-tau: 3.0 ± 1.2 pg/ml No difference between players 
and non-contact swim athletes 
following a season

Pineda et al. (193) SBDP 41 Severe TBI 
(Diffuse TBI/DAI: 
n = 23)

CSF Arbitrary units Arbitrary units SBDP150 elevated up to 24 h, 
SBDP145  
up to 72 h, SBDP after 24 h 
post-injury

Brophy et al. (194) SBDP 38 Severe TBI  
(DAI: n = 20)

CSF Arbitrary units Arbitrary units SBDP150 and SBDP145 
elevated 24–72 h post-injury, 
SBDP120 elevated 24–120 h 
post-injury

Mondello et al. (185) SBDP 40 Severe TBI  
(DAI: n = 14)

CSF SBDP145: 0.52 ± 0.22 
ng/mla

SBDP145:14.42 ± 0.91 
ng/ml

Higher SBDP145 and 
SBDP120 in TBI patients, 
particularly in patients who diedSBDP120: 1.21 ± 0.48 

ng/mla
SBDP120: 6.05 ± 0.28 
ng/ml

Siman et al. (190) SNTF 17 Mild TBI Blood Arbitrary units Arbitrary units Associated with DAI, as 
evaluated by DTI, and  
cognitive impairment at  
3 months

Siman et al. (191) SNTF 28 Professional ice 
hockey players

Blood Arbitrary units Arbitrary units Elevated levels correlated with 
concussion and delayed return 
to play

Raby et al. (206) Aβ40, Aβ42 6 Severe DAI CSF Aβ40: 1.59 ±  
0.53 ng/mg

Aβ40: 0.94 ± 0.08 ng/mg Aβ42 increased in CSF by TBI 
compared to controls, peaked 
in week 1, declined over next 
2 weeks

Aβ42: 0.38 ±  
0.2 ng/mg

Aβ42 1.17 ± 0.11 ng/mg

Franz et al. (207) Aβ42 29 Severe TBI  
(DAI: n = 7)

CSF [lumbar 
(n = 14), 
ventricular 
(n = 15)]

DM: 284 pg/ml 
(172–564)

167 pg/ml (120–477) Low CSF levels associated with 
a poor outcome

HD: 388 pg/ml 
(256–768)

Zetterberg et al. 
(163)

Aβ40, Aβ42 14 Amateur boxers CSF Aβ40: 
19,400 ± 5,050 ng/l

Aβ40: 
19,300 ± 2,740 ng/l

Aβ levels not significantly 
altered

Aβ42: 773 ± 114 ng/l Aβ42:858 ± 128 ng/l

Olsson et al. (204) Aβ42 28 Severe DAI CSF, blood N/A CSF: peak 129 
(60–171) pg/ml (d5–6)

Levels increased stepwise, 
peak day 5–6

Plasma: peak 57 
(37–68) pg/ml (d5–6)

Mondello et al. (205) Aβ42 12 Severe TBI  
(DAI: n = 6)

CSF, blood CSF: 537.6 pg/ml 
(350.8–710)

CSF: 105.9 pg/ml 
(46.0–216.2)

Decreased in CSF and 
increased in plasma post-TBI

Plasma: 7.3 pg/ml 
(6.1–8.7)

Plasma: 17.0 pg/ml 
(14.7–28.6)

Shahim et al. (165) Aβ42 31 Professional ice 
hockey players

CSF 1,094 (845–1,305) pg/ml 1,000 (757–1,040) pg/ml Lower levels in PCS

Shahim et al. (210) Aβ40, Aβ42 28 Professional 
athletes

CSF Exact values not 
reported

Exact values not reported Lower values in athletes with 
repeated concussions

Articles including patients with diffuse axonal injury (DAI) and mild TBI where axonal biomarkers were measured are presented. Data are given as mean ± SD, median and range as 
appropriate.
DM, patients with dementia; DOC, disorder of consciousness; HD, patients with headache; ICP, intracranial pressure; IQR, Interquartile range; NF-L, neurofilament- Light; PCS, post-
concussion syndrome; pNF-H, phosphorylated neurofilament-heavy; SBDP, spectrin breakdown products; SNTF, spectrin N-terminal fragment; TBI, traumatic brain injury; UCH-L1, 
ubiquitin carboxy-terminal hydrolase L1; DTI, diffusion tensor imaging.
a145 and 150 kDa αII-spectrin breakdown products.
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usually applied in biomarker studies; total-tau (t-tau), cleaved 
microtubule-associated tau (c-tau), phosphorylated tau (p-tau), 
and the recently discovered tau-A (155, 170–172). Tau has been 
linked to axonal damage following TBI (141, 173). Specifically, 

the presence of c-tau in CSF is a highly sensitive indicator of 
axonal injury (35).

In patients with DAI, t-tau and p-tau levels also increase 
rapidly within hours after injury, especially in CSF (35, 170, 174). 

TABLe 1 | Continued
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TABLe 2 | Results from cerebral microdialysis (MD) studies of commonly used biomarkers for monitoring axonal injury in clinical DAI.

Reference Biomarker N Type of 
injury

Biomarker levels— 
control group

Biomarker levels—TBi Major findings

Magnoni et al. (218) NF-L 16 Severe TBIa 104 pg/ml [0–1,201 
(seemingly normal cortex)]

1,555 pg/ml [range 1,152–
2,012 (pericontusional)]

Higher levels in focal injury and 
pericontusional areas than in DAI

Marklund et al. (217) t-tau 8 Severe TBIb No controls available. Level 
of detection 75 pg/ml

2,881 ± 1,774 pg/ml 
(121–6,500)

Higher levels in focal/mixed TBI  
than in DAI

Magnoni et al. (218) t-tau 16 Severe TBIa 3,469 pg/ml [1,684–8,691  
(n seemingly normal cortex)]

15,950 pg/ml [11,390–27,240 
(pericontusional)]

Higher values in focal injury/pericontusional 
than in DAI

Magnoni et al. (111) t-tau 15 Severe TBIc 32 pg/ml (detection level) 12,813 pg/ml (4,858–18,744) 
first 24 h

High initial t-tau levels declined  
over time, correlated with DTI

Marklund et al. (217) Aβ42 8 Severe TBIb 15.6 pg/ml (detection level) 167 pg/ml (31–295) Higher levels of Aβ42 in DAI compared  
to focal/mixed TBI patients

Magnoni et al. (218) Aβ1-x 16 Severe TBIa 1,023 pg/ml [778–1,968 
(seemingly normal cortex)]

270 pg/ml 
[83–417(pericontusional)]

Lower Aβ levels in focal injury/ 
pericontusional than in DAI

Magnoni et al. (111) Aβ1-x 15 Severe TBIc 4.9 and 7.81 pg/ml 
(detection level)

756 pg/ml (575–1,079) first 
24 h

Low initial Aβ levels that  
rose over time

Helmy et al. (219) 42 cytokines 12 Severe DAI N/A N/A Cerebral production of numerous  
cytokines, of which 16 peaked at defined  
time points post-injuryd, was detected

Helmy et al. (222) 42 cytokines 20 Severe DAI N/A N/A Treatment with rhIL1ra influences microglial  
phenotype as evaluated by MD cytokines

Only MD studies where data is available for DAI patients are included.
Aβ, Amyloid-β; DAI, diffuse axonal injury; DTI, diffusion tensor imaging; IL, interleukin; N/A, non applicable; NF-L, neurofilament light; rhIL1ra, recombinant human interleukin-1 
receptor antagonist; TBI, traumatic brain injury.
aNine were classified as DAI according to Marshall CT classification.
bThree patients had DAI.
cMost patients (11/15) had DAI according to Marshall CT classification. No MD catheters were placed in pericontusional areas.
dThese cytokines included IL10, IL12p40, IL12p70, IP10, monocyte chemotactic protein-1, monocyte chemoattractant protein 3 (MCP3), monocyte inflammatory protein 1a (MIP1a), 
MIP1b, platelet derived growth factor AA (PDGF-AA), transforming growth factor-a (TGF-a) and vascular endothelial growth factor (VEGF).
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Increased CSF levels of t-tau were found in boxers after repetitive 
head injury, although this increase was modest compared to that 
of NF-L (163, 164).

The Simoa platform has shown excellent analytical sensitiv-
ity for tau in serum (8, 175). Serum c-tau levels are increased 
but at much lower levels than in CSF and have been used as an 
indicator of blood–brain barrier damage (35). Compared to 
off-season levels, serum t-tau levels were elevated in ice hockey 
players sustaining a concussion, with the highest levels detected 
immediately after injury (141, 176). In mild TBI, t-tau levels were 
found to be higher in high-risk patients with greater likelihood 
for TBI-related complications than in low-risk individuals (177). 
However, no difference in serum tau levels was recently noted in 
American football athletes (178).

In DAI, CSF c-tau correlated negatively with the degree of 
clinical improvement (170, 179, 180). Furthermore, increased 
serum c-tau levels were associated with poor outcome in patients 
with mild TBI (181). In contrast, another study found that c-tau 
is not a reliable predictor for 3-month outcome following mild 
TBI (182). In concussed professional ice hockey players, the 
levels of the newly discovered biomarker tau-A correlated with 
the duration of symptoms post-injury, and may possibly predict 
return to play (172).

The association of elevated tau levels with axonal damage is 
well established. Especially in severe DAI, high tau levels are asso-
ciated with worse outcome. Ongoing and future research efforts 

need to focus more on its possible correlation with the extent of 
injury, interaction with other blood and CSF biomarkers, long-
term sequelae, and clinical outcome.

Spectrin Breakdown Products
Spectrin is a cytoskeletal protein playing an important role in 
the cytoskeletal structure and maintenance of plasma membrane 
(183). In DAI, spectrin is proteolytically cleaved by calpain, 
resulting in cytoskeletal destruction (184). SBDP are increased 
in human CSF and blood following severe TBI and may predict 
injury severity and outcome (5, 185).

In rodents, SBDP are detected within minutes after DAI 
(186–188). In human TBI, αII-spectrin N-terminal fragment 
(SNTF) accumulates in injured axons, rises in serum as early as 
1 h after mild TBI and correlates with cognitive impairment (141, 
189–191). Importantly, SNTF immunoreactive axons have been 
also identified both in mild and severe TBI (192). Serum SNFT 
levels were also increased early after concussion in ice hockey 
players, particularly in more severe injuries (141, 191).

In severe TBI patients, elevated levels of calpain-mediated 
150- and 145-kDa SBDP in CSF were found 24–72 h post-injury  
(193, 194) which were associated with the initial injury sever-
ity and 6-month outcome (193). In addition, CSF calpain- 
mediated SBDP levels correlated positively with the severity 
of injury, lesion size, and behavioral deficits in severe TBI, 
suggesting that CSF SBDPs could be used to evaluate the 
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magnitude of axonal injury and predict functional deficits 
(193).

Spectrin breakdown products are relatively new biomarkers 
detected in serum and CSF. Therefore, ample evidence on their 
significance in the clinical setting is lacking. However, avail-
able data suggests that they represent promising molecules in 
determining the extent of axonal injury and its association to 
outcome.

Amyloid-β Peptides
Axonal injury in TBI has been characterized by amyloid pre-
cursor protein (APP) immunohistochemistry, accumulating 
at sites of axonal transport failure (8, 195, 196). The presence 
of APP-positive axonal bulbs and grossly swollen axons are 
main findings in DAI (195), observed within hours in severe 
TBI patients (197). However, APP is not a specific diagnostic 
marker of DAI, since it may also be detected in non-traumatic, 
ischemic, axonal injury and in multiple sclerosis plaques (35, 
198–200). APP co-accumulates with the enzymes necessary 
for its cleavage to Aβ peptides, such as presenelin-1 and beta-
site APP-cleaving enzyme (19, 201, 202). Conversely, notable 
amount of Aβ has been repeatedly found in axonal bulbs (17, 
32, 201–203).

By cleaving APP, the Aβ peptides Aβ40 and Aβ42, the sub-
strates for Aβ aggregates/plaques also observed in Alzheimer’s 
disease, are produced (19). APP and Aβ species are rapidly detect-
able following TBI in plasma (204, 205), CSF (205–207) and ISF  
(208, 209). In severe TBI, monomeric Aβ levels in ventricular CSF 
were increased stepwise until 5–6 days after injury, although not 
in plasma (204). Conversely, a more recent study using an ultra-
sensitive digital immunoassay evaluating 12 severe TBI patients 
of which 6 had DAI, reduced CSF levels of Aβ42 direct after injury 
with lower levels in patients who died 6 months post-injury were 
observed. In the same study, plasma levels were increased with 
lower levels detected in surviving patients (205). The differences 
in analytical methods may partly explain the discrepancy in the 
results between these studies. Additionally, the latter study also 
included patients with focal TBI, although no difference in Aβ 
levels was observed between TBI subtypes (205). Similarly, lower 
CSF levels of Aβ40 and Aβ42 were recently detected in profes-
sional athletes following concussions (165, 210).

An increased interest in soluble intermediary Aβ oligomers/
protofibrils as the pathogenic form of Aβ has emerged since they 
are likely to contribute to the development of Alzheimer’s disease 
(211, 212). Aβ oligomers have been detected in lumbar CSF from 
severe TBI patients, were elevated in patients with poor neurologi-
cal outcomes and were negatively correlated to CSF Aβ42 (213). 
Therefore, it is plausible that aggregation of Aβ into oligomers 
may explain the reduced levels of CSF Aβ seen in TBI. However, 
the corresponding brain tissue levels of soluble intermediary Aβ 
species and their role in human DAI remains to be established. 
In addition, these potentially neurotoxic species could represent 
a pathophysiologic link between DAI and Alzheimer disease-like 
dementia.

The association between TBI and the development of neuro-
degenerative diseases, in particular Alzheimer’s disease, has been 
repeatedly demonstrated (24, 214). Longitudinal monitoring of 

Aβ dynamics may provide further knowledge of neurodegenera-
tive processes following DAI. Aβ42 levels, which can be monitored 
in both CSF and blood are likely the most promising biomarker 
from the amyloid family for detecting the extent and severity of 
DAI. In addition, specific monitoring of potentially neurotoxic 
oligomeric and protofibrillar Aβ species will become possible 
using newly developed antibody-based PET imaging (215). This 
will further increase the understanding of the potential link 
between DAI and neurodegeneration.

Biomarkers and Cerebral Microdialysis
Cerebral MD is a neurocritical care monitoring technique 
predominantly used in patients with severe TBI and subarach-
noid hemorrhage (Table 2). Its main advantage is that it allows 
continuous neurochemical monitoring of factors located in the 
extracellular, interstitial fluid (216).

Using MD on 8 severe TBI patients, particularly high ISF Aβ42 
values were found in the three DAI patients (217). In another 
MD study, in nine DAI patients the initial Aβ levels inversely 
correlated with tau levels in ISF (218), suggesting that low Aβ 
levels in regions with elevated tau may be due to reduced synaptic 
activity after axonal injury (218).

Tau was also evaluated by MD in eight severe TBI patients 
(217). Although mean t-tau levels were clearly above the detection 
limit in the first days after injury, patients with focal/mixed injury 
(n = 5) had lower levels compared to those with DAI (n = 3). 
Conversely, in a previous MD study, higher tau values were 
observed pericontusionally in focal TBI patients when compared 
to tau levels obtained from DAI patients with the MD catheter 
placed in structurally normal frontal cortex. Early tau levels were 
inversely correlated with the initial Aβ levels (155, 218). In this 
study, NF-L levels were also higher in pericontusional tissue 
(218). Further, in a study of 15 patients with severe TBI (11/15 
had DAI), initially high t-tau levels in ISF declined over time and 
a correlation with DTI and reduced brain white matter integrity 
in the region of MD sampling was observed, suggesting that 
increased tau levels reflected axonal injury (111).

The cytokine response was evaluated by MD in patients 
with severe DAI suggesting that cytokine production is highly 
compartmentalized with significant differences between brain 
parenchymal and systemic concentrations (219–222). Several 
cytokines are produced in different phases of the inflammatory 
response (220). It has been also shown that in DAI patients, 
treatment with an interleukin receptor-1 antagonist increased 
microglial activation, altering the cytokine profile to one consist-
ent with an M1 microglial phenotype, providing proof of concept 
that an anti-inflammatory treatment administered systemically 
can alter cerebral cytokine productions in human TBI (222). 
These data suggested that the patterns of cytokine release in ISF 
are promising targets for biomarker research in DAI.

Following DAI, markers analyzed in MD samples indicating 
acute and chronic neuroinflammation may potentially be used 
to guide treatment, as measures for pharmacological response, 
and/or for tissue outcome. Specifically, MD may aid in detecting 
factors related to the progression of the disease and in the under-
standing of the pathophysiology of axonal injury. Therefore, it 
is likely that data from MD, in combination with widely used 
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measures such as ICP-CPP guided monitoring and protocols, 
will contribute to the understanding of the pathophysiology of 
DAI and potentially aid in evaluating novel pharmacological 
treatments.

However, MD is time consuming, usually used for low-
molecular weight molecules and frequently characterized by high 
variability and lack of standardization. In addition, MD remains 
a predominantly focal measurement technique. To date, there is 
insufficient data arguing for MD to be used as a clinical decision 
tool for DAI patients and should rather be considered an integral 
part of the multimodality monitoring during neurocritical care as 
well as a research tool.

Other Biomarkers
There are numerous additional biomarkers associated to CNS 
injury that can potentially be related to axonal injury. Examples 
of such biomarkers are Glial Fibrillary Acidic Protein, ubiquitin 
carboxy-terminal hydrolase L1 myelin basic protein, microtu-
bule-associated protein 2, protein S-100B and neuron-specific 
enolase, among others (5, 35, 141–143, 223–228). Especially 
the astrocytic protein S-100B is a promising biomarker across 
all injury severities, with higher S-100B levels observed in 
focal compared to diffuse TBI (229, 230). Moreover, it has been 
shown that S-100B correlates with Marshall CT classification 
scores (231). Furthermore, following TBI, neuroinflammation 
may as previously noted play an important role as a key sec-
ondary injury factor (141, 232). Specifically, it has been repeat-
edly shown both in the experimental and clinical setting that 
cytokines such as Tumor Necrosis Factor-α and Interleukins 
(ILs) 1β, 6, 8, and 10 are increased following TBI both in blood 
and CSF (233).

Since the above mentioned biomarkers are not specific for 
axonal injury, at present, their elevations in CSF or serum should 
be interpreted with caution from both the diagnostic and predic-
tive perspective with regards to DAI.

Limitations of Biomarkers
Although considerable progress has been made in the recent 
years in research, the quest for TBI-specific biomarkers contin-
ues. The currently used biomarkers commonly have different 
specificity- and/or sensitivity, limited availability for bedside 
analysis and use in daily practice as well as variable half-lives. 
Moreover, some can also be released from other organ systems 
during different disease or injury processes.

Biomarkers obtained from CSF and ISF are theoretically 
considered better and more reliable sources compared to blood 
biomarkers. Therefore, it is preferable to obtain samples from 
these compartments whenever possible. However, in particular in 
mild and moderate TBI, there is generally no clinical indication 
for CSF and, for obvious reasons, ISF sampling by invasive means. 
On the other hand, blood samples are easily accessible in almost 
every TBI patient.

Nevertheless, important issues relevant to TBI-related blood 
biomarkers include their relatively low concentrations, pro-
teolytic degradation, the requirement of carrier proteins and the 
different permeability across the blood–brain barrier for certain 
biomarkers (141).

Standardization and validation of biomarker levels are other 
important issues since different methods of analysis, prepara-
tion and sample quality can provide different results among 
laboratories and centers which can cause problems during the 
interpretation and comparison of results (234). As the field of 
biomarker research is expanding, CNS sensitivity and/or speci-
ficity increases their importance. Analysis of many currently 
used biomarkers requires specialized research laboratories which 
are not available on a daily basis. Additionally, difficulties may 
be encountered when attempting to assess biomarker half-time, 
especially in those that are continuously released from the brain 
following injury and in those with complex elimination or deg-
radation mechanisms (230).

ReCOMMeNDATiONS FOR MONiTORiNG 
AXONAL iNJURY

 1. ICP and CPP monitoring as well as ICP-CPP guided therapy 
are advised in all severe TBI patients with suspected axonal 
injury and decreased level of consciousness especially in the 
initial post-injury phase.

 2. Conventional MRI scan sequences such as FLAIR, DWI, and 
SWI should be considered in the first post-injury period fol-
lowing TBI to detect and confirm the presence of DAI.

 3. Advanced MRI techniques such as DTI and MRS are useful 
modalities for further delineation of axonal damage in TBI, 
particularly in the subacute and chronic phase.

 4. Due to high cost and limited availability, PET scanning is 
recommended solely as a valuable research tool although not 
to date in clinical management.

 5. Biomarkers specific for axonal injury can be analyzed in blood 
and CSF from the acute to chronic post-injury period in TBI, 
aiming to aid in the understanding of the axonal injury 
process, follow the course of the disease, monitor for possible 
deterioration, estimate the extent of axonal injury and aid in 
prognostication.

 6. Repeated clinical examinations and neuropsychological tests 
can provide invaluable information on the extent of injury, 
prognosis and for monitoring possible recovery or exacerba-
tion of cognitive functions and mental status.

CONCLUSiON

Although axonal injury has traditionally been associated with an 
impaired level of consciousness and poor prognosis, patients with 
confirmed axonal damage can achieve a good clinical outcome. 
Using advanced neuroimaging, axonal injury is increasingly 
recognized also in mild TBI or sports-related concussions. Many 
tenets of the pathophysiology of axonal injury are being eluci-
dated through major efforts in basic science and medical research. 
Nonetheless, it remains an exceedingly complex subtype of TBI 
with many unknown secondary pathological processes. Since the 
secondary injury cascades are continuing for a considerable time 
post-injury, monitoring is critically important for clinical as well 
as research purposes. Advanced imaging techniques such as MRS, 
DTI and PET show promise in better identifying and quantifying 
axonal injury and its importance for patient outcome. In addition, 
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both invasive and non-invasive neurocritical care techniques are 
becoming increasingly important in monitoring axonal injury. 
Numerous biomarkers with, plausibly, high specificity for axonal 
damage have been and are being developed. This evolving field of 
TBI research is promising for the development of bedside, rapid 
analysis kits for small-volume body fluids. When these novel 
biomarkers are available for routine use as monitoring tools for 
axonal injury, they may in the future aid in the detection and pre-
vention of secondary axotomy and atrophy of white matter tracts. 
They may also be used as secondary outcome measures in DAI, 
assist in the development of novel therapies, guide treatment, and 

monitor treatment response. Finally, the short-and long-term 
monitoring options for axonal pathology and its progression 
described in this review may become crucial for the prevention 
of neurodegeneration at the chronic stage in DAI.
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