
November 2017 | Volume 8 | Article 6011

Review
published: 13 November 2017

doi: 10.3389/fneur.2017.00601

Frontiers in Neurology | www.frontiersin.org

Edited by: 
Niklas Marklund,  

Lund University, Sweden

Reviewed by: 
Raimund Helbok,  

Innsbruck Medical University, Austria  
Elham Rostami,  

Academic Hospital, Sweden

*Correspondence:
Mauro Oddo  

mauro.oddo@chuv.ch

Specialty section: 
This article was submitted  

to Neurotrauma,  
a section of the journal  
Frontiers in Neurology

Received: 19 May 2017
Accepted: 27 October 2017

Published: 13 November 2017

Citation: 
Carteron L, Bouzat P and Oddo M 

(2017) Cerebral Microdialysis 
Monitoring to Improve Individualized 

Neurointensive Care Therapy:  
An Update of Recent Clinical Data.  

Front. Neurol. 8:601.  
doi: 10.3389/fneur.2017.00601

Cerebral Microdialysis Monitoring  
to improve individualized 
Neurointensive Care Therapy:  
An Update of Recent Clinical Data
Laurent Carteron1, Pierre Bouzat2 and Mauro Oddo3*

1 Department of Anesthesiology and Intensive Care Medicine, University Hospital of Besançon, University of Bourgogne – 
Franche-Comté, Besançon, France, 2 Department of Anesthesiology and Critical Care, University Hospital Grenoble, 
Grenoble, France, 3 Department of Intensive Care Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of 
Lausanne, Lausanne, Switzerland

Cerebral microdialysis (CMD) allows bedside semicontinuous monitoring of patient brain 
extracellular fluid. Clinical indications of CMD monitoring are focused on the management 
of secondary cerebral and systemic insults in acute brain injury (ABI) patients [mainly, 
traumatic brain injury (TBI), subarachnoid hemorrhage, and intracerebral hemorrhage 
(ICH)], specifically to tailor several routine interventions—such as optimization of cere-
bral perfusion pressure, blood transfusion, glycemic control and oxygen therapy—in 
the individual patient. Using CMD as clinical research tool has greatly contributed to 
identify and better understand important post-injury mechanisms—such as energy dys-
function, posttraumatic glycolysis, post-aneurysmal early brain injury, cortical spreading 
depressions, and subclinical seizures. Main CMD metabolites (namely, lactate/pyruvate 
ratio, and glucose) can be used to monitor the brain response to specific interventions, 
to assess the extent of injury, and to inform about prognosis. Recent consensus state-
ments have provided guidelines and recommendations for CMD monitoring in neuro-
critical care. Here, we summarize recent clinical investigation conducted in ABI patients, 
specifically focusing on the role of CMD to guide individualized intensive care therapy 
and to improve our understanding of the complex disease mechanisms occurring in 
the immediate phase following ABI. Promising brain biomarkers will also be described.

Keywords: microdialysis, traumatic brain injury, subarachnoid hemorrhage, cerebral metabolism, ischemia, 
hypoxia, biomarkers, neurointensive care

iNTRODUCTiON

Cerebral microdialysis (CMD) has progressively evolved from a tool for clinical research into an 
additional brain monitoring modality to guide neurointensive care (1, 2). Evidence has accrued over 
the last years that CMD monitoring—in combination with other modalities such as intracranial 
pressure (ICP) and brain tissue PO2 (PbtO2), so called multimodal monitoring—may help guiding 
individualized intensive care therapy of comatose brain-injured patients, mainly after traumatic 
brain injury (TBI) and aneurysmal subarachnoid hemorrhage (SAH) (3, 4). Clinical utility of 
CMD has been particularly shown for the management of “secondary” cerebral insults, i.e., the 
number of pathological events that occur in the early phase following acute brain injury (ABI). 
The use of CMD has contributed to better define therapeutic thresholds for several routine inter-
ventions, such as cerebral perfusion pressure (CPP) optimization, oxygen therapy, red blood cell 
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transfusion (RBCT), and metabolic control (blood glucose and 
nutrition). Exploration of the injured brain with CMD has also 
greatly contributed to better understand important post-injury 
mechanisms—such as energy dysfunction, hyperglycolysis, 
cortical spreading depressions, subclinical seizures, or brain 
edema—and to identify potential novel biomarkers of injury and 
prognosis. Recent reviews focused on specific technical aspects 
related to CMD monitoring, both in terms of the catheters and 
microdialyzate analyser technology (1). The scope of this review 
was to summarize recent clinical investigation conducted in 
neurocritical care patients, aiming to discuss the role of CMD to 
guide individualized intensive care therapy and to improve our 
understanding of the complex disease mechanisms occurring 
in the immediate phase following severe brain injury. We also 
describe emerging data on the potential utility of CMD to assess 
novel biomarkers of injury, as well as its role in interventional 
and pharmacological studies. We mainly focused our review on 
clinical studies published during the last 5 years (January 2012 to 
September 2017) and performed in patients with ABI, including 
TBI, SAH, and ICH.

iNTeRPReTATiON OF CMD vARiABLeS 
AND ReFeReNCe vALUeS

In clinical practice, CMD biomarkers (generally sampled every 
hour and immediately analyzed at the bedside) should always be 
interpreted in the context of monitor location, type of injury, and 
patient clinical condition. Based on accrued clinical data over 
the last decade linking glucose and lactate/pyruvate (L/P) ratio 
with principal outcomes after ABI, compared to glutamate and 
glycerol, the 2015 CMD Consensus proposed to interpret CMD 
biomarkers in a tiered fashion and to use primarily CMD L/P 
ratio and glucose as step 1 to guide clinical interventions (2). 
Abnormalities of CMD L/P ratio and glucose reflect the complex 
pathophysiology underneath ABI; therefore, correct interpreta-
tion require integration of other monitored variables such as ICP 
and PbtO2.

Elevated CMD lactate and L/P ratio may be a marker of 
inadequate cerebral blood flow (CBF) and/or oxygen delivery. 
In this context, dramatic increases may be observed, which are 
associated with a concomitant decrease in CMD pyruvate and 
glucose. Given that cerebral circulation and/or oxygenation are 
impaired, ICP/CPP and/or PbtO2 values will be abnormal.

However, CMD lactate and L/P ratio may be elevated because 
of other mechanisms than ischemia or hypoxia (5). Cerebral 
energy dysfunction/failure has been described despite CBF and 
brain tissue oxygenation being normal (6, 7), whereby elevations 
of CMD lactate and L/P ratio may be predominantly attributable 
to increased glycolysis or mitochondrial dysfunction (impair-
ment of oxygen utilization or cytopathic hypoxia) (8, 9). In this 
context, pyruvate may be normal or elevated, and elevations of 
CMD lactate and L/P ratio are of a lesser extent than during frank 
ischemia/hypoxia.

Low CMD glucose, therefore, may be related to cerebral energy 
dysfunction (10). On the other hand, apart from cerebral causes 
(ischemia/hypoxia or energy dysfunction), inadequate systemic 
glucose, because of intensive insulin therapy to maintain strict 

glycemic control, may cause further reductions of CMD glucose 
(11, 12).

To direct individualized intensive care therapy, it is therefore 
important to consider CMD L/P ratio rather than lactate alone, 
to look for dynamic changes and trends of both CMD L/P ratio 
and glucose, and finally to take into account additional monitor 
modalities (ICP/PbtO2), according to the modern paradigm of 
multimodality monitoring (13, 14).

Interpretation of absolute values is also dependent on probe 
location in an area of normal-appearing vs. around a lesion  
(e.g., hematoma or contusion) (2, 15). Also, a recent study in SAH 
patients suggests that delayed cerebral ischemia may be detected 
only when the probe is located within a brain area later affected by 
secondary infarction, which may justify the use of implantation 
guidelines (16).

In Figure  1, we propose an algorithm for interpretation of 
CMD abnormalities, centered on low CMD glucose as starting 
point of the clinical reasoning.

As for reference values, L/P ratio >25 is considered abnormal 
(impaired cerebral oxidative metabolism), while L/P ratio >40 is 
the critical level above which brain energy crisis is defined. The 
reference level for CMD glucose is still debated, but probably lies 
at 1 (±0.15) mmol/L (17).

CMD TO GUiDe iNDiviDUALiZeD 
iNTeNSive CARe THeRAPY

Optimization of Substrate Supply
The CMD technique allows semicontinuous monitoring of cerebral 
glucose metabolism and of the interactions between blood and 
brain glucose in humans under conditions of varying glycemia 
(18). Glucose is the main substrate for the brain. However, in 
the aftermath of injury, the brain’s ability to use glucose may be 
reduced (19). Cerebral extracellular glucose may be limited  
(10, 20), therefore, enabling adequate glucose supply in ABI 
patients appears crucial to attenuate further brain damage (21). 
Following the two large single-center studies by van Den Berghe 
and colleagues in the early 2000 (22, 23), suggesting that tight 
glycemic control may benefit general critically ill patients, Vespa 
and colleagues were the first to show that actually this so-called 
intensive insulin strategy was associated with an increased 
prevalence of low CMD glucose and elevated LPR (24). This CMD 
study was concomitant to another outcome study by the Leuven’s 
group showing that, at the contrary, strict glycemic control may 
also benefit the outcome of neurointensive care patients (25). 
Additional CMD studies from several groups subsequently con-
firmed the seminal clinical investigation by Vespa and colleagues, 
showing that indeed strict glycemic control might reduce cerebral 
glucose availability and aggravate cerebral energy dysfunction  
(11, 26–31). Given the results of the multicentre NICE-SUGAR 
study, which did not confirm substantial outcome benefit for inten-
sive vs. moderate blood glucose control both in the general ICU 
population (32, 33), and in the post hoc analysis of neurotrauma 
patients (34), a strategy of liberal glycemic control (7–10 mmol/L) 
was generally felt as safer in critically neurological patients by inter-
national recommendations (35). Indeed, using a cross-over design 
that alternated tight to moderate glycemic control, Vespa confirmed 
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FiGURe 1 | Differential diagnosis of cerebral metabolic abnormalities based on cerebral microdialysis. Abbreviations: CBF, cerebral blood flow; CMD, cerebral 
microdialysis; CPP, cerebral perfusion pressure; ICP, intracranial pressure; L/P, lactate/pyruvate; MAP, mean arterial pressure; PbtO2, brain tissue oxygen pressure.
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previous findings that intensive insulin therapy was associated  
with increased metabolic distress, as judged by lower CMD glucose 
and higher CMD L/P ratio during tight glycemia (12).

The glycemic control controversy illustrates how CMD 
monitoring has contributed to the actual progresses of intensive 
care therapies, and how physiologically oriented studies may 
influence our practice, especially in the field of neurointensive 
care where “true” evidence-based medicine derived from RCT is 
often lacking. A recent example of such approach was provided 
by the Innsbruck group led by Helbok: the authors found that 
rapid effective institution of enteral nutrition was associated 
with an increase in CMD glucose that was directly dependent on 
the magnitude of increase of blood glucose (36), reinforcing the 
recommendations for the early institution of enteral feeding in 
neurointensive care patients.

The Consensus on CMD suggests the use of CMD monitoring 
for the detection and treatment of low cerebral glucose, and to 
guide systemic glucose management and insulin use (2).

Optimization of Cerebral Perfusion
CMD markers—such as glucose and L/P ratio—may be good 
surrogate markers of CBF, and indeed this has recently been 
confirmed by several clinical studies combining microdiaylsis 
with brain imaging, both in patients with SAH (37–39) and TBI 
(40). A recently published small observational cohort study illus-
trated the potential value of CMD monitoring to help detecting 
cerebral hypoperfusion in comatose aSAH patients, in whom, 
the clinical examination was unreliable (37). This study stressed 

the importance of following dynamic trends over time of both 
CMD L/P ratio and glucose for the timely detection of second-
ary cerebral ischemic insults. It also confirmed the potential 
value of CMD biomarkers to avoid low CPP by adjusting CPP 
thresholds individually in comatose ABI patients (16, 41–43). 
Indeed, Bouzat and colleagues found that the addition of CMD 
(in combination with PbtO2) to ICP monitoring significantly 
improved the accuracy of detecting secondary hypoperfusion in 
patients with severe TBI (40).

The use of CMD monitoring to optimize CCP in order to 
prevent/avoid ischemia is recognized as potentially clinically 
useful for TBI and SAH patients by the Consensus on CMD (2).

Optimization of Oxygen Transport: Blood 
Transfusion and Oxygen Therapy
Red Blood Cell Transfusion
Whether restrictive or more liberal thresholds for hemoglobin 
and RBCT should be used in neurointensive care is still debated, 
given the lack of randomized clinical trials in this setting. It is 
possible that the therapeutic approach may vary individually, 
according to the extent of injury; therefore, patients with more 
severe brain insults may benefit from higher hemoglobin (Hgb) 
levels (44, 45). Indeed, low Hgb <9 g/dL was shown to be associ-
ated with increased CMD markers of cerebral ischemia (elevated 
L/P ratio and low CMD glucose) (46, 47). The question is whether 
enhancing cerebral oxygen transport with RBCT may reduce 
cerebral damage: RBCT might improve PbtO2 in the majority 
(although not all) of patients (48, 49); however, improved PbtO2 
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TABLe 1 | Examples of ICU interventions guided by CMD.

energy supply Cerebral Perfusion Oxygen transport

FiO2, PaO2 (Hgb)

Therapeutic 
intervention

Insulin therapy Enteral nutrition Intracranial pressure/CPP targets NBHO RBCT

Risks ↓ CMD glucose <0.7 mmol/L ↑ blood glucose Ischemia, ↓ CPP Increased excitotoxicity Ischemia/hypoxia vs. RBCT-
related complications

Benefits Optimal glycemia ↑ CMD glucose Optimal CPP Optimal PaO2 Optimal (Hgb)

CMD targets CMD glucose >0.7 mmol/L ↓ L/P ratio ↓ L/P ratio ↓ L/P ratio
↑ CMD glucose

CMD, cerebral microdialysis; CPP, cerebral perfusion pressure; Hgb, hemoglobin; FiO2, fraction of inspired oxygen; ICU, intensive care unit; L/P lactate/pyruvate; NBHO, normobaric 
hyperoxia; PaO2, arterial partial pressure of oxygen; RBCT, red blood cell transfusion.
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did not translate into a clinically relevant benefit on cellular 
metabolism, as quantified by the non-significant amelioration of 
CMD L/P ratio (50, 51).

Oxygen Therapy
In various subsets of critically ill patients, including those with 
ABI, increasing inspired fraction of oxygen (FiO2) to achieve 
arterial hyperoxia (arterial partial pressure of oxygen, PaO2, 
>150 mmHg) was associated with worse outcome (52). Whether 
or not hyperoxia is beneficial after ABI remains controversial. 
Physiological studies testing the effect of hyperoxia on CMD 
biomarkers were conducted predominantly on TBI patients. 
Improving PbtO2 by way of normobaric hyperoxia may reduce 
L/P ratio (53, 54), although this effect seems of limited clinical 
relevance (55). When using CMD glutamate as a marker of 
increased excitotoxicity, Quintard and colleagues found an 
association between normobaric hyperoxia and increased 
cerebral glutamate (56). Recently, two prospective single-center 
trials brought additional important insights. Ghosh and col-
leagues, testing 120-min normobaric hyperoxia challenge in the 
acute phase (24–72 h) of TBI (16 patients; using an advanced 
multimodal monitoring, including PbtO2, CMD, near-infrared 
spectroscopy, and transcranial Doppler) found that hyperoxia 
was associated with an improvement of L/P ratio, as well as all 
other oxygenation and perfusion parameters, consistent with 
increased aerobic cerebral metabolism and better cellular redox 
state (57). Vidal-Jorge and colleagues in an elegant study using 
CMD to sample biomarkers of oxidative stress (8-iso-Prosta-
glandin F2α) found that increasing FiO2 to 1.0 for 4 h resulted in 
marked reduction in both CMD lactate and CMD L/P ratio only 
in patients with more severe injury, as defined by a CMD lactate 
>3.5  mmol/L, but did not change energy metabolism in the 
whole group of patients (58). Furthermore, hyperoxia caused a 
significant increase in 8-iso-PGF2α in patients in whom oxida-
tive stress was detected at baseline, but not in those without (58).

Rockswold and colleagues, using a Phase II observational 
design, found that hyperbaric oxygen therapy [1 h at 1.5 atmos-
pheres absolute (ATA)], followed by 3-h normobaric hyperoxia 
(100% FiO2 at 1.0 ATA) was effective in improving CMD L/P ratio 
and glycerol after TBI, both in relatively uninjured brain as well 
as in peri-contusional tissue; tissue benefit translated into better 
outcome in this study (59).

Overall, CMD has evolved over time as a tool that may help 
guiding individualized targeted therapy at the bedside in ABI 
patients and to test the physiologic response to a specific inter-
vention (Table 1).

CMD to Test the efficacy of 
Pharmacological interventions
Although it was not validated so far in large multicentre stud-
ies, CMD biomarkers such as CMD L/P ratio and glucose are 
associated with patient prognosis, at least in TBI patients (60). 
Therefore, it is conceivable to use CMD metabolites as surrogate 
outcome endpoints to test therapeutic efficacy in Phase II clinical 
trials.

Examples of therapies tested in studies using CMD biomarkers 
as surrogate outcome endpoints include:

 – nitric oxide synthase inhibition (61)
 – recombinant human interleukin-1 receptor antagonist (62)
 – antiepileptic drugs (63, 64)
 – focally perfused succinate (65)
 – intravenous hypertonic lactate (66, 67)
 – sedation (68).

Measuring the concentrations of drug molecules in the brain 
extracellular fluid appears superior to cerebrospinal fluid or 
plasma to test the ability to effectively deliver pharmacological 
agents across the blood–brain barrier into the brain and is an 
important step in the development of central nervous system 
therapies. CMD sampling can give valuable pharmacokinetic 
information of variations with time in drug concentrations of 
brain interstitial tissue versus plasma and may help in designing 
future therapies (69, 70), or to test drug penetration of several 
pharmacologic agents, such antimicrobials (71, 72) or antiepilep-
tic drugs (63, 64).

CMD TO eXPLORe THe COMPLeX  
ABi PATHOPHYSiOLOGY

Alterations of cerebral perfusion/oxygenation (73–75) and brain 
energy metabolism (9, 19, 20, 76–82) are important determi-
nants of ABI. However, additional mechanisms are implicated 
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FiGURe 2 | Pathophysiology of acute brain injury: the role of cerebral microdialysis. Abbreviations: CMD, cerebral microdialysis; CSD, cortical spreading 
depressions; EBI, early brain injury; L/P, lactate/pyruvate; NAA, n-acetyl aspartate.
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in post-injury pathophysiology and CMD has contributed to 
elucidate some of these mechanisms (Figure 2). In this context, 
CMD catheters with larger membrane cut-off (100 kDa) than the 
standard ones (20 kDa) may have great utility for the identification 
and bedside follow-up of biomarkers of injury (e.g., cytokines, 
metallo-proteases) and recovery (e.g., markers of neurodegenera-
tion) in specific pathologies (70, 83).

The Link between energy Dysfunction  
and electrographic Crisis
Non-convulsive seizures and pseudo-periodic discharges might 
amplify secondary cerebral damage in the setting of ABI: using 
an elegant approach combining CMD with surface and intra-
cortical electro-encephalography, Vespa and colleagues recently 
established a mechanistic link between seizures and metabolic 
crisis (84). This study is another example of how CMD can be 
used to monitor complex and concealed mechanisms but also 
to test the efficacy of future interventions aimed at specifically 
targeting seizure suppression.

Along the same line, pathological spreading depressions, 
which are frequently seen in TBI and SAH patients (85), cause 
significant local cerebral metabolic disturbances (reduced CMD 
glucose, elevated CMD LPR, and glutamate) (86–88); therefore, it 
is conceivable to use CMD as target for future interventional trials 
aimed at specifically treating spreading depressions.

early Brain injury and Cerebral edema
Microdialysis studies have contributed to better characterize 
the exact nature of cerebral edema in different pathologies and 
to differentiate between cellular (or cytotoxic) and vasogenic 
edema. Alterations in the ionic profile of the extracellular space 
[main electrolytes (Na+, K+, Cl−) and amino-acids like taurine] 
correlate with cellular edema in patients with diffuse injury after 
TBI (89–92). Matrix metalloproteases (MMP) are important 
pathogenic determinants of blood–brain barrier breakdown and 
vasogenic edema: using 100 kDa catheters, which allows sampling 

of larger molecules, elevated CMD MMP have been observed 
in patients with focal parenchymal hemorrhages following TBI 
and SAH (93–97). These physiology studies contribute to better 
refine future treatments of brain edema, according to the specific 
pathology.

inflammation and Oxidative Stress
Using CMD has allowed the exploration of cytokine and 
chemokine profile after ABI (98–101), as well as to follow the 
dynamic changes in brain extracellular fluid of other biomark-
ers of inflammation (102), oxidative stress (NAA, isoprostane) 
(103, 104), and endothelial dysfunction (nitric oxide) (105), 
which may also be potential surrogate endpoints for interven-
tional studies (58). Two recent scoping systematic reviews have 
addressed the potential value of microdialysis cytokines in severe 
TBI and poor-grade SAH (106, 107): although preliminary 
studies support feasibility of measurements and associations 
of CMD cytokines with tissue and neurophysiologic outcomes, 
evidence is very limited and further larger studies need to be 
conducted.

Neurodegeneration
Markers of axonal degeneration—such as tau, β-amyloid, neu-
rofilament light-chain (NfL), and neurofilament heavy chain 
(NfH)—have been the focus of recent clinical investigation, 
often in combination with magnetic resonance imaging, to better 
characterize posttraumatic axonal injury acutely in the intensive 
care unit (108–113). Preliminary data also established a potential 
link between tau protein and early brain injury following SAH  
(114, 115). Providing the reproducibility of these biomarkers 
is confirmed in larger scale studies, such approach holds great 
promise for early prognostication (to complement clinical and 
radiological information) and for a pathology-based patient selec-
tion to optimize future pharmacological interventional studies.

Table 2 summarizes main results of clinical CMD studies and 
their potential implications and clinical utility.
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TABLe 2 | Summary of clinical CMD studies.

Studies Summary of main results Clinical utility Reference

Observational studies

Glycemic control Tight (4–6 mM) vs. moderate (6.1–8 mM) glycemic control is associated with more 
episodes of low glucoseCMD

Management of insulin (11, 12, 
26–31)

Cerebral perfusion Cerebral hypoperfusion is associated with increased cerebral metabolic distress (high 
L/PCMD/low glucCMD)

Early ischemia detection (37, 42, 43)
Targeted CPP therapy

Hemoglobin level Anemia (Hgb <9 g/dL) is associated with increased cerebral metabolic distress Management of RBCT (46, 47,  
50, 51)

Oxygen therapy NBHO (2–4 h) is associated with improved LPRCMD Targeted management of PaO2/FiO2 (57–59)
NBHO benefit mostly when baseline lactateCMD >3.5 mM
HBOT is associated with improved L/PCMD

interventional studies

NOS inhibitors NOS inhibition (i.v.) does not affect cerebral metabolism Potential for CMD biomarkers to be used 
as surrogate efficacy endpoints in phase II 
clinical trials

(61)

rh IL-1 ra rh IL-1ra (i.v.) does not affect cerebral metabolism (62)

Hypertonic lactate Hypertonic lactate (i.v.) is associated with glucoseCMD increase (66, 67)

Succinate Succinate (i.c.) is associated with reduced cerebral metabolic distress (65)

Mechanistic studies

Seizures Electrographic seizures are associated with increased cerebral metabolic distress Monitoring and testing the efficacy of future 
interventions targeted at reducing seizure 
and CSD

(84)

CSD CSD are associated with low glucoseCMD (86, 87)

Brain edema Cellular edema is associated with increased NaCMD
+ , KCMD

+ , and taurineCMD
Targeted therapy of brain edema based on 
disease pathology

(90–92, 96, 
97)Vasogenic edema is associated with increased MMPCMD

Neuroinflammation Identification of several cytokines (including IL-1ra, IL-6, IL-8, and TNF-α) involved in 
the complex inflammatory cascade following acute brain injury

Development of therapeutics targeted at 
attenuating the inflammatory cascade

(106, 107)

Neurodegeneration Relationship of tau and NfL with MRI axonal degeneration and patient outcome Characterization of disease neuropathology (108, 109)
Patient selection for interventional studies 
targeted at reducing neurodegeneration

CMD, cerebral microdialysis; CPP, cerebral perfusion pressure; CSD, cortical spreading depression; FiO2, fraction of inspired oxygen; HBOT, hyperbaric oxygen therapy; Hgb, 
hemoglobin; i.c., intracerebral; IL, interleukin; i.v., intravascular; L/P lactate/pyruvate ratio; MMP, matrix metalloproteases; MRI, magnetic resonance imaging; NBHO, normobaric 
hyperoxia; NfL, neurofilament light chain; NOS, nitric oxide synthase; PaO2, arterial partial pressure of oxygen; ra, receptor antagonist; RBCT, red blood cell transfusion; rh, 
recombinant human; TNF, tumor necrosis factor.
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iMPLeMeNTATiON iN THe iNTeNSive 
CARe UNiT

Barriers to the widespread implementation of CMD are numer-
ous, including costs, human resources, and the complexity of 
the technique (especially with respect to 100 kDa catheters) (1). 
These barriers may explain why CMD monitoring is still not in 
use in the majority of centers, as judged by a recent National 
survey on multimodal monitoring conducted in the UK (116). 
Recent consensus guidelines for the use of CMD in acute brain 
pathologies (2, 15) and the increased application of CMD in other 
acute contexts, e.g., anoxic-ischemic (117) or hepatic encepha-
lopathy (118), may contribute to a broader implementation of this 
technique. The future of CMD is constantly evolving: technical 
refinements and the potential for automated near real-time 
continuous measurements may increase the performance and 
the accuracy of the technique (119–121), thereby facilitating the 
utilization in the intensive care unit.

CONCLUSiON

Cerebral microdialysis is an important neuromonitoring tool that 
is increasing used at the bedside in combination with ICP and 

PbtO2 to guide therapy individually in brain-injured patients. 
Recent consensus on microdialysis monitoring may help 
optimizing protocols for microdialysis implementation in neu-
rocritical care. Over the last decade, clinical investigation using 
microdialysis have contributed to better understand pathogenic 
mechanisms involved in secondary brain damage, such as cerebral 
edema, energy dysfunction, cortical spreading depression, neu-
roinflammation, and help refining novel therapeutic approaches, 
and drug effects on downstream targets. Future improvements of 
CMD technology may further enhance applicability.
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