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Status epilepticus (SE) is a medical emergency exemplified by self-sustaining, unceasing 
seizures or swiftly recurring seizure events with no recovery between seizures. The 
early phase after SE event is associated with neurodegeneration, neuroinflammation, 
and abnormal neurogenesis in the hippocampus though the extent of these changes 
depends on the severity and duration of seizures. In many instances, over a period, the 
initial precipitating injury caused by SE leads to temporal lobe epilepsy (TLE), typified by 
spontaneous recurrent seizures, cognitive, memory and mood impairments associated 
with chronic inflammation, reduced neurogenesis, abnormal synaptic reorganization, 
and multiple molecular changes in the hippocampus. While antiepileptic drugs are 
efficacious for terminating or greatly reducing seizures in most cases of SE, they have 
proved ineffective for easing SE-induced epileptogenesis and TLE. Despite considerable 
advances in elucidating SE-induced multiple cellular, electrophysiological, and molecular 
changes in the brain, efficient strategies that prevent SE-induced TLE development are 
yet to be discovered. This review critically confers the efficacy and promise of resveratrol, 
a phytoalexin found in the skin of red grapes, for easing SE-induced neurodegener-
ation, neuroinflammation, aberrant neurogenesis, and for restraining the evolution of 
SE-induced brain injury into a chronic epileptic state typified by spontaneous recurrent 
seizures, and learning, memory, and mood impairments.

Keywords: epilepsy, seizures, memory impairment, neuroprotection, GABA-ergic interneurons, hippocampal 
neurogenesis, neuroinflammation, oxidative stress

iNTRODUCTiON

Status epilepticus (SE) is a medical emergency exemplified by continuous tonic-clonic seizure 
activity lasting five or more minutes or a series of seizures with no recovery between them (1). 
The incidence of SE varies from 10 to 61 per 100,000 population each year. The frequency of SE is 
higher in children and the aged population, and the overall SE-related mortality is ~20% (2–4). SE 
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can occur from multiple causes, including head injury, febrile 
seizures, stroke, brain infections, sleep deprivation, withdrawal 
from alcohol and drugs of abuse, or pre-existing conditions, 
such as brain tumor, congenital malformations, and Alzheimer’s 
disease. Although a combination of antiepileptic drugs (AEDs) 
terminate seizures in most cases of SE, the first line of AEDs, 
such as benzodiazepines and phenytoin are ineffective for ceas-
ing seizures in 30–40% of SE cases (2, 5, 6). Moreover, AEDs 
have undesirable side effects and do not positively modulate 
the pathological sequelae of SE. Indeed, significant numbers 
of SE-survivors display morbidity characterized by cognitive, 
memory, and mood dysfunction with an enhanced risk for 
developing chronic temporal lobe epilepsy (TLE). Hence, 
alternative therapies, alone or in combination with AEDs, are 
necessary for reducing SE-induced mortality, as well as easing 
SE-induced pathological ramifications, such as neurodegenera-
tion; neuroinflammation; abnormal hippocampal neurogenesis; 
epileptogenesis; cognitive, memory, and mood dysfunction; and 
chronic TLE.

The hippocampus is one of the highly susceptible regions of 
the brain to be inflicted with SE-induced injury and for devel-
oping enduring pathological alterations in structure and func-
tion (7, 8). For example, in the early phase after SE elicited by 
chemo-convulsants, such as the kainic acid (KA) or pilocarpine, 
degeneration of some dentate hilar neurons and CA1 and CA3 
pyramidal neurons is consistently seen in the hippocampus 
(9–13). Moreover, such neurodegeneration is associated with 
increased as well as aberrant neurogenesis (14–19). SE enhances 
neural stem cell (NSC) proliferation in the hippocampus, which 
is likely triggered by the release of NSC mitogenic factors from 
dying neurons, deafferented granule cells, and reactive glia 
(20–22) and elevated gamma-amino butyric acid (GABA) levels 
(23). These alterations cause increased neurogenesis as well as an 
abnormal migration of newly born neurons to the dentate hilus 
(DH) and the dentate molecular layer (ML). The addition of 
greater numbers of new neurons to the granule cell layer (GCL) 
after SE has been recognized to be beneficial due to their reduced 
excitability feature (24). However, abnormal migration of a 
substantial number of newly born neurons has been suggested to 
be detrimental due to their propensity for forming epileptogenic 
circuitry (17, 25–28).

The hippocampal neurodegeneration resulting from SE 
typically ensues with persistently increased oxidative stress 
and inflammation (29–32), declined neurogenesis (16, 33, 34), 
and aberrant sprouting of dentate granule cell axons (mossy 
fibers) into the inner ML of the dentate gyrus (DG) (35–39). 
Furthermore, learning and memory impairments (40–44), loss of 
calbindin expression in dentate granule cells and CA1 pyramidal 
neurons (45, 46), alterations in neurotransmitter and other recep-
tors (47–49), and functional modifications in astrocytes (50) also 
occur. Considerably waned neurogenesis in the chronic phase 
after SE appears to be due to an altered fate-choice decision of 
newly born cells with a preference to differentiate into glia rather 
than neurons, likely due to changes in the neurotrophic milieu 
of neurogenic niches (16, 22, 51) and continued inflammation  
(30, 31, 44). Importantly, a greater portion of residual neurogen-
esis in the chronic phase remains aberrant with much of newly 

born neurons migrating into the DH or giving rise to basal 
dendrites (34). Both decreased and abnormal neurogenesis in the 
chronic phase likely contribute to learning, memory, and mood 
impairments, in addition to enhancing epileptogenic circuitry. 
Aberrant mossy fiber sprouting is another prominent structural 
change in the hippocampus after SE. Many studies have suggested 
that aberrant mossy fiber sprouting is one of the major causes of 
TLE (52–54). Although there is no consensus on this issue, there 
is enough evidence to believe that aberrant mossy fiber sprouting 
contributes at least some extent to the frequency and/or intensity 
of spontaneous recurrent seizures (SRS) in TLE (55–58).

Thus, multiple epileptogenic and neurogenic changes contrib-
ute to the progression of SE-induced injury into chronic epilepsy, 
typified by SRS, and learning, memory, and mood impairments 
(59–62). However, the manifestation of TLE in humans follow-
ing SE may take months, years, or even decades, depending on 
the degree and the swiftness by which the various epileptogenic 
changes achieve required ceilings to produce hippocampal 
hyperexcitability. The delay provides a large window to intervene 
with promising alternative drugs or natural compounds that are 
efficacious for alleviating oxidative stress, inflammation, and 
abnormal neurogenesis. While intervention in the early phase 
after SE may considerably reduce neurodegeneration, interven-
tion in both early and latent phases or in the latent phase alone 
may block or slow-down the subsequent epileptogenic changes, 
thwart or delay the development of SRS and/or prevent cognitive, 
memory, and mood impairments. However, it is important to 
note that partial neuroprotection or limited suppression of ensu-
ing inflammation provided by drugs does not necessarily prevent 
epileptogenesis and/or the related comorbidities. For example, 
anticonvulsant drugs, such as dizocilpine and retigabine, 
interleukin-1 receptor antagonist anakinra, interleukin-1β 
inhibitor VX765, or a melatonin receptor agonist agomelatine, 
can provide partial protection against SE-induced neuron loss 
and inflammation but cannot prevent epileptogenesis (63–65). 
This discrepancy reflects the fact that neurodegeneration and 
neuroinflammation are not the exclusive reasons driving epi-
leptogenesis and the occurrence of SRS after SE or brain injury 
(66). Therefore, it is imperative to identify drugs that not only 
provide neuroprotection and suppress inflammation but also 
reduce multiple other epileptogenic changes after SE. In addi-
tion, it will be essential to determine for every candidate drug, 
whether short-term treatment in the immediate post-SE period 
or prolonged treatment for several weeks after SE is needed. In 
this review, we focus on discussing the promise of resveratrol 
(RESV), a phytoalexin found in the skin of red grapes, certain 
berries, and peanuts, for easing SE-induced neurodegeneration, 
neuroinflammation, epileptogenesis, chronic seizures and the 
associated comorbidities.

SOURCe OF ReSv AND iTS KNOwN 
BiOLOGiCAL ACTiviTieS

Resveratrol (3,5,4′-trihydroxystilbene) is a natural phytoalexin, 
produced by grapevines, pines, and legumes in response to 
bacterial or fungal infections, injury, or stress (67, 68). RESV is 
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also found in raspberries, mulberries, plums, peanuts, bilberries, 
blueberries, cranberries, Scots pine, and Japanese knotweed. 
A vast majority of these sources contain both cis- and trans-
isomeric forms of RESV. However, the trans-isomer has received 
the utmost attention because of its role in beneficial effects of 
RESV (69).

Numerous studies have shown that RESV facilitates a range 
of biological activities, including longevity and prevention of 
cancer (70–72). Studies in animal models of human diseases have 
pointed out that RESV has anti-ischemic, antiviral, antioxidant, 
and antiinflammatory properties (73–76). Besides, RESV has 
been shown to delay several age-related diseases (70, 77, 78). Its 
neuroprotective property has been seen in several cell culture 
models (79, 80) as well as in vivo models of neuroinflammation 
(81), stroke (82), spinal cord injury (83), multiple sclerosis (84), 
Huntington’s disease (85), and traumatic brain injury (86). The 
other features of RESV that are attractive for therapeutic use 
include its ability to cross the blood–brain barrier after peripheral 
administration, its minimal side effects and its prolonged activity 
in the brain (~4 h) after peripheral administration (87–89).

ReSULTS FROM CLiNiCAL TRiALS 
ReGARDiNG THe BeNeFiCiAL eFFeCTS 
OF ReSv ON HUMAN HeALTH

The effects of RESV on insulin sensitivity has been somewhat 
controversial. Two clinical trials in obese humans and type 2 
diabetes patients demonstrated that 4-weeks of RESV treatment 
improved insulin sensitivity associated with reductions in low-
level inflammation, blood pressure, and liver fat accumulation 
(80–91). However, other clinical trials showed no such improve-
ment in non-obese women with normal glucose tolerance (92) 
and obese healthy men (93). Discrepancies in results between 
these studies have been attributed to differences in study designs, 
populations, and resveratrol formulations (94). It is also likely 
that RESV is not efficacious for enhancing glucose handling in 
subjects where normal glucose homeostasis is already maintained 
but effective in subjects suffering from insulin resistance. In line 
with this notion, a recent clinical trial showed that 4 months of 
RESV treatment in middle-aged men with metabolic syndrome 
could induce increased muscle turnover, lipid metabolism, and 
accumulation of long-chain saturated, monounsaturated, and 
polyunsaturated free fatty acids, and beneficial alterations in 
gut microbiota (94). Another recent clinical trial showed that 
incorporation of RESV to standard antihypertensive treatment 
is adequate for reducing blood pressure to normal levels, without 
the need for additional antihypertensive drugs (95). This study 
also implied prevention of liver damage with RESV intake, based 
on lower levels of hepatic enzyme glutamate-pyruvate transami-
nase in the serum.

Several clinical trials have also suggested that RESV treat-
ment is beneficial for improving human brain function. For 
instance, improved memory performance allied with enhanced 
hippocampal functional connectivity between the hippocampus 
and the medial prefrontal cortex has been observed with RESV 
treatment in healthy overweight elderly individuals (96). RESV 

has also been shown to enhance neurovascular coupling and  
cognitive performance in type 2 diabetes patients (97). Further-
more, in individuals with mild to moderate Alzheimer disease, 
RESV treatment modulated amyloid β-40 levels in both plasma 
and cerebrospinal fluid, in comparison to the placebo-treated 
group (98). Overall, clinical studies conducted so far imply that 
RESV is safe, well-tolerated and beneficial with minimal side 
effects. Nonetheless, detailed, long-term follow-up studies are 
needed to fully understand the efficacy of RESV for improving 
the health in people with brain diseases.

POTeNTiAL MeCHANiSMS UNDeRLYiNG 
THe NeUROPROTeCTive PROPeRTieS 
OF ReSv

Many studies have suggested that RESV mediates protective 
effects through its robust antioxidant and antiinflammatory 
activities, more so in aging or disease conditions (32, 99–101). 
First, RESV can reduce reactive oxygen species (ROS) genera-
tion through several mechanisms. It can suppress mitochondrial 
complex III activity, and the release of cytochrome C (102, 103) 
as well as modulate N-methyl-d-aspartate, α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid or KA receptor, and intra-
cellular Ca2+ pathway. RESV can also prevent mitochondrial 
dysfunction and impairments in Na+K+-ATPase activity after 
glutamate activation (104). Second, RESV can inhibit lipid 
peroxidation and enhance antioxidant and heme oxygenase 1 
activity (89, 105). Third, RESV can restrain the loss of proteins 
that are implicated in cognitive disorders (106), stimulate AMP 
kinase activity and mitochondrial biogenesis (107), and dampen 
the increased electrical activity of neurons (108). Fourth, RESV 
can indirectly mediate beneficial effects through activation 
of sirtuin 1 (SIRT1). SIRT1, a class III histone deacetylase, 
can regulate multiple biological activities, including oxidative 
stress, inflammation, cellular senescence, autophagy, apoptosis, 
differentiation, stem cell pluripotency, metabolism, and mito-
chondrial biogenesis (109). In the brain, SIRT1 can influence 
chromatin remodeling, DNA repair, cell survival, neurogenesis, 
synaptic plasticity, and memory (110, 111). Finally, RESV can 
mediate antiinflammatory actions through activation of AMP 
kinase and subsequent inhibition of mammalian target of 
rapamycin pathway. These, in turn, inhibit the activation of 
nuclear factor-kappa B and the production of proinflammatory 
molecules induced by SE (112).

eFFeCTS OF ReSv PRe-TReATMeNT ON 
eXCiTOTOXiC BRAiN iNJURY OR ACUTe 
SeiZUReS

Neuroprotective effects of RESV has been seen in several animal 
models of excitotoxic brain injury. Most of the earlier studies 
have, however, examined the effects of pre-treating animals with 
RESV on subsequent neurodegeneration mediated by excito-
toxic agents. Numerous beneficial effects were observed with a 
variety of pre-treatment approaches. While one study showed 
reduced brain damage with KA administration after chronic 
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FiGURe 1 | Four days of resveratrol (RESV) treatment after status epilepticus (SE) considerably curtailed neuron loss in the dentate hilus (DH), granule cell layer 
(GCL), and hippocampal CA1 and CA3 pyramidal cell layers. Panels (A1–C4) illustrate neuron-specific nuclear antigen (NeuN) positive neurons in different subfields 
of the hippocampus from a naïve control animal (A1–A4), an animal receiving vehicle (VEH) after SE (B1–B4), and an animal receiving RESV after SE (C1–C4). Scale 
bar, (A1,B1,C1), 500 µm; (A2–A4,B2–B4,C2–C4), 200 µm. Bar charts display numbers of NeuN + neurons in distinct hippocampal cell layers. Animals receiving 
VEH after SE displayed considerably diminished numbers of neurons in the DH (D), GCL (e), and the CA1 and CA3 pyramidal cell layers (F,G). However, neuron 
numbers were comparable between animals receiving RESV after SE and naïve control animals (D–G), implying robust neuroprotection by RESV. *p < 0.05; 
**p < 0.01; ***p < 0.001; NS, not significant. Figure reproduced from Mishra et al. (32).
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FiGURe 2 | Four days of resveratrol (RESV) treatment after status epilepticus (SE) restrained the loss of inhibitory interneurons expressing the calcium-binding 
protein parvalbumin (PV) and the neuropeptide somatostatin (SST) in the dentate gyrus (DG). (A1–C2) and (e1–G2), respectively, illustrate PV+ interneurons and 
SST+ interneurons in the DG from a naïve control animal (A1–A2, e1–e2), an animal receiving vehicle (VEH) after SE (B1–B2,F1–F2), and an animal receiving RESV 
after SE (C1–C2,G1–G2). DH, Dentate hilus; GCL, granule cell layer. Scale bar: (A1,B1,C1,e1,F1,G1), 200 µm; (A2,B2,C2,e2,F2,G2), 100 µm. Bar charts display 
numbers of PV+ (D) and SST+ (H) interneurons in the DG. Animals receiving VEH after SE displayed considerable loss of PV+ and SST+ interneurons. However, 
animals receiving RESV showed only modest loss of PV+ and SST+ interneuron numbers. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. Figure reproduced 
from Mishra et al. (32).
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RESV pre-treatment (113), another study demonstrated sig-
nificant protection against KA-induced seizures and increased 
oxidative stress with the administration of RESV performed 
5 min before KA treatment (114). Moreover, delayed onset of 

the epileptiform electroencephalographic (EEG) discharges, 
and reduced malondialdehyde (MDA, a byproduct of lipid per-
oxidation) levels were observed with RESV treatment occurring 
30 min before intracortical placement of ferric chloride (115). 
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FiGURe 3 | Four days of resveratrol (RESV) treatment after status epilepticus (SE) reduced the signs of inflammatory processes in the dentate gyrus (DG) and CA1 
and CA3 subfields. A robust inflammation, indicated by large numbers of ED-1+activated microglia, is obvious in the DG, CA1, and CA3 hippocampal subfields of 
the animal receiving vehicle after SE (A1–A3), in comparison to a reduced inflammation in the animal receiving RESV after SE (B1–B3). SO, Stratum oriens. SP, 
Stratus pyramidale, SR, Stratus radiatum. Scale bar: (A1–B3), 100 µm.
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Additional studies demonstrated neuroprotection against 
pilocarpine-induced SE with RESV administration occurring 
30 min before pilocarpine treatment (112) and reduced seizure 
activity and mortality with 6  weeks of RESV treatment prior 
to KA administration (116). Furthermore, increased latency to 
myoclonic jerks and seizures, decreased number of myoclonic 
jerks, reduced neuronal injury, oxidative stress, and apoptosis 
were observed in Wistar rats receiving RESV 30 min prior to 
pentylenetetrazole (PTZ)-induced kindling (135). A subsequent 
study also showed that concurrently treating animals with KA 
and RESV (daily for 5 days) results in significant neuroprotec-
tion (117).

Multiple mechanisms have been suggested for the neu-
roprotective effects of RESV pre-treatment against seizures.  

A few studies showed that RESV moderates excitatory synaptic 
neurotransmission via inhibition of the voltage-gated potassium 
currents, and post-synaptic glutamate receptors (108, 118). The 
other studies showed the ability of RESV for suppressing reac-
tive astrocytes and activated microglia (117), scavenging and 
opposing the production of ROS, antioxidant, antiapoptotic, and 
antiinflammatory activity (102, 112, 116, 119). Considering the 
effects of RESV on excitatory synaptic neurotransmission and 
post-synaptic glutamate receptors, it is plausible that RESV pre-
treatment impacts the overall SE activity, which likely influences 
pathogenesis that follows SE. However, detailed EEG studies on 
the intensity of SE in RESV pre-treated animals vis-à-vis untreated 
animals are lacking. Although the beneficial effects of RESV 
pre-treatment or concurrent treatment of excitotoxins and RESV 
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FiGURe 4 | Four days of resveratrol (RESV) treatment after status epilepticus (SE) restrained the dendrites of newly born neurons projecting into the dentate hilus 
(DH). In the naïve control animal (A), the normal polarity of newly born neurons is apparent from virtually all dendrites projecting into the molecular layer (ML) of the 
dentate gyrus. Contrastingly, in the animal receiving vehicle after SE (B), a significant number of newly born neurons showed either abnormal polarity with apical 
dendrites projecting into the dentate hilus (DH; arrows) or basal dendrites projecting into the hilus. Interestingly, in animals receiving RESV after SE (C1,C2), there 
were no newly born neurons with apical dendrites projecting into the dentate hilus (C1). In addition, the occurrence of newly born neurons with basal dendrites 
projecting into the hilus was reduced [arrow in (C2)]. Scale bar = 100 µm.
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in different animal models are useful for understanding mecha-
nisms by which RESV mediates neuroprotection, there is little 
translational value with this approach. Pre-treatment approach 
may, however, be relevant to a smaller percentage of people who 
take RESV daily as an antioxidant or antiinflammatory dietary 
supplement. However, it remains to be determined whether such 
small daily doses would be adequate to have protective effects 
against brain insults.

eFFiCACY OF ReSv TReATMeNT 
COMMeNCiNG AFTeR THe ONSeT  
OF Se ON SeiZURe-iNDUCeD 
NeURODeGeNeRATiON, 
NeUROiNFLAMMATiON, AND  
ABNORMAL NeUROGeNeSiS

So far, only a few studies have analyzed the effects of RESV treat-
ment starting hours after the onset of SE on SE-induced detri-
mental effects. A recent study, using a graded intraperitoneal 

KA administration model of SE provided the first proof that 
RESV treatment starting 1  h after SE onset was effective for 
considerably restraining SE-induced hippocampal damage (32).  
In this study, 4 days of RESV treatment (3 hourly doses on SE day 
commencing 1 h after SE, twice daily doses on SE days 2–4) was 
found efficacious for providing robust neuroprotection against 
SE. In comparison to animals receiving vehicle after SE, animals 
receiving RESV after SE demonstrated robust preservation of 
glutamatergic neurons in the GCL, DH, and CA1 and CA3 
subfields of the hippocampus (Figure 1), and greater levels of 
maintenance of subclasses of GABA-ergic interneurons express-
ing parvalbumin, somatostatin (Figure 2), and neuropeptide Y. 
Moreover, RESV treatment after SE resulted in normalization of 
seizure-induced increased oxidative stress. This was evidenced 
in RESV treated rats by the maintenance of hippocampal MDA 
and the expression of multiple genes related to oxidative stress 
response to levels seen in naïve control animals. Controlling 
oxidative stress after SE has great significance as greatly elevated 
oxidative stress can facilitate progressive neuron loss and impair 
the function of remaining neurons. Indeed, increased levels of 
MDA has been seen in epileptic patients (120, 121). However, 
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FiGURe 5 | Illustration of how resveratrol (RESV) treatment after status epilepticus likely restrains or modifies the various detrimental effects of SE in the acute, 
subchronic, and chronic phases.
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in a seizure study using neonatal animals, RESV therapy did 
not restrain SE-induced brain damage because SE in neonatal 
animals does not elevate oxidative stress (122). From this per-
spective, it is noteworthy that RESV therapy for SE is effective 
only in conditions where elevated oxidative stress is one of 
the major initial sequels of SE. Thus, RESV therapy for SE is 
likely more suitable for the adult and aged populations where 
oxidative stress is among the prominent initial pathological 
changes. Furthermore, 4  days of RESV therapy was effective 
for suppressing SE-induced inflammation in the hippocampus. 
This was evinced mainly through reduced concentration of 

tumor necrosis factor-alpha protein and diminished numbers 
of activated microglia in the hippocampus (Figure 3) but did 
not involve modulation of nuclear factor-kappa B or SIRT1 
activity (32).

Moreover, RESV treatment after SE in the above study 
reduced aberrant neurogenesis (Figure  4). Both numbers of 
newly born neurons that migrated abnormally into the DH and 
occurrences of basal dendrites from newly born neurons were 
diminished. Reduced aberrant neurogenesis mediated by RESV 
has functional implications because such neurogenesis promotes 
epileptogenic circuitry between ectopically placed granule cells 
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and the CA3 pyramidal neurons, and between basal dendrites 
of granule cells projecting into the DH and granule cell axons 
(mossy fibers). These abnormal synaptic connectivities may 
contribute to occurrences of SRS in the chronic phase after SE 
(25–28, 123–126). In summary, the above study provided novel 
proof that RESV treatment starting 1 h after SE is also favorable 
for curtailing SE-caused elevated oxidative stress, neuron loss, 
inflammatory cascade, and anomalous neurogenesis, all of which 
can contribute to the development of a chronic epileptic state 
after SE.

eFFiCACY OF ReSv TReATMeNT FOR 
eASiNG ePiLePTOGeNeSiS AND 
CHRONiC ePiLePSY

A study by Wu and colleagues examined the effects of oral 
administration of RESV for 10 days after an intrahippocampal 
injection of KA into anesthetized rats (127). They found that 
a reduced percentage of animals receiving RESV after KA dis-
played behavioral SRS at 9-weeks post-KA, in comparison to 
rats receiving KA alone. Besides, 2 h of EEG recordings showed 
diminished epileptiform-like waves in rats receiving RESV 
after KA, associated with some neuroprotection in the CA1 and 
CA3a cell layer and reduced aberrant mossy fiber sprouting 
into the dentate supragranular layer. These results suggest that 
RESV treatment starting after the induction of hippocampal 
injury has the potential for reducing the incidence and intensity 
of injury-induced chronic epilepsy. However, there are several 
caveats in this study. Since KA was administered directly into the 
hippocampus under chloral hydrate anesthesia, the influence of 
anesthesia on the intensity of SE is an issue. Furthermore, direct 
application of KA caused considerable neurodegeneration in 
the DH and CA3b and CA3c subregions, likely due to localized 
excitotoxicity. Hence, the neuroprotective effect of RESV that 
commenced after KA injection could not be ascertained on 
dentate hilar and CA3b and CA3c pyramidal neurons. Also, 
SRS and epileptogenic changes were measured only in the early 
phase after KA administration during which minimal SRS are 
seen. Another study evaluated the effects of RESV on a few 
behavioral and pathological changes in a rat model of epilepsy 
induced via PTZ kindling (128). The results suggested improved 
cognitive function, diminished neuronal loss in CA1 and CA3 
hippocampal subfields, and reduced S100-beta protein levels in 
the cerebrospinal fluid and serum, in animals receiving RESV 
after PTZ. Furthermore, a recent study showed that acute RESV 
treatment after an intrahippocampal injection of KA partially 
inhibits evoked epileptiform discharges in the hippocampal 
CA1 region (129). Additional analyses demonstrated that 
long-term RESV treatment in this model could normalize the 
expression of hippocampal kainate glutamate receptors and the 
GABAA receptor alpha1 subunit, and inhibit the KA-induced 
increased glutamate/GABA ratio in the hippocampus (129). 
Overall, the results of a few studies on anti-epileptogenic effects 
of RESV are promising but not conclusive. Additional rigorous 
longitudinal studies in animal models of epilepsy on specific 
epileptogenic changes are required to understand the extent 

to which RESV treatment can curtail epileptogenic changes 
that ensue after SE. Figure 5 illustrates the known and likely 
beneficial effects of early RESV treatment after SE on the vari-
ous detrimental sequelae in the acute, subchronic, and chronic 
phases.

CONCLUSiON AND FUTURe DiReCTiONS

From the results of pre-clinical studies performed so far, RESV 
appears to be a promising compound to employ as an adjunct 
to AED therapy for SE. The idea is to use AEDs for terminating 
SE and then employ RESV for prolonged periods to block or 
lessen SE-induced maladaptive structural changes as well as the 
development of epileptogenic circuitry. Nonetheless, additional 
studies are critically required prior to clinical application to 
ascertain whether the amount of neuroprotective, antioxidant, 
antiinflammatory, and normal-neurogenesis promoting effects 
offered by RESV therapy after SE is adequate for thwarting 
or at least greatly restraining the progression of SE-induced 
hippocampal injury into a chronic epileptic state exempli-
fied by SRS and cognitive, memory, and mood impairments. 
Particularly, the following issues need to be addressed. First, 
SRS develop progressively after an incidence of SE and typically 
require 3–5 months of time to exhibit a consistent frequency 
and intensity of SRS over weeks (12, 13, 130, 131). Therefore, to 
determine the benefits of RESV administration after SE, detailed 
analyses of SRS through chronic EEG recordings are required at 
3–5 months post-SE. Second, validation of the efficacy of RESV 
for preventing or greatly restraining SE-induced epileptogenic 
changes and the associated comorbidities will be required at 
different time-points after SE. These should comprise quantifi-
cation of the (i) progressive loss of both glutamatergic neurons 
and GABA-ergic interneurons in the hippocampus and the 
various extrahippocampal regions; (ii) continued abnormal 
migration of newly generated neurons into the hilus and the 
ML of the DG, in relation to the survival of reelin-positive 
interneurons that aid the migration of newly born neurons  
(32, 44); (iii) extent of abnormal synaptic reorganization of 
dentate mossy fibers and entorhinal axons (37, 132); (iv) altera-
tions in astrocyte function (133, 134); (v) progression of neuro-
inflammation (30, 31); (vi) attainment of chronic epileptic state 
typified by SRS; (vii) cognitive and memory impairments; and 
(viii) extent of depression. Third, it will be important to iden-
tify the time-point after SE at which commencement of RESV 
treatment provides maximal neuroprotection and prevents the 
progression of SE-induced brain damage into a state typified by 
SRS and cognitive, memory, and mood impairments. Fourth, it 
will be necessary to know the effects of different doses of RESV 
treatment occurring for shorter periods after SE (e.g., 4–14 days 
of treatment) and continuing for longer durations after SE  
(e.g., 3–12 weeks) on outcomes such as SRS frequency and inten-
sity, and cognitive, memory and mood function. Furthermore, 
determining the best route of RESV administration after SE 
for achieving maximal efficacy with minimal side effects will 
be important. Routes of administration that are clinically 
practical for repeated administration may be examined, which 
may include oral and intranasal routes. Finally, any potential 
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adverse effects of long-term administration of higher doses of 
RESV after SE need to be examined.
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