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Background: Objective assessments of Parkinson’s disease (PD) patients’ motor state 
using motion capture techniques are still rarely used in clinical practice, even though they 
may improve clinical management. One major obstacle relates to the large dimensionality 
of motor abnormalities in PD. We aimed to extract global motor performance measures 
covering different everyday motor tasks, as a function of a clinical intervention, i.e., deep 
brain stimulation (DBS) of the subthalamic nucleus.

Methods: We followed a data-driven, machine-learning approach and propose perfor-
mance measures that employ Random Forests with probability distributions. We applied 
this method to 14 PD patients with DBS switched-off or -on, and 26 healthy control 
subjects performing the Timed Up and Go Test (TUG), the Functional Reach Test (FRT), 
a hand coordination task, walking 10-m straight, and a 90° curve.

results: For each motor task, a Random Forest identified a specific set of metrics that 
optimally separated PD off DBS from healthy subjects. We noted the highest accuracy 
(94.6%) for standing up. This corresponded to a sensitivity of 91.5% to detect a PD 
patient off DBS, and a specificity of 97.2% representing the rate of correctly identified 
healthy subjects. We then calculated performance measures based on these sets of 
metrics and applied those results to characterize symptom severity in different motor 
tasks. Task-specific symptom severity measures correlated significantly with each other 
and with the Unified Parkinson’s Disease Rating Scale (UPDRS, part III, correlation of 
r2 = 0.79). Agreement rates between different measures ranged from 79.8 to 89.3%.

conclusion: The close correlation of PD patients’ various motor abnormalities quanti-
fied by different, task-specific severity measures suggests that these abnormalities are 
only facets of the underlying one-dimensional severity of motor deficits. The identification 
and characterization of this underlying motor deficit may help to optimize therapeutic 
interventions, e.g., to “automatically” adapt DBS settings in PD patients.
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inTrODUcTiOn

The most frequently used tool for clinically assessing Parkinson’s 
disease (PD) is the revised version of the Unified Parkinson’s 
Disease Rating Scale [International Parkinson and Movement 
Disorder Society (MDS)-UPDRS, 1]. The Unified Parkinson’s 
Disease Rating Scale (UPDRS) combines numerous clinical 
scales and questionnaires regularly used in clinical routine and 
in studies to evaluate the presence, severity, and progression of 
PD symptoms (1). However, the disadvantages of the UPDRS 
are that it is very time-consuming, its inter- and intra-rater vari-
ability, dependence on location, limitations involving regularly 
repeating the assessments, and the lack of quantitative outcomes 
(2). Adjusting deep brain stimulation (DBS) parameters in 
PD patients still relies on subjective estimations of patients’ 
clinical state, despite the vast motor symptoms and adjustable 
parameters.

Motion capture techniques were recently introduced to 
characterize motor behavior in PD more objectively (2–4). Early 
attempts focused on evaluating individual symptoms (5, 6), using 
either single (7–9) or multiple-sensor systems (6, 10–13). Overall, 
assessing motor symptoms using motion capture techniques 
seemed to correlate well with specific clinical tests for motor 
symptoms, such as tremor, bradykinesia, or dyskinesia (14). 
Since these assessments are usually closely related to the specific 
clinical tests, less is known about how these test results relate to 
more everyday life motor activities, such as walking, bending 
over, goal-directed hand movements, etc. Moreover, we do not 
yet know how these symptoms correlate with each other in the 
individual patient.

One of the benefits of motion capture techniques is that 
machine-learning approaches can be implemented to handle 
the growing amount of data (15). Some authors applied 
machine-learning approaches to automatically differentiate 
PD patients from healthy controls or to classify levels of motor 
impair ment using various methods and parameters [(16, 17): 
gait parameters, (18): quantitative EEG, (19): computer vision 
techniques]. Recently, Bernad-Elazari et al. (20) examined the 
benefit of a single body-fixed sensor to discriminate between 
PD patients and healthy controls. Machine-learning approaches 
have also been investigated to monitor tremor, dyskinesia, or 
bradykinesia in PD patients (21, 22). However, we are unaware 
of any study taking machine-learning approaches to derive a 
continuous measure of motor performance across many different  
motor tasks.

Earlier studies already aimed to evaluate motor abnormali-
ties that directly target certain motor tasks, e.g., free stance, as 
the accurate identification of balance abnormalities is of high 
clinical relevance in PD (23, 24). Even a seemingly simple task 
like the real-world detection of PD patients’ falls is technically 
challenging. Numerous algorithms, devices, and device loca-
tions [chest, waist, shin, or wrist (25, 26)] have been tested 
to improve the accuracy of fall detection in PD patients. Still, 
these studies reveal significant variability in the outcomes they 
measured.

Objective assessments of PD patients’ gait abnormalities 
may help the clinician to evaluate the efficacy of therapeutic 

interventions and are potentially useful as biological markers for 
PD’s diagnosis, prognosis, and progression (27–29). The validi-
ties of various algorithms that detect discrete gait characteristics 
in the laboratory have already been investigated (14, 30–34). 
However, how these measures relate to each other and to other 
motor abnormalities in PD patients remains open to debate.

More general clinical tests of functional mobility such as 
the Timed Up and Go Test [TUG; (35–37)] combine move-
ments that invariably incorporate postural transitions. Mean 
turn velocity, slower walking and turning, shorter steps, and 
lower cadence distinguished PD from controls (35, 37) and 
also revealed greater sensitivity to dysfunction than most other 
clinical rating scores (35, 38). Again, it remains unclear how 
closely the Timed Up and Go elements correlate with each 
other and with other motor abnormalities in the individual PD 
patient.

In this study, we aimed to detect abnormal motor behavior 
of PD patients performing several different motor tasks in two 
clinical conditions (DBS switched-off, -on). We extracted met-
ric values from motion capture suit data and demonstrated that 
each performed task is best characterized by a specific metric. 
Then, we combined all metrics with a Random Forest approach 
and calculated the most discriminative markers for abnormal-
ity in each motor task. These Random Forests, enhanced by 
probability distributions, were then used as symptom severity 
measures. Finally, we evaluated how well these task-specific 
severity measures correlated with each other.

MaTerials anD MeThODs

subjects and Data
We used the XSens motion capture suit to record the motion 
data of 26 healthy subjects [11 females, 15 males, mean age 
54.7 ± 8.8 years (±SD)] and 14 PD patients (5 females, 9 males, 
mean age 59.1 ± 11.1 years, for detailed information, see Table 1). 
The motion capture suit consists of 17 MEMS (microelectrome-
chanical systems) with outputs based on the fusion of signals 
stemming from 3D inertial measurement units (IMUs), ie, linear 
accelerometers, 3D magnetometers, and 3D rate gyroscopes. 
This system’s raw outcome is velocity traces. It records data with 
a frame rate of 120 Hz and stores positional and rotational data 
of 23 body parts (Figure 1).

Parkinson’s disease patients were recruited during the initial 
programming for bilateral DBS of the subthalamic nucleus. 
Stimulator implantation followed established guidelines. The 
study protocol involved the Timed Up and Go Test (TUG), the 
Functional Reach Test (FRT), a 10-m Walk Test (39), a 90° turn 
to right and to the left, and a hand coordination task (pouring 
water from a glass in the right hand to a glass in the left hand 
and vice versa). The TUG and the FRT were repeated three times. 
Our analysis was based on 20 to 30 steps during straight walking, 
two 90° turns for each direction, and 12 hand coordination tasks. 
PD patients were recorded in both the stimulation switched- 
off (off DBS) and switched-on (on DBS) condition while taking 
their regular l-Dopa medication. The levodopa-equivalent doses 
were calculated according to Ref. (40).
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FigUre 1 | XSens motion capture suit and corresponding avatar.

TaBle 1 | Data of patients with Parkinson’s disease.

Patient gender age 
(years)

Disease 
duration 
(years)

Time since 
stim. impl. 
(months)

leDD 
(mg)

UPDrs motor 
score

DBs off DBs on

1 F 74 11 1 0 20 15
2 F 69 8 1 0 29 20
3 M 74 12 1 607 43 22
4 F 49 9 1 475 51 32
5 F 53 11 1.5 700 38 29
6 M 57 14 1 349.5 47 15
7 M 40 10 1 475 61 16
8 M 43 10 2 1,308.3 28 15
9 M 66 21 1 717.5 42 35

10 M 55 25 1 0 43 36
11 F 61 14 1.5 525.75 34 12
12 M 72 3 1.5 0 36 20
13 M 52 14 2 0 21 22
14 M 62 26 1.5 379.25 36 16
Mean 59.1 13.4 1.3 395.5 37.8 21.8
SD 11.1 6.4 0.4 367.30 11.3 8.0

F, female, M, male, Stim. Impl., stimulator implantation, UPDRS, Unified Parkinson’s 
Disease Rating Scale, DBS, deep brain stimulation, LEDD, levodopa-equivalent 
doses.
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In addition, patients were assessed with the Unified 
Parkinson’s Disease Rating Scale [International Parkinson and 
MDS-(part III), 1]. The UPDRS motor exam (part III) represents 
the patients’ state by evaluating multiple motions like walking 
and hand coordination. Additionally, the UPDRS (part III) rates 

the stiffness of limbs or the ability to regularly perform repeated  
movements.

All subjects and patients gave their written informed consent 
and their data were included anonymized according to the 
Declaration of Helsinki. We carried out this study in accordance 
with the guidelines of the Ethics Committee of the Medical 
Center, University of Freiburg and national guidelines. The 
Ethics Committee of the Medical Center, University of Freiburg 
approved the study protocol.

Metrics
To calculate our metrics, all motor tasks except FRT were 
segmented into simpler elements, e.g., single steps, single hand 
movements for pouring water, or sub-tasks of the TUG like stand-
up, turn, and sit down.

For these individual elements of tasks we use velocity time 
series from each body segment to derive single metrics. The Joint 
Activity (JA, dimensionless) represents the distance between an 
individual’s motion velocity pattern and the average patterns of 
healthy subjects. It covers all metrics based on velocity traces 
and yields the degree of abnormality in terms of deviation from 
the normal range. This deviation represents a single segment 
velocity trace’s different timing and movement profile during 
a sub-task. The distance is the probability that a given veloc-
ity pattern will match the average motion pattern of healthy 
subjects (41). As a single velocity trace could permanently 
remain within the range of normal behavior and still be highly 
abnormal due to, for example, high-frequency oscillations, we 
extended the metric “Joint Activity” by a set of smoothness- and 
frequency-related metrics. Our metrics describing the trajec-
tory’s smoothness included the normalized mean absolute jerk 
[NMAJ (1/s2)], dimensionless jerk [DJ (dimensionless)], log 
dimensionless jerk [LDJ (dimensionless)], root mean square 
jerk [RMSJ (m/s3)], and speed arc length [SpAL (dimension-
less) (42)]. For details concerning the calculation of these 
metrics, see Supplementary Material. A metric representing the 
frequency content of a movement was spectral arc length [SAL 
(dimensionless)].

We apply the set of metrics to each of an individual’s various 
body parts. Here, a sample consists of the 23 body part velocity 
profiles from a subject in one of the sub-tasks, e.g., a single step. 
Overall, each sample yields a 161 dimensional metric vector, in 
other words 7 metrics for 23 body parts.

random Forests with Probability 
Distributions
Due to the high-dimensional data vectors, it is difficult to identify 
the most useful features for characterizing pathological move-
ments. To overcome this challenge, we compute for each sub-
task a Random Forest (43) which combines the aforementioned 
metric vectors and filters the highly dimensional data to compute 
classification and performance measures. Our Random Forest 
approach consists of multiple decision trees. In the learning phase 
we optimize each decision tree on a subset of the training samples 
with a subset of metrics, i.e., we use 40% randomly chosen sam-
ples, i.e., task elements, from the training set and 11 randomly 
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TaBle 2 | Accuracies for each executed task over all metrics.

Ja DJ lDJ nMaJ rMsJ sal spal combined

Steps 85.7 59.6 60.1 57.0 80.8 88.7 62.4 89.2
Curve 80.0 91.0 92.0 67.0 79.0 77.0 94.0 92.0
Functional 
reach

66.0 73.0 73.4 86.9 72.6 75.2 77.8 86.0

Hand task 69.2 82.6 82.4 75.2 74.5 83.1 84.6 87.5
Stand-up 77.8 79.1 77.1 66.4 87.9 69.1 86.5 94.6
Turn 75.1 74.4 77.1 63.7 83.8 71.1 84.5 89.9
Sit down 87.9 81.8 83.2 82.5 79.8 67.7 84.5 88.5

The best metrics for each task are highlighted. Accuracies refer to Parkinson’s disease 
patients with deep brain stimulation switched-off compared to healthy control subjects. 
The values result from 7 + 1 cross-validation tests.
JA, joint activity (dimensionless); DJ, dimensionless jerk; LDJ, Log dimensionless jerk; 
NMAJ, normalized mean absolute jerk (1/s2); RMSJ, root mean square jerk (m/s3); SAL, 
spectral arc length (1/s3), SpAL, speed arc length (dimensionless).
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chosen metrics for each tree. Each decision tree is composed of 
nodes in which we split the training data into two subsets. Each 
node separates the training data through a randomly chosen 
threshold on a single metric. From all the decision tree’s metrics, 
we choose the one that provides the most information. We repeat 
this procedure from node to node as long as we have a non- 
unique data set or reach a certain depth.

The Random Forest calculates the class of a new sample by 
supplying each decision tree with the sample data to obtain a 
single outcome. Furthermore, the Random Forest applies a 
majority vote over all decision trees to represent the final result. 
This leads to a binary decision.

We trained the algorithms to create a contrast between 
healthy and maximum pathological state, e.g., PD off DBS. The 
purpose of this binary decision was to apply it as a quality meas-
ure to compare different metrics and combinations of metrics 
derived from Random Forests on the basis of their accuracy, that 
is, their recognition rate to identify the correct subject group 
(see Table 2).

symptom severity Measure
We then go one step further and compute continuous perfor-
mance measures in the interval [0, 1]. In so doing, we extend 
each node via a probability distribution over the nodes’ specific 
subset of training data and, while supplying the nodes of the deci-
sion tree with a new sample, multiply the sample’s probabilities 
in the node’s particular distribution. We obtain a sample data 
point’s performance measure by summing up each decision tree’s 
probabilities and normalizing the result. The purpose of this 
performance measure was to measure symptom severity.

More specifically, the Random Forests’ training was based 
on a data set that represents both extremes of a disease: healthy 
subjects and PD patients off DBS. This provides us with a contrast 
to create a measure that describes all states in between. The Ran-
dom Forest itself “learns” an exclusively either-or classification,  
while our performance measure utilizes the underlying tree 
structure to calculate a real-valued number between 0 and 1. 
Furthermore, the composition of decision trees that are trained 
on a reduced training set size and with a subset of metric values 

enhances the generalization capabilities and prevents overfit-
ting. We also carry out a leave-one-subject-out cross-validation. 
Hence, we remove one subject from the training set, teach our 
Random Forest on the training set and test its performance on the 
missing data sample. This procedure is repeated for each subject, 
and the resulting values depict our algorithm’s performance.

One of the upsides of a Random Forest is its ability to detect 
high-level correlations between different metrics. Through the 
nested transitioning over many layers in a tree, one obtains a 
multidimensional threshold function that sets metrics in rela-
tion to each other. Hereby, PD motor abnormalities like asym-
metric motor behavior are automatically detected and used if 
they carry additional information.

correlation analysis
We compared our results of combined metrics with the UPDRS 
(part III) in order to verify their reliability. The correlation of 
performance measures with each other and the UPDRS (part III) 
were analyzed via the Pearson correlation test.

resUlTs

classification accuracy for Different Tasks
Table 2 illustrates the results of all 7 + 1 cross-validation tests 
of several tasks with different metrics and the combination of 
all metrics in one Random Forest between patients with off DBS 
and healthy controls. The seven tasks and sub-tasks are char-
acterized by different sets of metrics indicating diverse motor 
abnormalities. In general, SpAL yielded high accuracy for all 
tasks except walking (steps). Specifically, walking a 90° curve 
was best characterized by SpAL (94%) and Log Dimensionless 
Jerk (LDJ, 92%), whereas turning was best characterized by SpAL 
(84.5%) and RMSJ (83.8%). SAL and JA displayed the highest 
accuracy during walking (steps, 88.7 and 85.7%, respectively). 
The highest accuracy regarding the FRT was achieved by SpAL 
(77.8%) and NMAJ (86.9%), whereas the Hand Coordination 
Task’s highest accuracy was achieved by SpAL (84.6%) and SAL 
(83.1%). Standing up and sitting down were best characterized 
by SpAL (Stand-up: 86.5%, sit down 84.5%), RMSJ (Stand-up, 
87.9%), and JA, respectively (Sit down, 87.9%). The agreement 
rate between different task-specific measures ranged from 79.8 
to 89.3% with the highest agreement rate between standing up 
and the 10-m Walk Test.

We computed combined measures for each task using the 
Random Forest. The combined measures revealed similarly high 
accuracy over all tasks and sub-tasks. The highest combined 
accuracy (94.6%) was achieved for the task “standing up.” This 
corresponded to a sensitivity of 91.5% to detect a PD patient off 
DBS, and a specificity of 97.2% representing the rate of correctly 
identified healthy subjects.

symptom severity Measures
Using the decision tree’s probabilities, we calculated perfor-
mance measures that represent the severity of symptoms based 
on the average of likelihoods from each decision tree to be a 
PD patient off DBS. When applying the performance measure 
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FigUre 2 | Combined performance measures of all subjects for each task. 
The Unified Parkinson’s Disease Rating Scale [Unified Parkinson’s Disease 
Rating Scale (UPDRS), part III, right] is shown as a verifiability measure. Black 
represents healthy subjects, blue patients with deep brain stimulation (DBS) 
switched-off and red with DBS switched on. Error bars refer to the SE. PD, 
Parkinson’s disease (patients), stim off, DBS switched-off, stim on, DBS 
switched on.
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on PD patients on DBS, we observed an average value of 
53.3%—halfway between healthy and PD off DBS, as expected. 
Comparison of these combined performance measures with 
the UPDRS (part III) showed that their outcomes are similar 
(Figure 2). In all combined performance measures as well as 
in the UPDRS (part III), healthy control subjects scored low, 
followed by PD patients on DBS. PD patients off DBS got the 
highest scores.

improvement through DBs
Figure 3 shows the combined performance measures of various 
tasks performed with DBS switched-off or on. Each PD patient 
(p01–p14) is depicted with a particular symbol and color. Most 
PD patients show lower performance measure values on DBS 
across all tasks. Note that the severity of motor symptoms and 
the effect of DBS in a single patient tended to be similar across 
different tasks.

correlation analysis
Correlating single metrics across different motor tasks leads to 
certain groups of motor tasks that correlate closely with each 
other. For example, the JA metrics derived from certain motor 
tasks (stand-up, turn, sit down, curve, and steps) correlated 
closely, while JA metrics derived from the hand coordination task 
or from functional reach did not correlate significantly. No single 
metric correlated significantly across all motor tasks.

However, if we take from each motor task the single best 
metric (apart from the combined, see Table  2), all different, 
task-specific metrics correlated significantly with each other (all 
p values <  0.004). When correlating individual combinations 

of metrics (symptom severity measures) from each motor 
task, the correlations across all motor tasks were even higher 
(p values  <  0.0003). Moreover, task-specific combinations of 
severity measures correlated significantly with the UPDRS (part 
III). The first principal component alone represents 72% of the 
total variance of the data field and correlated significantly with 
the UPDRS (part III; r2 = 0.79, p < 0.0001, see Figure 4).

DiscUssiOn

In this investigation, we took a data-driven approach aiming to 
identify symptom severity measures to comprehensively charac-
terize motor abnormalities in PD. We examined motor behavior 
during several different everyday motor tasks [sit-to-stand, 
turning, stand-to-sit (Timed Up and Go Test, TUG), walking 
straight, walking a 90°curve, leaning forward as much as possible 
(FRT), and a hand coordination task]. We selected these motor 
tasks specifically to represent the most relevant impairments in 
PD patients’ quality of life (2, 14).

Data were recorded with a motion capture suit comprising 17 
MEMS (microelectromechanical systems) with outputs based on 
the fusion of signals stemming from IMUs, magnetometers, and 
gyroscopes. Velocity traces were the raw outcome of this system. 
We used the data of all 17 MEMS for further analysis, as we did 
not want to bias the purely data-driven approach by choosing or 
excluding any segment arbitrarily. The Xsens sensor suit used 
here consisted of straps rather than a “suit,” was “light weighted,” 
and did not hamper any movement.

The minimum number of sensors required to capture reliable 
whole-body motion data are still unknown. Most investigators 
have applied few sensors to characterize single body parts [e.g., 
Ref. (44)]. Semwal et al. (45) used eight sensors to capture full-
body movements, but enriched sensor data with information on 
natural body posture. Future studies are needed to clarify this 
issue.

One limitation of this study is our relatively low number of 
healthy subjects (n = 26) and PD patients (n = 14) that could 
restrict our findings’ generalizability. However, our approach 
was designed to identify severity measures of different motor 
symptoms in different motor tasks in individual PD patients. 
Moreover, the findings reported herein are based on a substan-
tial amount of data, i.e., 23 body-part velocity profiles for a 
single element in a task (e.g., one step) and a 161 dimensional 
metric vector. Another limitation is that our metrics are 
based on segment velocity traces and we consequently miss 
the information from the initial positional offset in all joints. 
However, all other displacement-related abnormalities should 
be captured by these joint velocity traces.

Since PD patients’ intended movement amplitudes or veloci-
ties are not known prior to the movement, we came up with a 
new metric named JA, which is based on the likelihood of a single 
joint velocity trace falling outside the normal range (41). JA may 
be abnormal even when the data distribution in healthy subjects 
is more complex, such as when it is bimodal. Theoretically 
speaking, a behavior can be considered abnormal if it is halfway 
between two normal ranges. In that respect, we believe that JA 
is a more broadly applicable measure for abnormality than too 
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FigUre 4 | Correlation between Unified Parkinson’s Disease Rating Scale 
(UPDRS) (part III) and the first principal component of the combined 
measures from the different tasks (r2 = 0.79) for Parkinson’s disease patients 
with DBS switched-off and switched-on.

FigUre 3 | Combined performance measures of Parkinson’s disease (PD) patients with deep brain stimulation (DBS) switched-off or -on, separated by task.  
Each PD patient (p01–p14) is represented by a particular symbol and color.
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small or too large movement amplitudes, velocities, or ranges 
with respect to the normal subjects. Using many velocity traces 
from different joints, JA-related findings could also cover abnor-
mal multisegmental control strategies in comparison to healthy 
subjects (46).

As a single velocity trace could remain within the range of 
normal behavior and still be abnormal due to high-frequency 
oscillations, we included additional motor-performance met-
rics associated with smoothness (e.g., NMAJ) or frequency 
content (i.e., Spectral Arc Length, SAL) of movement trajecto-
ries. Smoothness measures are known to be specifically abnor-
mal in PD patients (14). Moreover, due to diverse calculat ion 
properties and normalization procedures, the smoothness 
measures used here characterize different traits of motor  
behavior.

Concerning the identification of a single metric that opti-
mally distinguishes between normal and abnormal behavior, 
JA proved to be most successful in characterizing those motor 
tasks that involved whole-body movements (stand-up, turn, sit 
down, curve, and steps). In contrast, functional reach and hand 
coordination were characterized less precisely. On the other 
hand, there is evidence that the metric “Spectral Arc Length” 
covers abnormal arm movements in stroke patients (42). Here, 
SAL delivered high precision in PD patients’ walking. However, 
other metrics outperformed it in all the other motor tasks. 
Interestingly, we found that “Speed Arc Length” was the most 
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precise metric for many motor tasks (walking a 90° curve, 180° 
turning, hand coordination) while it was less precise for walking 
straight and functional reach. “Normalized Mean Absolute Jerk” 
outperformed other metrics for functional reach. The metric 
with large content of velocity and displacement, namely “Root 
Mean Square Jerk,” revealed high precision for standing up and 
turning.

With the help of Random Forests, we sought optimal com-
binations of metrics to correctly classify PD patients off DBS 
and healthy subjects for each motor task separately. We used the 
accuracy of these metrics to compare the classification power of 
different metrics. Accuracy values were calculated using a leave-
one-subject-out cross-validation. This procedure was repeated 
for each subject, and the values were averaged, resulting in a 
given Random Forest’s average accuracy. In general, we observed 
that motor abnormalities in PD patients off DBS can be very 
precisely characterized via a set of metrics. The highest accuracy 
(94.6%) was achieved for standing up. This corresponded to a 
sensitivity of 91.5% to detect a PD patient off DBS, and a specific-
ity of 97.2% representing the rate of correctly identified healthy 
subjects. Thus, when testing the metrics to identify the one that 
optimally characterizes pathological behavior, we detected dif-
ferences between tasks.

We then used the new metrics generated by Random Forests, 
which were derived from the classification results, to generate 
performance measures based on the mean of many recognition 
decisions between “zero” and “one” across the 161 metrics. They 
are related to the sum of probability distributions over the nodes 
of the decision trees. The purpose of this performance measure 
was to generate a measure for symptom severity. When applying 
the performance measure on PD patients on DBS, we identified a 
symptom severity of 53.3%, as expected.

Since the optimal metric for measuring symptom severity 
in each motor task is different, one single new metric does 
not lead to high correlations across tasks. The low correlations 
between single metrics could have two potential sources. 
First, PD patients might exhibit individual combinations of 
deficits. Second, one single measure may be unsuitable for 
every motor task. To resolve this problem, we compared cor-
relations between single metrics across tasks with correlations 
of task-specific Random Forests. The fact that the task-specific 
Random Forests correlated significantly better than any single 
measure indicates that the severities of PD patients’ indi-
vidual motor abnormalities in different motor tasks are highly 
interdependent. In other words, PD patients do not reveal a 
broadly scattered symptom severity across different tasks. This 
includes balance, fine motor skills, trunk movements, walking, 
and turning.

We suggest that PD patients’ severity of motor symptoms is 
one-dimensional, i.e., they suffer from a common underlying 
motor deficit. This underlying motor deficit is an abstract meas-
ure, related to the first principal component across all motor 
abnormalities. It is related, e.g., to the slowness of standing up, 
smoothness of a fine motor skill of the hand, step length when 
walking. It is not a sum across all motor abnormalities, but the 
severity of motor abnormality in each motor task separately. This 

common motor deficit seems to affect different motor tasks in 
different ways. Consequently, the way how these motor abnor-
malities are optimally assessed, differs between tasks. With the 
help of task-specific extended Random Forests, we are capable of 
successfully deriving the common motor deficit no matter which 
task the PD patient is currently performing.

We plan to apply this common motor deficit measure to 
optimize therapeutic interventions, e.g., to adjust parameters for 
DBS electrodes (electrode location, amplitude, frequency, pulse 
width, direction of field). For a more automated assessment of 
PD patients’ current motor state, we aim to complement the 
approach presented here by algorithms able to recognize the 
ongoing motor task in order to select the correct task-specific 
extended Random Forest.
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