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Background: Interoception (the perception of internal bodily sensations) is strongly 
linked to emotional experience and sensitivity to the emotions of others in healthy 
subjects. Interoceptive impairment may contribute to the profound socioemotional 
symptoms that characterize frontotemporal dementia (FTD) syndromes, but remains 
poorly defined.

Methods: Patients representing all major FTD syndromes and healthy age-matched 
controls performed a heartbeat counting task as a measure of interoceptive accuracy. 
In addition, patients had volumetric MRI for voxel-based morphometric analysis, and 
their caregivers completed a questionnaire assessing patients’ daily-life sensitivity to the 
emotions of others.

results: Interoceptive accuracy was impaired in patients with semantic variant primary 
progressive aphasia relative to healthy age-matched individuals, but not in behavioral 
variant frontotemporal dementia and nonfluent variant primary progressive aphasia. 
Impaired interoceptive accuracy correlated with reduced daily-life emotional sensitivity 
across the patient cohort, and with atrophy of right insula, cingulate, and amygdala on 
voxel-based morphometry in the impaired semantic variant group, delineating a network 
previously shown to support interoceptive processing in the healthy brain.

conclusion: Interoception is a promising novel paradigm for defining mechanisms of 
reduced emotional reactivity, empathy, and self-awareness in neurodegenerative syn-
dromes and may yield objective measures for these complex symptoms.

Keywords: interoception, autonomic, cardiac, empathy, primary progressive aphasia, frontotemporal dementia

inTrODUcTiOn

Interoception (the ability to sense one’s internal physiological states) is closely linked to emotional 
experience (1) and can be measured using awareness of one’s heartbeat as a surrogate for intero-
ceptive sensitivity (2, 3). According to recent interoceptive inference formulations, hierarchically 
organized brain networks compare afferent interoceptive information with predictions about bod-
ily states, with prediction errors activating autonomic reflexes or motivating actions to maintain 
homeostasis (4). At lower hierarchical levels, these relate to direct physiological homeostasis, such 
as maintaining blood oxygen and glucose levels. Coherent representations of the physiological 
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state of one’s body are important determinants of subjective 
feeling states (5), and those with weaker interoception are less 
able to identify and describe their own emotions (6). At higher 
hierarchical levels, inferences about more complex causes of 
physiological perturbations can be made, such as the autonomic 
changes induced by the emotions of others. Interoception is 
therefore hypothesized to play a key role in empathy and theory 
of mind (7). This is borne out by evidence showing that intero-
ceptive ability predicts both sensitivity to the emotions of others 
and performance on emotional theory of mind tasks (8, 9). 
Empathy has been correlated with the magnitude of heartbeat-
evoked potentials, and both cognitive and neural responses to 
the emotions of others are influenced by stimulus timing within 
the cardiac cycle (10–12).

Interoceptive signals and exteroceptive information from the 
environment are integrated in a reciprocal manner, with dimin-
ished interoception tending to promote greater environmental 
dependency, and vice versa. Those with less interoceptive ability 
are more susceptible to exteroceptive signals that alter perception 
of body ownership (13), while inducing the illusion of decreased 
body ownership reduces both the amplitude of heartbeat-evoked 
potentials (14) and the ability to cognitively detect signals arising 
from the heart (15). Interoception is therefore likely to play a 
key role in generating a coherent sense of the bodily self. The 
reciprocal relationship between interoception and exteroception 
has also been demonstrated in perceptual decision-making, with 
interoceptive arousal limiting the influence of exteroceptive 
sensory noise on confidence (16). Interoception entails dis-
sociable cognitive dimensions, interoceptive accuracy (objective 
reporting) supporting awareness (confidence in interoceptive 
judgments) (3). Interoceptive sensitivity is mediated principally 
by cingulate and insula (17) under the influence of amygdala (18). 
Together, these structures constitute a network engaged in both 
interoception and emotion processing (5).

Interoception has been hypothesized to be a factor mediating 
changes in emotional sensitivity in normal aging (19). Different 
dimensions of interoception—accuracy and awareness—might 
be separately targeted by brain disease. One leading candidate, 
on clinical and neuroanatomical grounds, is the group of neu-
rodegenerative diseases comprising frontotemporal dementia 
(FTD). This heterogeneous entity comprises three major clinico-
anatomical syndromes: behavioral variant frontotemporal 
dementia (bvFTD), semantic variant primary progressive aphasia 
(svPPA), and nonfluent variant primary progressive aphasia 
(nfvPPA). All three syndromes profoundly disrupt emotional and 
physiological reactivity (20–22), producing complex neuropsy-
chiatric symptoms such as loss of empathy and altered bodily 
awareness (23, 24). These symptoms are of key clinical relevance 
but remain difficult to measure and poorly understood (25). 
Impaired interoception is a plausible mechanism that may link 
neurodegeneration to socioemotional phenotypes in FTD (26). 
However, interoceptive processing has not been studied system-
atically in the FTD syndromic spectrum nor specifically related to 
reduced emotional awareness in particular FTD syndromes and 
to underlying neuroanatomical substrates (26).

Here, we used heartbeat counting to assess interoceptive 
accuracy in canonical FTD syndromes (svPPA, bvFTD, and 

nfvPPA) versus healthy older individuals. We related patients’ 
interoceptive accuracy both to a clinical index of emotional 
sensitivity and to regional gray matter on voxel-based morpho-
metry (VBM). As all syndromes within the FTD spectrum are 
associated with socioemotional deficits and insular atrophy, 
some degree of impaired interoception leading to abnormal 
emotional awareness is anticipated across the FTD spectrum. 
However, among FTD syndromes, svPPA in particular has been 
linked to abnormally heightened responsiveness to exterocep-
tive stimuli (24), altered bodily awareness, and an impoverished 
concept of self (27). The associations between interoception, 
exteroception, body ownership, and sense of self identified in 
the healthy brain (13–16) suggest that reduced interoceptive 
accuracy may be a core feature of svPPA and disproportionately 
severe in this syndrome relative to other FTD syndromes. 
Moreover, incorporation of interoceptive information into emo-
tional judgments has been shown to depend on the amygdala, 
which is particularly severely affected in svPPA (18, 28). This 
further suggests a brain mechanism that could link reduced 
interoceptive accuracy to loss of emotional sensitivity in this 
syndrome. We therefore hypothesized that all FTD syndromes 
would be associated with a degree of impaired interoception 
leading to reduced emotional sensitivity, but that svPPA would 
be associated with a particularly severe deficit of interoceptive 
accuracy, based on the specific psychophysiological profile of 
this syndrome and linked to grey matter loss in a frontotemporal 
network including amygdala.

MaTerials anD MeThODs

Participants
Thirty-two consecutive patients fulfilling consensus criteria for a 
syndrome of FTD (29, 30) (16 bvFTD, 7 svPPA, and 9 nfvPPA) 
and 19 age-matched healthy individuals [overall 51 participants, 
mean age 67.6 years (range 51–84), 22 females] participated. No 
participant had a history of cardiac arrhythmia, clinical depres-
sion, or anxiety disorder. Neuropsychological assessment and 
MR brain imaging corroborated the syndromic diagnosis in all 
patients. Clinical, demographic, and neuropsychological charac-
teristics of all participants are summarized in Table 1. Participant 
groups did not differ significantly in age or gender, symptom 
duration, or use of antihypertensive medication; no participant 
was taking cardiac rate-limiting medication. The study was 
approved by the local ethics committee and all participants gave 
informed consent.

heartbeat counting Task
We adapted a previously described heartbeat counting task as a 
measure of interoceptive accuracy (2, 3). Participants were asked 
to try to identify their heartbeats by “listening to their body” 
(rather than feeling their pulse) and were first familiarized with the 
paradigm to ensure they understood the task. ECG was recorded 
continuously from electrodes placed over the right clavicle and 
left iliac crest. During the experiment, the number of sensed 
beats was reported for four epochs of variable duration (25, 35, 
45, and 100 s) signaled by start and stop tones and presented in 
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TaBle 1 | Clinical and neuropsychological characteristics of participant groups.

characteristic controls bvFTD svPPa nfvPPa

Demographic and clinical
No (m:f) 8:11 13:3 5:2 4:5
Age (years) 68.8 (5.5) 65.8 (7.3) 65.9 (7.4) 69.6 (6.5)
Handedness (R:L:A) 17:1:1 15:1:0 7:0:0 7:2:0
MMSE (/30) 29.6 (0.6) 24.6 (4.5)a 22.6 (5.8)a 23.7 (6.0)a

Duration (years) N/A 7.6 (4.7) 4.4 (2.0) 4.6 (2.2)
EX N/A 5.4 (4.7)d 9.5 (2.3)d 20.0 (7.6)
Mean heart rate 69.5 (10.2)d 72.5 (12.9) 69.7 (5.2)d 85.5 (17.1)

neuropsychological
General intellect
WASI verbal IQ 125.4 (7.0) 86.4 (22.4)a 78.6 (20.4)a 80.0 (17.3)a

WASI performance IQ 125.1 (9.7) 102.44 (21.4)a 112.3 (20.1) 98.8 (21.5)a

episodic memory
RMT words (/50) 49.3 (0.9) 36.2 (8.0)a 30.3 (6.9)a,d 41.4 (9.5)a

RMT faces (/50) 44.7 (3.7) 34.0 (7.6)a 32.7 (6.4)a 39.5 (6.6)
Camden PAL (/24) 20.3 (3.5) 10.5 (7.5)a 2.7 (4.2)a,b,d 16.3 (7.8)

executive skills
WASI block design (/71) 46.0 (10.1) 32.6 (19.2) 41.6 (19.0) 25.1 (19.7)a

WASI matrices (/32) 26.6 (4.1) 17.8 (9.4)a 21.7 (8.5) 17.4 (9.0)a

WMS-R digit span forward (max) 7.1 (1.2) 6.6 (1.2) 7.0 (1.2) 4.8 (0.8)a,b,c

WMS-R digit span reverse (max) 5.6 (1.3) 4.4 (1.4) 5.1 (2.0) 3.0 (0.7)a

D-KEFS Stroop color naming (s) 32.4 (6.4)b,d 49.5 (20.8)d 50.3 (27.9)d 87.0 (6.7)
D-KEFS Stroop word reading (s) 23.5 (5.7)d 35.9 (22.2)d 30.9 (19.2)d 85.4 (10.3)
D-KEFS Stroop interference (s) 56.2 (16.9)b,d 103.3 (47.3)d 82.7 (50.5)d 165.0 (30.8)
Letter fluency (F: total) 18.1 (5.7) 7.6 (4.4)a 9.7 (7.2)a 3.5 (1.7)a

Category fluency (animals: total) 24.7 (5.9) 11.6 (6.2)a 6.7 (5.4)a 8.8 (3.5)a

Trails A (s) 32.2 (5.6)b,d 59.5 (33.5) 47.0 (21.0) 81.7 (48.4)
Trails B (s) 66.1 (20.5)b,d 184.1 (89.0) 133.6 (110.1) 211.1 (94.6)

language skills
WASI vocabulary 72.2 (3.4) 42.6 (21.8)a 34.7 (22.7)a 31.7 (13.9)a

BPVS 148.5 (1.1) 123.8 (35.3)a 94.4 (49.4)a,d 142.6 (10.1)
GNT 26.3 (2.4) 10.6 (9.8)a 2.0 (5.3)a,b,d 15.5 (6.6)a

Posterior cortical skills
GDA (/24) 15.8 (5.4) 7.8 (5.7)a 11.3 (8.3) 5.4 (1.9)a

VOSP Object Decision (/20) 19.1 (1.6) 15.6 (3.0)a 15.7 (5.1) 15.3 (4.7)a

Mean (SD) scores are shown unless otherwise indicated; maximum scores are shown after tests (in parentheses).
aSignificantly less than controls, bsignificantly less than bvFTD, csignificantly less than SD, dsignificantly less than PNFA (all p < 0.05).
BPVS, British Picture Vocabulary Scale (31); category fluency for animal category and letter fluency for the letter F in 1 min (32); EX, sensitivity to the emotions of others component 
of the Revised Self-Monitoring Scale (33); GDA, Graded Difficulty Arithmetic (34); GNT, Graded Naming Test (35); MMSE, Mini-Mental State Examination score (36); N/A, not 
assessed; PAL, Paired Associate Learning test (37); RMT, Recognition Memory Test (38); Stroop D-KEFS, Delis Kaplan Executive System (39); Trails-making task based on maximum 
time achievable 2.5 min on task A, 5 min on task B (40); VOSP, Visual Object and Spatial Perception Battery (41); WAIS-R, Wechsler Adult Intelligence Scale – Revised (42); WASI, 
Wechsler Abbreviated Scale of Intelligence (43); WMS, Wechsler Memory Scale (44).
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randomized order, to preclude anticipation or guessing based on 
previous epochs. For each participant, an interoceptive accuracy 
index (IA) was calculated based on an established method as 
follows (3):

 

1  actual beats  reported beats
actual beats reported 

− −
/ (( + bbeats) )./ 2  

emotional sensitivity rating
Patients’ caregivers completed the Sensitivity to Socioemotional 
Expressiveness Score (EX) component of the Revised Self-
Monitoring Scale (33), a daily-life index of sensitivity to the 
emotions of others.

Data analysis
Between-group differences were assessed using ANOVAs, except 
where the homogeneity of variance assumption was violated, 

when Welch’s F test and Games Howell post hoc tests (a multiple 
comparison procedure without the assumption of homosce-
dasticity) were used. In addition, we assessed correlations of IA 
with EX (sensitivity to others’ emotions), auditory reverse digit 
span (a standard index of nonverbal sensory working memory), 
British Picture Vocabulary score (a standard measure of semantic 
comprehension), and mean heart rate (a peripheral interoceptive 
signal characteristic). A threshold p < 0.05 was accepted as the 
significance criterion for all tests.

Brain image acquisition and analysis
Each patient had a sagittal 3-D magnetization-prepared rapid-
gradient-echo T1-weighted volumetric brain MR sequence (TE/
TR/TI 2.9/2,200/900  ms, dimensions 256 256 208, voxel size 
1.1  mm3), acquired on a Siemens Trio 3  T MRI scanner using 
a 32-channel phased-array head-coil. Normalization, segmenta-
tion, and modulation of gray and white matter images were 
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FigUre 1 | Interoceptive accuracy in participant groups: behavioral and 
voxel-based morphometry data. The plots (above) show individual raw data 
for accuracy on the heartbeat counting task expressed as an interoceptive 
accuracy index (see text) in each participant group. Error bars represent 
SEM. The statistical parametric map of regional gray matter volume 
associated with interoceptive accuracy in the impaired svPPA group (below) 
has been overlaid on representative sections of the normalized study-specific 
T1-weighted group mean brain MR image; the MNI coordinate (millimeters) of 
the plane of each section is indicated. The color barcodes T values; the SPM 
is thresholded here at p < 0.001 uncorrected over the whole brain for display 
purpose. Regional local maxima were significant at p < 0.05FWE corrected for 
multiple comparisons over the whole brain (right amygdala, MNI coordinates 
[18 −15 −21]) or within pre-specified anatomical regions of interest (anterior 
cingulate cortex [4 0 34]; posterior cingulate cortex [2 −30 28]; right insula 
[44 −4 −3]). bvFTD, patients with behavioral variant frontotemporal dementia; 
Control, healthy control group; L, left; nfvPPA, patients with nonfluent variant 
primary progressive aphasia; svPPA, patients with semantic variant primary 
progressive aphasia.
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performed using SPM121 with default parameter settings and 
gray matter images were smoothed using a 6 mm full width-at-
half-maximum Gaussian kernel. A study-specific template mean 
brain image was created by warping all bias-corrected native 
space brain images to the final DARTEL template and calculat-
ing the average of the warped brain images. Total intracranial 
volume (TIV) was calculated for each patient by summing gray 
matter, white matter, and cerebrospinal fluid volumes following 
segmentation of all three tissue classes.

A full factorial model was used to assess associations between 
IA and regional gray matter volume (voxel intensity) within each 
syndromic group, incorporating age and TIV as covariates of 
no interest. Statistical parametric maps of regional gray matter 
associations were assessed at threshold p < 0.05 after family-wise 
error (FWE) correction for multiple voxel-wise comparisons 
within pre-determined regions of interest [cingulate cortex, 
insula, and amygdala (17, 18) defined from the Harvard-Oxford 
Brain Atlas].2

resUlTs

Interoceptive accuracy data and neuroanatomical correlates are 
presented in Figure 1.

The homogeneity of variance assumption was violated for IA 
data (Levene’s test p = 0.001). Welch’s F test revealed a main effect 
of participant group on IA (p = 0.021). Games Howell post hoc 
tests showed that IA was significantly lower in the svPPA group 
than healthy controls (p = 0.022). No other significant group dif-
ferences were identified for IA. Mean EX was significantly higher 
in the nfvPPA group than the other patient groups (p < 0.001) but 
did not differ between the bvFTD and svPPA groups (p = 0.29). 
Across the patient cohort, there was a significant positive cor-
relation between IA and EX (rho  =  0.516, p  =  0.004); there 
was no significant association between IA and reverse digit 
span (rho = 0.133, p = 0.372), British Picture Vocabulary Score 
(rho = 0.242, p = 0.09), mean heart rate (rho = 0.038, p = 0.8), age 
(rho = −0.062, p = 0.67), disease duration (rho = −0.1, p = 0.59), 
or antihypertensive use (p = 0.5).

In the svPPA group, IA was significantly positively associated 
with gray matter volume in right amygdala, right anterior, and 
posterior cingulate cortex and right insula (all p < 0.05FWE within 
pre-specified regions of interest). No significant gray matter 
associations were identified at the prescribed threshold in the 
other patient groups.

DiscUssiOn

Our findings demonstrate that interoceptive accuracy is impaired 
in svPPA relative to healthy older individuals. There was a wide 
range of IA scores in the control group, as typically found in 
studies of healthy individuals (3, 13). Overall performance in 
the control group was lower than typically found in studies of 
younger subjects, with several being unable to detect heartbeats, 
but this is consistent with evidence that interoception declines 

1 www.fil.ion.ucl.ac.uk/spm.
2 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases.

with age (45–47). Over the patient cohort, impaired IA did not 
correlate with any reduction in generic sensory monitoring, 
semantic capacity, or peripheral interoceptive signal. In line 
with current models of interoception (3, 17, 18) and evidence 
for abnormal processing of homeostatic and affective signals in 
FTD syndromes (21), the findings suggest that svPPA affects the 
initial cognitive decoding of interoceptive signals. Interoceptive 
accuracy in the patient cohort was correlated with sensitivity to 
others’ emotions: coupled with evidence in the healthy brain (3, 
8–10, 17, 18), this suggests that degraded inference of others’ 
emotions from one’s own embodied responses might serve as 
a generic mechanism for the blunted emotional reactivity and 
empathy loss that characterizes FTD and may be particularly 
pervasive in svPPA (20). Moreover, interoceptive impairment 
is a plausible mechanism for the severe impoverishment of self-
projection described in svPPA, and for the increased dependency 
on exteroceptive signals found in these patients (24, 27).

Emotional sensitivity was comparably reduced in both the 
svPPA and bvFTD groups (relative to the nfvPPA group) here, 
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while bvFTD has been associated with impaired interoceptive 
awareness in previous work (26). Taken together with the present 
findings, the emerging picture suggests a complex stratification 
of autonomic abnormalities across FTD syndromes: autonomic 
reactivity in these syndromes may be differentially altered under 
particular conditions (such as detection of salient changes in self 
or environment versus monitoring of bodily states) (21, 26). FTD 
syndromes may target separable levels of interoceptive process-
ing, svPPA producing a more fundamental deficit of interocep-
tive signal analysis and decoding of autonomic responses to 
emotion, while bvFTD impairs autonomic reactivity and the 
metacognitive analysis of body state representations in self and 
others (22, 48, 49). The neuroanatomical substrate for impaired 
interoceptive accuracy in the present svPPA group comprised 
a rightward-asymmetric cingulo-insulo-amygdalar network: 
this network is encompassed by the distributed atrophy profile 
of svPPA (28), has been previously implicated in interoception 
both in the healthy brain and disease states (17, 18, 26), and is 
well-placed anatomically to integrate homeostatic and external 
socioemotional signals in building representations of self and 
others (5).

This small study provides proof of principle for further sys-
tematic investigation of interoception as an attractive, novel para-
digm for deconstructing complex deficits of emotional reactivity, 
empathy, and self-awareness in neurodegenerative syndromes. At 
present, we lack quantifiable metrics for cardinal socioemotional 
symptoms of dementia. Interoception may plausibly underpin 
such symptoms and can be assessed using simple, objectively veri-
fiable procedures. Clearly, the variation in intrinsic interoceptive 
sensitivity among healthy people will need to be taken into account 
in applying interoceptive measures in clinical settings. However, 
acknowledging this caveat, interoceptive sensitivity warrants 
further evaluation, both as a potential biomarker in individuals 
with retained baseline capacity to perform the task and to identify 
neuroanatomical and physiological correlates, which might yield 
outcome measures in clinical trials. Future work should assess dif-
ferent interoceptive dimensions longitudinally, in larger cohorts 
sampling representatively across syndromes and with molecular 
correlation, to determine the reliability, sensitivity, and specificity 
of potential interoceptive biomarkers. Larger studies with greater 
power may additionally reveal less profound interoceptive deficits 
within the heterogeneous bvFTD population. Control conditions 
involving exteroceptive counting tasks of comparable difficulty 

might help to further disambiguate interoceptive deficits from 
other cognitive difficulties impairing task performance. The use 
of passive interoception tasks such as those based on stimulus 
timing in the cardiac cycle and measurement of heartbeat-evoked 
potentials would also be of value to provide further confirmation 
that deficits in interoceptive reporting are not confounded by 
other neuropsychological impairments (12, 50).
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