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Sensory dysfunction is a core symptom of autism spectrum disorder (ASD), and 
abnormalities with sensory responsivity and processing can be extremely debilitating to 
ASD patients and their families. However, relatively little is known about the underlying 
neuroanatomical and neurophysiological factors that lead to sensory abnormalities in 
ASD. Investigation into these aspects of ASD could lead to significant advancements in 
our general knowledge about ASD, as well as provide targets for treatment and inform 
diagnostic procedures. Thus, the current study aimed to measure the covariation of 
volumes of brain structures (i.e., structural magnetic resonance imaging) that may be 
involved in abnormal sensory processing, in order to infer connectivity of these brain 
regions. Specifically, we quantified the structural covariation of sensory-related cerebral 
cortical structures, in addition to the cerebellum and amygdala by computing partial 
correlations between the structural volumes of these structures. These analyses were 
performed in participants with ASD (n  =  36), as well as typically developing peers 
(n =  32). Results showed decreased structural covariation between sensory-related 
cortical structures, especially between the left and right cerebral hemispheres, in 
participants with ASD. In contrast, these same participants presented with increased 
structural covariation of structures in the right cerebral hemisphere. Additionally, 
sensory-related cerebral structures exhibited decreased structural covariation with 
functionally identified cerebellar networks. Also, the left amygdala showed significantly 
increased structural covariation with cerebral structures related to visual processing. 
Taken together, these results may suggest several patterns of altered connectivity both 
within and between cerebral cortices and other brain structures that may be related to 
sensory processing.
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inTrODUcTiOn

Diagnostic criteria for autism spectrum disorder (ASD) underwent revision in 2013 [DSM 5 
(1)]. One major change to the criteria is that sensory dysfunction was added as a symptom area 
able to meet criterion B.4 (restricted and repetitive behaviors, interests, or activities), highlight­
ing its importance as a core feature of ASD. Despite this recent recognition, as well as estimates 
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of the prevalence of sensory problems in ASD exceeding  
90% (2–5), sensory dysfunction in ASD is poorly understood.  
This gap is especially notable with respect to the neuro­
biological underpinnings of sensory dysfunction (6). Gaining 
knowledge about sensory dysfunction in ASD is needed in 
order to devise ways to ameliorate their debilitating effects on 
patients and their families. Neuroimaging techniques, such as 
magnetic resonance imaging (MRI), can provide opportuni­
ties to better describe neurophysiologic correlates of sensory 
dysfunction in humans with ASD. The current study aimed 
to investigate anatomical relationships between cortical and 
subcortical structures involved in sensory processing as well 
as the cerebellum and amygdala as an initial step toward 
examining the neurobiological underpinnings of sensory dys­
function in ASD.

Changes in brain connectivity are a theme emerging across 
several theories of ASD [i.e., Weak Central Coherence, Predic­
tive Coding, Reduced Sensory Precision, Temporal Binding 
Deficit, and Excitatory/Inhibitory Imbalance; e.g., (7–16)].  
These perspectives suggest that phenotypes associated with  
ASD are subserved by deficits in distributed neurological 
networks, rather than single portions of the brain. Indeed, the 
available literature on the neural bases of sensory dysfunc­
tion in ASD suggests that unisensory subcortical and cortical 
processing, though involved, is likely not the only process 
contributing to abnormal sensory responsivity (17). Rather, 
evidence points to other, supra­modal, brain structures that 
may also be involved in sensory dysfunction. For example, one 
of the most often reported structural abnormalities in ASD is  
found in the cerebellum (18–24). Both Purkinje cell loss 
(18) and decreased cerebellar gray matter volumes (19–22,  
25, 26) have consistently been shown in ASD relative to con­
trol subjects. While the cerebellum is typically thought of in 
terms of its role in motor function (27), the cerebellum also  
plays a role in both multisensory integration (24, 28) and 
prediction of sensory input (29). Its multisensory integration 
function is supported by the fact that the cerebellum receives 
projections from all sensory modalities and the areas of the 
cerebellum to which these sensory systems project often over­
lap (24, 30). For instance, self­motion requires integration of 
vestibular, visual, proprioceptive, and somatosensory informa­
tion. Specifically, vestibular and proprioceptive information is 
combined with multiple sensory modalitys’ information in 
the cerebellum to generate representations about head and 
body position, translation, and tilt, and heading direction 
(17). A cerebellar deficiency would therefore negatively affect 
responses to sensory stimuli, regardless of the modality, by 
hampering multisensory integration, and both the ability to 
anticipate sensory events and prepare appropriate response to 
the same.

Additionally, overstimulation perceived as threatening could 
be related to enhanced fear responses in ASD, which would likely 
be mediated by non­sensory­specific brain regions (31–33). 
Following this line of reasoning, the amygdala could be postu­
lated as involved in the abnormal sensory responsivity in ASD, 
given its classic role in fear processing, its connections to sensory 
systems, and oft reported abnormalities in ASD (6, 34–36). For 

example, it has been shown that the degree to which the amygdala 
is stimulated during a sensory event predicts the extent to which 
that sensory experience is deemed unpleasant or threatening (34). 
Thus, it is plausible to hypothesize that in addition to sensory­ 
specific cortical regions, other brain areas such as the cerebellum 
and amygdala may be critical to sensory dysfunction and reacti­
vity in ASD.

Establishing the notion of distributed network involvement 
in sensory dysfunction necessitates measures of neural con­
nectivity and co­activation. For instance, studies involving 
functional connectivity (i.e., covariation of the BOLD response 
between regions of interest in the brain) have shown sig­
nificant differences between participants with ASD and those 
who were typically developing [TD (37–40)]. One of the most 
common functional connectivity findings reveals that local, 
within­region connectivity is enhanced, while long­range 
connections appear weakened in ASD, relative to controls, 
especially in the default mode network [DMN (11–13, 15,  
29, 37, 41–44)]. In addition to functional connectivity, some 
previous reports have also shown significant differences 
between those with ASD and TD peers in the structural features 
of their brains [see Pua et al. (45) for a review]. Furthermore, 
the covariation of structural attributes of distinct brain regions 
(i.e., volume, thickness, surface area) has recently been used 
as a measure of connectivity (46). This type of analysis has 
been termed morphological connectivity, although to avoid 
conflating the term with more direct functional and structural 
metrics of connectivity, we prefer the term covariation. The 
assumption of morphological covariation is that regions of the 
brain that are connected and co­active also tend to covary in 
their structural characteristics. These structural relationships 
may be mediated by common experience­dependent plastic­
ity or mutually trophic influences (46). A number of studies 
have found significant results using structural/morphological 
covariation as a measure of related brain regions in ASD vs. 
TD controls (47, 48). In fact, recently, several investigations 
have reported findings that support the use of morphological 
covariation as a means to distinguish participants with ASD 
from TD subjects (48). However, no study of morphological 
covariation in ASD has focused specifically on neural centers 
related to sensory processing and dysfunction, to our knowl­
edge. Thus, the current investigation aimed to evaluate the 
morphological covariation between cortical regions known to 
be associated with sensory function, such as the temporal and 
occipital cortices and post­central gyrus, as well as supramodal 
brain areas that may be instrumental in sensory processing 
and dysfunction in ASD, including the cerebellum, amygdala, 
and language­related areas (e.g., supramarginal gyrus and 
caudal medial prefrontal cortex). We hypothesized that local 
morphological covariation would be enhanced, while long­
range covariation would be decreased in individuals with 
ASD, compared to controls. Additionally, we predicted that 
structural correlations between the cerebellum and sensory 
cortices would be weaker in ASD compared with controls. 
Finally, we hypothesized that sensory cortices would exhibit 
stronger covariance to the amygdala in those with ASD relative 
to matched controls.

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


3

Cardon et al. Sensory Structural Covariance in Autism

Frontiers in Neurology | www.frontiersin.org November 2017 | Volume 8 | Article 615

MaTerials anD MeThODs

Participants
Participants for the current study consisted of two groups of 
male participants: (1) individuals with ASD (n  =  36; mean 
age = 18.24 years, SD = 9.9); (2) TD individuals (n = 32; mean 
age  =  18.9  years, SD  =  12.28). Ages of these groups did not 
differ significantly [t(66) = −0.26, p = 0.80]. ASD subjects were 
diagnosed using a convergence of meeting criteria on (1) the 
Autism Diagnostic Observation Schedule—Generic [ADOS­G 
(49)], (2) the Autism Diagnostic Interview Revised (ADITM­R) 
(50) or Social Communication Questionnaire [SCQ (51)], and 
(3) confirmation of the diagnosis by a clinical psychologist with 
expertise in ASD using a DSM­IV checklist during a clinical 
interview. A second psychologist reviewed case diagnostic data 
and independently formulated a DSM­IV diagnosis. The ASD 
diagnosis therefore employed DSM­IV criteria and included 
Autistic Disorder (n  =  19), Asperger’s Syndrome (n  =  15), 
and PDD­NOS (n = 2). Agreement on ASD vs. not ASD was 
100% and agreement on specific ASD sub­diagnosis was 88%. 
Severity of ASD symptoms was measured using the Social 
Responsiveness Scale, Second Edition [(52); SRS­2], a 65­item 
questionnaire that measures several aspects of social function­
ing that accurately distinguish ASD from other psychiatric 
disorders. As a group, those with ASD presented with a mean 
score of 96.79 (SD  =  25.5), which is in the severe symptom 
range and is highly indicative of clinical diagnoses of ASD. 
Non­verbal IQ (Wechsler Abbreviated Scale of Intelligence) 
scores were available in a subset of individuals from both the 
ASD (n  =  32) and TD (n  =  27) groups and were as follows: 
ASD—mean IQ = 111.19, SD = 14.95; TD—mean IQ = 116.26, 
SD = 12.46. The ASD and TD groups did not differ significantly 
in non­verbal IQ (t = −1.39; p = 0.25). Individuals were excluded 
from the study if they: (1) had a known genetic etiology of ASD 
(e.g., Fragile X Syndrome, Tuberous Sclerosis, 15q syndrome, 
etc.); (2) had a full­scale IQ below 70; (3) had a history of 
seizure disorder; or (4) had a history of brain injury, stroke, 
or other neurological disorder. All participants were recruited 
in accordance with human subjects protection policies of the 
Colorado Multiple Institutional Review Board (COMIRB) of 
the University of Colorado Denver Anschutz Medical Campus, 
where MRI scanning took place.

Mri acquisition
The T1­weighted structural MRI scan data used in the current 
study were obtained from participants in an NIH­funded study 
to DCR concerning magnetoencephalographic brain activity 
in ASD, and as such were not specifically acquired to answer 
questions of sensory processing abnormality. The data were 
acquired using a 3.0  T GE Signa HDx long­bore MR scanner 
(General Electric Hardware, WI, USA) together with a GE 
8­channel phased­array head coil. In order to minimize partici­
pant motion and to improve compliance, subjects were allowed 
to watch and listen to a movie through MR compatible goggles 
and head phones (Resonance Technology, Inc., Northridge, CA, 
USA). For tissue segmentation, a T1­weighted sequence was 
acquired using a 3D inversion recovery, fast, spoiled gradient 

echo (IR­SPGR) technique (matrix  =  2562, FOV 22  cm, TR/
TE/TI  =  10/3/450  ms, NEX  =  1). MR acquisitions resulted 
in 138, 1.2 mm thick axial slices with an in­plane resolution of  
0.86 mm2.

structural covariation and statistical 
analysis
Volumetric measurements for the sensory and supramodal 
structures of interest were calculated using the Freesurfer  
5.3 image analysis suite (http://surfer.nmr.mgh.harvard.edu/). 
Free surfer has been used widely to perform automatic volu­
metric calculation and has shown good test–retest reliability 
across manu facturers of MR scanners, as well as field strengths 
(53, 54). The details behind the extraction of volumetric data 
have been well described in previous publications (53–66).  
In general, cortical surface reconstruction was performed via 
the following preprocessing steps: intensity normalization, 
skull stripping, pial surface generation, and use of triangular 
tessellation to generate a white/gray matter boundary [as in 
Tanabe et  al. (67)]. Manual edits were made to volumes and 
surfaces as needed to correct issues remaining after automated 
processes.

Fifty­four anatomically distinct brain regions were included 
in the volumetric analysis (68). In general, the structures con­
sisted of subdivisions of the frontal, temporal, occipital, and 
parietal cortices, as well as the amygdala. In addition, informa­
tion regarding the volumes of the cerebellar hemispheres and 
seven functionally distinct cerebellar networks was extracted 
from the structural MRI scan by applying a cerebellar network 
template (69, 70) to participants’ scans. Once obtained, volu­
metric data were entered into the SPSS software package and 
Matlab for statistical analysis [(71); version 23; The Mathworks, 
version 2014b with Statistical Toolbox]. In order to compare 
volumetric data between groups, a general linear model was 
formed with structural volumes as the dependent variables, 
diagnosis as the independent variable, and intracranial volume 
as a covariate. Findings from this test were subjected to multi­
ple comparisons adjustment using a false discovery rate (FDR) 
adjustment procedure [q =  0.1 (72)]. Following this between 
groups analysis, partial (i.e., removing the effects of intracranial 
volume and age) correlation coefficients were permuted (rand­
omized labeling exchanges between subjects) between all struc­
ture pairs (10,000 permutations for each pair). Non­parametric 
p­values were then obtained by taking the number of permuted 
partial correlation coefficients higher than the actual partial 
correlation for each pair by the total number of permutations 
(absolute values of the coefficients were used in this procedure 
to yield two­tailed results). These non­parametric partial cor­
relation p­values were then subjected to multiple comparisons 
adjustment by FDR.

Finally, between group differences in the correlation data were 
assessed for all structure pairings as follows: (1) a Fisher’s r to 
z transform was computed to obtain z­scores, (2) z­scores were 
compared according to the formula from Cohen and Cohen (73), 
and (3) p­values were obtained via permutations of the group 
membership (10,000 permutations each with randomized group 
label exchanges).
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resUlTs

Between group structural Volumetric 
comparisons
All volume statistics included intracranial volume as covari­
ates to account for general variability of brain size. Between 
groups comparison of absolute structural volumes revealed 
that several structures differed significantly between the ASD 
and TD groups. For example, the left and right transverse tem­
poral volumes were significantly larger in the ASD vs. the TD 
group [left: F(1, 54) = 13.73; q = 0.00; right: F(1, 54) = 10.99; 
q = 0.03]. On the other hand, the right banks of the superior 
tempo ral sulcus was significantly smaller in the ASD group  
[F(1, 54)  =  10.91; q  =  0.03]. Also, the nucleus accumbens 
from both the left and right hemispheres were both sig­
nificantly smaller overall in the participants with ASD [left: 
F(1, 54) =  7.77; q =  0.08; right: F(1, 54) =  16.12; q =  0.00]. 
Significance, mean, and SD volume values can be seen in Table 
S1 in Supplementary Material. Significant differences in these 
particular brain regions, which are highly associated with 
sensory processing, may be related to abnormalities in sensory 
function in the ASD group.

sensory cortical structural covariance
The structural (i.e., partial) correlations that remained sig­
nificant following multiple comparisons correction for both the 
ASD and TD groups can be seen in Figure 1. These data reveal 
several notable findings with respect to the hypotheses of the 
current study. For instance, subjects with ASD present with few 
significant correlations between the right and left hemispheres 

compared to TD participants (i.e., inter­hemispheric covari­
ation). In contrast, significant within hemisphere (i.e., intra­
hemispheric covariation) structural correlations seem more 
abundant than inter­hemispheric correlations in the ASD 
group, especially within the right hemisphere.

Between groups comparison of  
structural covariation
In order to examine between group differences in structural 
covariation, we plotted the z­scores of the correlations that 
were significantly different between groups (i.e., Fisher’s  
z transform). These data can be seen in Figure 2. In this figure, 
blue cells are indicative of correlations that were stronger in the 
TD group, while red cells show correlations that were stronger 
in the ASD group. Consistent with the above results, overall, 
the TD group showed significantly stronger inter­hemispheric 
and cerebellar cortex–functional cerebellar network correla­
tions than the ASD group. On the other hand, the ASD par­
ticipants presented with significantly more intra­hemispheric 
correlations.

Also germane to the current hypotheses, the functional net­
works of the cerebellum (69, 70) showed fewer correlations with 
sensory­related structures in the ASD group, vs. controls. Notably, 
the control group showed significant covariation between the 
cerebellar network associated with somatomotor function and 
the left pericalcarine (z = −2.04; p = 0.03), superior temporal 
(z = −1.90; p =  0.03), and transtemporal cortices (z = −2.34; 
p = 0.03). Additionally, this group exhibited several significant 
correlations between the dorsal attention functional cerebel­
lar networks and visual cortices [i.e., left cuneus (z  =  −2.15; 
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p  =  0.04) and pericalcarine cortex (z  =  −2.42; p  =  0.04)].  
In contrast, the ASD group did not show any significant corre­
lations in the above areas.

In the between groups comparison, the covariation between 
the amygdala and sensory­related structures showed the oppo­
site pattern compared to the cerebellum. That is, the TD group 
showed no significantly stronger correlations with the amygdala, 
while those with ASD showed several correlations of note. For 
instance, the volume of the left amygdala was more strongly 
correlated with several cortical areas associated with visual pro­
cessing, including some highly implicated in facial processing 
[i.e., right pericalcarine (z = 2.29; p = 0.05), lingual (z = 2.91; 
p = 0.03), inferior temporal (z = 2.45; p = 0.04), and fusiform 
cortices (z = 2.48; p = 0.04)].

DiscUssiOn

The results of the current study suggest that individuals with 
ASD present with altered structural volumes and covariance in 
brain regions that may be associated with sensory processing 
and reactivity, prediction, and emotion. The following findings 
support these notions: (i) participants with ASD exhibited larger 
right and left transverse temporal gyrus volumes, while these 
same subjects presented with smaller overall volumes of the right 
banks of the STS, and left and right nucleus accumbens, relative 
to TD participants (see Between Group Structural Volumetric 
Comparisons); (ii) increased covariation was seen between 
structural volumes of sensory­related cortices within the right 
and, to a lesser degree, left hemispheres of persons with ASD 
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vs. TD subjects. In contrast, ASD participants showed decreased 
covariation of structural volumes of sensory­related cortices 
between the right and left cerebral hemispheres, compared to 
the TD group (Figures  1 and 2); (iii) overall, the ASD group 
showed differences in structural covariation between the cerebel­
lum and sensory­related cerebrum, in contrast to the TD group 
(Figure 2); (iv) the ASD group presented with a greater number 
of significant amygdala–sensory cortical correlations than TD 
peers, especially in the right hemisphere. Furthermore, the 
amygdalae of ASD participants showed significantly increased 
average structural volumetric correlations to the right occipital 
and temporal cortices (Figure 2).

inter- vs. intra-hemispheric correlations 
of sensory cortical structures
Various studies, using both structural and functional techniques, 
have demonstrated altered cortical network characteristics in 
ASD. Probably the most common finding among these studies 
concerns local hyperconnectivity, with hypo­connectivity of 
long­range circuits (12, 13, 15, 38, 74–78). This type of result 
has been shown, for example, in the DMN, in which increased 
connectivity was seen in local network nodes, while longer­
range connections running in an anterior–posterior orientation 
were compromised (38, 76). Additionally, decreased inter­
hemispheric and cerebellar­cerebral (i.e., long­range) resting 
sate functional connectivity (75, 79), as well as increased right 
hemisphere connectivity [i.e., shorter­range (76, 80)] have 
been reported in ASD. Such a connectivity pattern might leave 
specialized information processing units isolated from other 
brain regions, because of the lack of global connectivity (7, 8). 
The results of the current study, indicating that local correla­
tion within both cortical hemispheres was increased, coupled 
with decreased inter­hemispheric correlations, are consistent 
with the above notions. This structural covariance pattern may 
reflect hyperconnectivity of specialized local sensory networks 
and isolation of the same due to deficient inter­hemispheric 
connections. Within local networks, this type of finding may 
be related to behavioral hyper­arousal and hyper­focus on 
certain sensory inputs in ASD (81–83). Also, both short­ and 
long­range sensory covariance results could be associated with 
symptoms of weak central coherence—another commonly 
reported theory in ASD (7).

One area of sensory processing that has been highly imp­
licated in ASD is multisensory integration. That is, numerous 
investigators have argued that individuals with ASD have dif­
ficulty processing various streams of simultaneous sensory input  
[see Marco et  al. (4), for a review]. Indeed, neurophysio logic 
find ings have corroborated these arguments. For instance, sub­
jects with ASD have been shown to have deficits in processing 
illusions, such as the McGurk effect, which rely on integration 
of multiple sensory inputs (84). Findings from the current study 
may elucidate neurobiological underpinnings of these deficien­
cies in multisensory integration. For instance, the clear lack of 
volumetric correlation between the cerebral hemispheres may 
suggest that sensory cortices are not communicating with each 
other normally, assuming that such communication results in 

mutually trophic influence. Such a lack of neural connectivity 
could contribute to disordered multisensory integration. That is, 
white matter abnormalities can lead to deficiencies in processing 
the precise timing of action potentials, which is a prerequisite for 
accurate sensory processing and multisensory integration (85). 
One previous study showed significant correlations between 
behavioral measures of sensory processing and multisensory 
integration and white matter abnormalities, including those in 
the mid posterior region of the corpus callosum, in children with 
sensory processing disorder (85).

cerebellum–cortex correlations
The difference in significant cerebellar–cortex correlations seen 
in the present study between the ASD and TD groups may  
be indicative of altered connectivity between these brain regions 
in the former. Decreased covariation between cerebellum and 
sensory cortices could be related to abnormal sensory reactivity 
in ASD in a number of ways. For instance, Courchesne and Allen 
(29) have theorized that the cerebellum monitors sensory inputs 
and uses them to create predictions of future events, based on 
past experience, and then prepares the organism to respond 
to these stimuli. Disruptions in this predictive ability tend to 
lead to deficiencies in predicting sensory events and adaptive 
responses to the same. Differences between predicted sensory 
occurrences and actual sensory input (i.e., prediction errors) 
could lead to sensory stimulation being perceived as strange, 
unpleasant, surprising, and/or overwhelming (16, 29, 86, 87). 
Given the cellular, structural, and functional connectivity­based 
abnormalities that have been reported in ASD (18, 19, 21, 79), 
the sensory inputs to the cerebellum, and its role in prediction, 
one might reason that cerebellar deficiency might plausibly be 
related to sensory dysfunction in ASD. Additionally, the cer­
ebellum may play an important role in multisensory integration  
(24, 28), as it typically receives and sends projections from and to 
sensory cortices. For example, many of these projections come 
from the superior colliculus (SC), where, especially, auditory 
and visual sensory inputs are combined to form a multisensory 
representation of various aspects of our environment. Once 
information from the SC is sent to the cerebellum (particu­
larly the vermis, lobules VI and VII), it is modulated—either 
enhanced or depressed—and sent back to the SC, where it is sent 
both to the cortex and subcortical areas. Abnormal integration 
or modulation of multisensory information could lead to inac­
curacies or confusion in their interpretation and the responses to 
the same (24). Thus, it is plausible that the connectivity between 
the cerebellum and sensory cortices contributes a great deal to 
sensory processing, and that abnormalities in these connections 
could lead to sensory malfunction.

amygdala–cortex correlation
It is reasonable to believe that sensory input perceived as 
threatening (i.e., hyper­reactivity) would likely be mediated, at 
least in part, by the amygdala (33). Zald (34) argued that the 
degree to which the amygdala is stimulated during a sensory 
event predicted the extent to which that sensory experience 
was considered unpleasant or threatening. Abnormalities of the 
amygdala have often been reported in ASD. For example, in the 
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VPA rat model of ASD, affected rats were shown to have overac­
tive amygdalae (32), which lead to hyper­reactivity, decreased 
inhibition, and boosted synaptic plasticity. These factors were 
correlated with heightened behavioral fear responsivity in 
these animals. Consistent with animal studies, recent studies 
performed in humans also found ASD subjects’ amygdalae and 
primary auditory and somatosensory cortices to be overreac­
tive during mildly aversive sensory stimuli, when compared to 
controls (6). This and a related study also both showed that the 
BOLD responses of ASD amygdalae were positively correlated 
with behavioral measures of sensory over­reactivity in these 
individuals (6, 36). The current study showed significantly 
increased structural covariance between the amygdalae and 
right occipital and temporal cortices, which may be suggestive of 
hyperconnectivity similar to that reported in the aforementioned 
investigations. Most of the areas that showed a significantly 
higher degree of correlation with the amygdalae of those with 
ASD, vs. TD participants, seem important for facial and human 
body processing—e.g., inferior temporal, fusiform, and lingual 
gyri. Hyperconnectivity between amygdalae and such areas 
may contribute to the social deficits which are common in ASD  
[see Schultz (88), for a review].

hemispheric asymmetry
Hemispheric asymmetries are commonly reported in ASD, 
especially as they relate to cortical regions associated with 
language processing. Some language­related regions such as 
planum temporale exhibit leftward asymmetry (89, 90). In ASD, 
specific asymmetry findings in such structures are mixed, but 
consistently show asymmetry changes (91–93). For example, 
studies by Rojas et al. (91, 92) showed reduced planum tempo­
rale asymmetry, with the left planum temporale smaller in ASD 
subjects. Herbert et al. (94), however, reported increased leftward 
planum temporale asymmetry in boys with autism. Gage et al. 
(93) showed rightward asymmetries for both planum temporale 
and posterior superior temporal gyrus. Such variability may be 
due to the homogeneity of ASD and differences in sample char­
acteristics and/or methods. The present results show larger gray 
matter volumes for both left and right superior temporal gyri in 
the ASD group, relative to controls. In addition, the left superior 
temporal gyri of subjects with ASD showed no indication of being 
larger than their right hemisphere homolog, on average, which 
is consistent with the aforementioned studies. Either or both of 
these current findings have the potential to underlie sensory  
abnormalities.

While asymmetries in absolute volume were not observed  
in the current study, a rightward asymmetry in structural covari­
ance was noted. That is, the average of the structural correla­
tion coefficients between hemispheres was appreciably higher 
in the right hemisphere. Thus, there appears to be a significant 
rightward asymmetry of structural covariance of sensory­
related cortical structures in the current sample. This structural 
covariance asymmetry could be suggestive of hyperconnectivity 
of sensory cortices within the right hemisphere. These findings 
are consistent with results from a number of recent studies 
using functional MRI to evaluate the resting­state functional 
connectivity in the brains of participants with ASD (76, 80). 

Both of these studies noted a pattern of hyperconnectivity in the 
right hemisphere of these subjects vs. controls.

While no study to our knowledge has reported such a struc­
tural covariance finding in the past, there are several potential 
interpretations grounded in the literature that are consistent 
with the current hypothesis. For instance, temporal cortices of 
the right hemisphere have been implicated in paralinguistic and 
pragmatic language processing, with left hemisphere counter­
parts playing an important role in linguistic (e.g., syntax and 
semantics) portions of language. Paralinguistic elements of lan­
guage are important for understanding of communicative intent, 
beyond the literal meaning of words and sentences. These factors 
might include sarcasm, emotional content, metaphors, double 
meanings, other non­literal language, and prosody. The integra­
tion of both the linguistic and paralinguistic parts of language 
is essential for accurate discourse comprehension, and, thus, 
to successful social functioning. Previous studies have shown 
that patients with right hemisphere lesions made significantly 
more mistakes in discourse comprehension. These errors were 
specifically attributable to incorrect inferences about what was 
being said or read, due to patients’ interpretations being overly 
literal, which is also a common phenotype in the ASD population  
[see Mitchell and Crow (95), for a review]. Thus, rightward asym­
metry of structural covariance may represent a dysfunction of 
connectivity between regions that play a role in paralinguistic 
processing.

limitations and Future Directions
While the current study may provide results that are consistent 
with our hypothesis and previous reports of individuals with 
ASD, there are several limitations that we should note. First, 
structural covariance and functional connectivity measures are 
only indirectly related to each other (96). Additionally, structural 
connectivity is more directly measured using diffusion tensor 
imaging (DTI). Furthermore, volume is only one aspect of the 
structures investigated in the current study. Other characteris­
tics, such as thickness, curvature, and surface area could also 
be assessed in future studies, since they may represent different 
properties of cellular organization and/or development (97–99). 
Therefore, the structural covariation results presented here may 
not have direct functional/structural connectivity implications. 
Future studies should endeavor to characterize the link between 
structural covariance and functional/structural connectivity 
in autism. Such a characterization could be useful clinically, as 
structural MRI is in many ways more conveniently collected and 
analyzed than fMRI or DTI, particularly with lower functioning 
individuals with ASD. Covariance features extracted from auto­
mated structural MRI analyses could be amenable for use with 
infants and young children, and other patients who otherwise 
could not participate in fMRI recordings.

Another weakness of the current investigation is that the 
data analyzed here were not specifically collected to examine 
sensory dysfunction in ASD. While this fact should not change 
the structural covariance results, it means that no behavioral 
data related to sensory functioning were collected alongside 
anatomical data. Thus, we were unable to explore any potential 
links between anatomical and behavioral phenomena. Several 
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previous studies have presented data examining relationships 
between structural covariance and behavior. For instance, one 
group has argued that various characteristics of structural covari­
ance are useful as diagnostic predictors of patients with ASD 
(48). In addition, since correlation coefficients are a composite 
measure, we did not have values representing the strength of 
structural covariance for each participant. This sta tistical reality 
meant that we were unable to correlate other factors, such as 
age, with correlation results. Thus, future studies should con­
tinue this line of research in order to determine the association 
between structural covariance, behavior, and demographics, 
and the clinical usefulness of these neuroimaging and analysis  
techniques.
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