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While the spread of some neurodegenerative disease-associated proteinopathies, such 
as tau and α-synuclein, is well studied and clearly implicates transsynaptic pathology 
transmission, research into the progressive spread of amyloid-β pathology has been less 
clear. In fact, prior analyses of transregional amyloid-β pathology spread have implicated 
both transsynaptic and other intracellular- as well as extracellular-based transmission 
mechanisms. We therefore conducted the current meta-analytic analysis to help assess 
whether spatiotemporal amyloid-β pathology development patterns in mouse models, 
where regional proteinopathy is more directly characterizable than in patients, better fit 
with transsynaptic- or extracellular-based theories of pathology spread. We find that, 
consistently across the datasets used in this study, spatiotemporal amyloid-β pathology 
patterns are more consistent with extracellular-based explanations of pathology spread. 
Furthermore, we find that regional levels of amyloid precursor protein in a mouse model 
are also better correlated with expected pathology patterns based on extracellular, rather 
than intracellular or transsynaptic spread.

Keywords: connectomics, neurodegenerative diseases, neurodegeneration, computational modeling, 
proteinopathy, amyloid, amyloid spread

inTrODUcTiOn

Spreading protein pathology is hypothesized by many scientists to underlie the spatiotemporal 
pattern of lesions (1), regional neuronal and volume loss (2, 3), as well as the progression of the 
presentation of symptoms (4) in degenerative diseases. Amyloid-β, the misfolded protein cleaved 
from amyloid precursor protein (APP), is the key constituent of amyloid plaques seen in Alzheimer’s 
disease (AD) and is thought to contribute to the observed toxicity and cell death along with tau 
(5). More current research has shown both misfolded tau and α-synuclein exhibit progressive 
protein pathology with prominent lesions progressing in fairly consistent spatiotemporal patterns 
(6, 7). However, the spread of amyloid-β pathology has not been neatly characterized into stages of 
pathology, with little evidence of focal seeding as is seen for tau or α-synuclein. However, studies 
tracking the spatiotemporal development of amyloid pathology have noted early development 
generally throughout the neocortex (8) with the deposition perhaps initially focused in posterior 
cortical areas (9). The staging research for amyloid pathology development generally shows more 
variance than do tau or α-synuclein staging for particular diseases and generally develops in a less 
focal manner.
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The more focal and ordered staging characterizations for tau 
and α-synuclein, and perhaps underlying biological progres-
sion of pathology, have led to more successful study of the 
potential mechanisms of pathology spread for these proteins. 
For example, a whole litany of patient (3, 10) and mouse model-
based (11–15) studies has looked at whole brain and cellular 
level resolutions and determined that the evidence, regardless 
of resolution of study, is most consistent with a transsynaptic 
and intracellular mechanism of tau spread. In fact, our own 
recent research demonstrates that tau pathology in mouse 
models progression mirrors the network of mouse fiber tracts 
(16). Similarly, regarding α-synuclein, there is strong evidence 
pointing toward transsynaptic and intracellular mechanisms of 
spread, including transfer of pathology from Parkinson’s and 
LBD patient neurons into grafted and implanted cells (17), the 
presence of both misfolded and normal state α-synuclein at the 
synapse (18), and controlled cell-to-cell transfer experiments in 
mice (18) demonstrating that α-synuclein spread occurs trans-
synaptically by virtue of initiation into a set of interconnected 
cells. The success in characterizing the spread mechanisms and 
abilities of tau and α-synuclein are now leading to efforts to slow 
down the progression of proteinopathy as a potential avenue 
for treatment with conditions based on both of these proteins 
(19, 20). However, the study of mechanisms of cell-to-cell or 
region-to-region transfer for amyloid-β pathology has produced 
mixed results.

The spread mechanisms of amyloid-β pathology, in terms of 
causing a misfold in healthy amyloid-β cleavage product, are 
well characterized and relatively similar to those for tau. The 
most accepted model, supported by evidence from patients 
(21), mouse model, and cell lines (5, 22), is that misfolded 
amyloid-β can recruit and induce misfolding in healthy 
protein product amyloid-β. However, unlike the cases of tau 
and α-synuclein, this finding has not helped gain more clarity 
in how amyloid-β pathology spreads transcellulary and tran-
sregionally. Some studies have proposed extracellular mecha-
nisms of spread (23, 24), while other research has implicated 
internalization of amyloid-β as a key element in this protein 
product becoming pathological (5), with other researchers 
building on this finding and demonstrating potential trans-
synaptic and intracellular spread (25, 26). Given the failure of 
clinical trials targeting already misfolded amyloid-β (27, 28), 
we undertake the present research to help resolve inconsist-
ency in understanding the pathology spread mechanisms of 
amyloid-β, with an eye toward beginning to make targeting of 
amyloid-β pathology spread mechanisms an even more viable 
therapeutic option.

In the present study, we hope to add clarity to the amyloid-β 
pathology spread debate by analyzing available data on the pat-
terns of regional amyloid pathology severity and spatiotemporal 
progression in mouse models. We first demonstrate amyloid-β 
pathology patterns in mouse models are not mirrored by the 
mouse connectome, while those of tau pathology, accordant with 
prior research (16), are. Furthermore, a model of connectivity-
based amyloid-β pathology spread fails to recreate spatiotemporal 
patterns of amyloid-β pathology development in a mouse model. 
However, we demonstrate that a model of extracellular, spatial 

proximity-based diffusion (SPD), does recreate the regional 
severity and spatiotemporal progression patterns of amyloid-β 
pathology. Moreover, spatial proximity to amyloid-β pathology  
initiating regions serves as a good proxy for predicting the 
regional severity of said pathology. We conclude that the spread 
of amyloid-β pathology is predominantly driven by extracellular 
means and that the basis for regional vulnerability to amyloid-β 
is how spatially proximal that region is with those already exhibit-
ing pathology.

MaTerials anD MeThODs

study selection for Datasets
Studies were found from a literature search of Web of Science 
and Google Scholar and had to meet the following criteria to 
merit inclusion: they had to be from 2005 onward to assure their 
methodology, and measurements were somewhat current with 
the standards in the field, they had to include data about the 
regional distribution of amyloid pathology from at least 5 different 
regions, and they had to be from mouse models using the APPswe 
mutation and had to assess endogenous pathology development, 
rather than pathology development induced from exogenous 
amyloidogenic seeds. We note that this criterion excludes some 
important studies, such as Ye et al. (24), but uses it nonetheless for 
consistency in our analyses. Amyloidopathy data here come from 
Harris et al. (25) (seven total regions and three timepoints), Bero 
et al. (26) (five total regions, one timepoint), and Lim et al. (29) (five 
total regions and one timepoint). Tau data cited for comparison 
purposes in Figure 2 came from Ahmed et al. (12) (5 total regions,  
1 timepoint), Bolmont et al. (30) (5 total regions, 1 timepoint), 
and Clavaguera et al. (11) (11 total regions, 3 timepoints, only the 
final one used); please refer to the original citations for specific 
methodological questions about any of the above studies.

The allen Brain institute Mouse 
connectivity atlas and generating  
the Directed, Undirected, and spatial 
Distance graphs of the Mouse Brain
Connectivity and spatial distance data were taken from the 
supplementary dataset published along with the mesoscale 
mouse connectome from the ABI (31). Total projection volume 
between regions was generated by multiplying element-wise by 
the rows the connectivity matrix times the number of voxels in 
each seeding region. Regional distances used were the Cartesian 
distances between the centers of mass of any region pairs. For an 
anatomical illustration of the brain represented as a connectivity 
graph, see Figure 1A; directional connectivity from to and from 
the entorhinal cortex (EC), used as an example region, can be 
seen in Figure 1B. For an example of a spatial distance graph as 
a matrix, see Figure 1C.

network laplacian and its eigenvectors
For a given connectivity C or distance matrix S, we define a 
Normalized Laplacian Matrix, as in Raj et al. (2), L:

 L I D C D= − ⋅r c⋅  
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FigUre 1 | An example figure demonstrating all of the metrics and networks we use throughout the present study. We first illustrate the concept of a (a) connectivity 
network and (B) the centers of mass of gray matter regions and the distances between them to illustrate the basis of all connectivity and spatial diffusion based 
spread models. (c) Here, we exhibit a βt-curve, where βt is the time diffusion constant. Note that we find the value of best fit, as indicated, and subtract, as indicated, 
to get a Δr-squared value. We use this value to compare across all DNT, NT, and spatial proximity-based diffusion (SPD) models in this study. (D) We also randomize 
matrices 1,000× when we use DNT or SPD to provide another metric of how unexpected our observed r-squared values would be given chance alone.
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where Dr and Dc are diagonal degree matrices of the sum 
totals of the rows and columns, respectively, and I signifies 
the identity matrix. In our notation for the connectivity 
matrices, C represents the retrograde transmission mode, and 
the corresponding anterograde mode is then simply given by 
CT, and the bidirectional mode by (C  +  CT)/2. The distance 
matrix was obtained from a separate dataset appended to  
Ref. (31) and is referred to in this manuscript using S. Nor-
malized Laplacian matrices were generated for each mode with 
the above equation.

creating a Dynamic Model of amyloid 
Pathology spread Over Time
A previous graph theoretic model of pathology spread in AD 
throughout a brain network was shown to be predictive of future 
patterns of disease progression (2). The principle is to seed a graph 
node corresponding to a brain region with an arbitrary value and 
then model the diffusion of the disease factor throughout the 
network via the Network Diffusion equation:

 X t Lt X( ) = ( ) ( ).−β ⋅exp 0  (1)

This models the long-range patterns of spread of the protein 
pathology at any time t as a product of the initial seeding pattern 

X(0), and the so-called diffusion kernel exp (−βtL), with diffusion 
constant, β (2).

The major differences with previous network diffusion model 
are twofold: (1) we are for the first time using this model with a 
directed brain network and (2) we are interested in total pathology 
accumulation over time, which we model as a summative process:

 X i L t X i X i( ) −β ∆ ⋅ − −( ) ( ) ( )= exp 1 + 1 . (2)

We use Eq. 2 to calculate, for any point in time, the deposition 
of tau, amyloid, and neuronal atrophy across the brain regions 
represented in the network. The Eq. 1 in the present study will 
be referred to as the standard undirected network diffusion 
model, or NT, while our modified directional version in Eq. 2 
will be referred to as directed network transmission, or DNT. We 
discuss this equation modeling spatial pathology diffusion in the 
Section “Spatial Diffusion Modeling As an Alternative Model to 
Network Diffusion.”

spatial Diffusion Modeling as an 
alternative Model to network Diffusion
We additionally created a spatial diffusion model as a comparison 
or alternative hypothesis to the network diffusion model. The spa-
tial diffusion model was based on the same fundamental network 
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diffusion Eq.  2 explicitly stated above. The difference between 
DNT (and NT) and spatial diffusion in the present study is that 
the network for spatial diffusion is a matrix where each entry  
in the matrix Si,j is the reciprocal of the Cartesian distance between 
the center of mass of each GM region included in the Allen 
Institute’s mouse connectivity atlas. Using this distance matrix, S, 
rather than the connectivity matrix C, we ran the diffusion equa-
tion stated above in (2) to get a model approximating diffusion 
based on spatial proximity, which will be referred to as SPD.

comparing the DnT/nT and sPD Models 
with Previously Published results and 
examining the Question of seeding
We ran the network and spatial diffusion Eq.  2, through the 
number of iterations, in months, given in each study. If a study 
measured pathology at 6 months, we ran the model through 6 
iterations, and if a study measured pathology at 9 months, we ran 
the model through 9 iterations. The implicit assumption here is 
that amyloidopathy spreads in all datasets at the same rate. While 
these datasets were obtained with different mouse models poten-
tially exhibiting different amyloid strains, we do not have enough 
data to assess the kinetics or speed of amyloid pathology spread 
in individual cases. Hence, we decided to impose a minimal and 
general set of assumptions across the board. In these iterations, 
we used Δt =  1 month and modified β to achieve the optimal 
match with the data, as the empirical diffusion constant for vari-
ous pathologies in AD is a priori unknown. Example, βt curves 
for a range of β values, where the model both shows behavior 
that is predictive of proteinopathy spread and non-predictive 
of proteinopathy spread can be seen in Figure  1C. We show 
anatomical examples of a graph that is the basis of NT/DNT in 
Figure 1A, and a model of the brain demonstrating the locations 
of regional centers of mass, which form the basis of the network 
used in SPD, in Figure  1B. To compare whether DNT/NT or 
SPD performed better at recapitulating amyloid-β pathology, we 
calculate Δr-squared values, which are the difference between the 
r-squared value between the amyloidopathic seed (no diffusion) 
and empirical amyloidopathy, and the same r-squared value 
calculated between the best fit value of the βt model constants of 
diffusion time and empirical amyloid-β pathology. An example 
of this calculation can be seen in Figure 1C. Given the relatively 
small sample size of regions quantified from Harris et al. (25), we 
performed an additional assessment for the significance of regres-
sions that were significant at an alpha of p < 0.05: we randomized 
either the connectivity or interregional distance matrices from the 
ABA 1,000 times and ran our models to produce simulated data 
generated with randomized networks, generating a distribution 
r2-values to use as a comparison with r2-values from our models 
run using empirical networks or distances. An example of the 
results of this process can be found in Figure 1D.

resUlTs

The current paper attempts to perform a whole-brain scale, 
meta-analytic study of amyloid-β pathology spread mechanisms. 
The motivation behind such research is clear: while research 
into other proteinopathies with prion like qualities, such as tau 

pathology, has demonstrated a clear mechanism and clear pat-
tern of transmission, such as transsynaptic spread (1), efforts to 
characterize misfolded Aβ spread are conflicted (24–26). Indeed, 
understanding misfolded amyloid spread mechanisms as Aβ 
proteinopathy develops could prove a fruitful avenue of research 
for future disease course modifying treatments if further amyloid 
transmission can be prevented. We first demonstrate that given 
three studies regionally quantifying tau pathology, we see clear 
evidence of transsynaptic transregional spread, but that such 
evidence is lacking with respect to amyloid pathology transmis-
sion in another three studies. We then demonstrate, using models 
of both progressive spread over the brain’s connectivity network 
(NT and DNT) and via diffusion based on spatial proximity 
to already affected regions (SPD), that diffusion to spatially 
proximate regions is a much better characterization of both the 
development of Aβ pathology and of the regional pattern of Aβ 
precursor protein, APP, levels. The present results are discussed 
in detail in the subsections below.

amyloid-β Pathology, Unlike Tau 
Pathology, is not Well characterized  
in Mouse Models by the Brain’s 
connectivity network
Prior use of the brain connectome graph metrics and models 
(such as DNT and NT) have successfully, characterized the spati-
otemporal development of regional volume loss (2) and metabolic 
deficits (3) in patients, and the spatiotemporal proliferation of tau 
pathology in mouse models (16). We use the first two eigenvec-
tors of the mouse brain connectome to assess whether amyloid-β 
pathology can be recapitulated by the properties of mouse brain 
wiring in a way that resembles the accurate characterization of 
tau pathology. We find that, while, accordant with prior research  
(16) relative regional severities of tau pathology across all three 
studies highlighted here [Figures 2A–C,G,H; Table 1; (11, 12, 30)]  
are all strongly recapitulated by at least one the first two eigen-
vectors of all of the mouse connectomes used (anterograde, 
retrograde, and bidirectional), only one study regionally quan-
tifying amyloid pathology produced any such significant results 
[Figures  2D,G,H; Table  1; (26)]. The results comparing the 
eigenvectors from our mouse connectomes with our other two 
amyloid datasets (25, 29) showed no significant match between 
where, based on transsynaptic spread, one would expect the most 
severe amyloid pathology and where the empirical dataset indi-
cated the most severe pathology, across all mouse connectomes 
(Figures 2E–H; Table 1). The present results confirm our prior 
analyses that tau pathology patterns in mouse models can be well 
characterized using mouse connectomes but also reveal that no 
such strong relationship exists between amyloid-β pathology pat-
terns in mouse models and the mouse connectomes.

spatiotemporal amyloid-β Pathology  
is Better characterized by a Model of 
spatial, rather Than connectome  
Based, Diffusion
We next assess how well our connectivity based DNT/NT model 
recapitulates the longitudinal spatiotemporal development of 
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TaBle 2 | DNT and NT do not predict either Aβ pathology or amyloid precursor 
protein (APP) levels, at any timepoint measured in Ref. (25), but spatial proximity-
based diffusion (SPD) does across all timepoints.

nT and sPD vs. aβ path Model 
assessor

ant. 
DnT

ret. 
DnT

Bidi. 
nT

sPD

Harris et al. (25) Aβ T1 ΔR 0.00 0.00 0.00 0.06
Harris et al. (25) Aβ T2 ΔR 0.00 0.00 0.00 0.05
Harris et al. (25) Aβ slope ΔR 0.00 0.00 0.00 0.04
Harris et al. (25) APP ΔR 0.00 0.02 0.00 0.04

This table reports ΔR-squared values, which is the change in r-squared between 
baseline and the best-fit each model produce produced. Only SPD produces 
values > 0 across all measurements.

TaBle 1 | Connectivity network u1 and u2 consistently mirror regional tau, but not Aβ, pathology patterns.

cOn. u1 vs. pathology Pathology measure eigenvector anterograde retrograde Bidirectional

Tau pathology

Ahmed et al. (12) % AT8 (+) cells u1 0.98** 0.28 0.43
u2 0.92** 0.08 0.61

Bolmont et al. (30) % AT8 (+) cells u1 0.53^ 0.32 0.16
u2 0.41 0.25 0.75*

Clavaguera et al. (11) Tangle BURDEN u1 0.04 0.63** 0.14
u2 0.12 0.43 0.56*

aβ pathology

Bero et al. (26) % Area plaques u1 0.66^ 0.73^ 0.52^
u2 0.37 0.72^ 0.68^

Lim et al. (29) % Area plaques u1 0.04 0.06 0.01
u2 0.12 0.05 0.17

Harris et al. (25) Plaque burden u1 0.24 0.07 0.07
u2 0.21 0.35 0.18

In the table above, all r-squared values between both of the first two eigenvectors of each connectivity network, anterograde, retrograde, and bidirectional, and empirical tau and Aβ 
pathology patterns are reported, with the study indicated in the leftmost column. ^p < 0.10, *p < 0.05, **p < 0.01.

FigUre 2 |  u1 and u2 consistently predict regional tauopathy, but not amyloidopathy, severity. (a–F) The best regressions, by r2-values, using the anterograde, 
retrograde, and bidirectional Allen Institute mouse brain connectivity networks, plotted, of u1 or u2 vs. deposition data from several studies; (a) is the regression 
between anterograde u1 and Ahmed et al. (12), (B) is between bidirectional u2 and Bolmont et al. (30), (c) is retrograde u1 vs. Clavaguera et al. (11), (D) is the 
regression of retrograde u1 and Bero et al. (26), (e) is between bidirectional u2 and Harris et al. (25), while (F) is Lim et al. (29) vs. retrograde u2. All r2-values for all 
u1 and u2 regressions vs. each dataset can be found in Table 1. (g) The scatter plot of u1 and u2, for each direction, r2-values with actual data indicates that at 
least one direction’s eigenvectors, if not multiple, show high correspondence with tau deposition, but that only the data from Bero et al. (26), is correlated with the 
eigenvectors from the directed connectivity graphs. (h) This bar graph illustrates the consistent pattern of tau and eigenvector correspondence, and the relative 
inconsistency of correlations between amyloid and eigenvectors. The first x-label in (h) refers to the proportion of eigenvectors, regardless of study and first of 
second eigenvector, yielding a p < 0.05, the second those yielding p < 0.10, and the third refers to the % of studies used here having any eigenvector yielding 
significant results at the threshold p < 0.05.
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amyloid-β pathology in our one multi-timepoint mouse amyloid 
dataset from Harris et al. (25). We find that, at no measured time-
point either early or late, does anterograde or retrograde DNT or 
bidirectional NT successfully predict amyloid pathology patterns 
(Table 2). In fact, at all timepoints, including the final measured 
timepoint, DNT and NT fail to add any information beyond 
the EC seeding reported by Harris et al. (25) for predicting the 
development of amyloid-β pathology (Figure 3A). The regional 
slopes of pathology severity increase show an identical pattern of 
results (Figure 3B).

However, the amyloid-β pathology patterns at all timepoints, 
including the final measured timepoint, are significantly recreated 
using the SPD model of pathology spread, which is based on spatial 
proximity to the EC, where pathology initiated (Figures  3A,C; 
Table  2). Moreover, the regional slopes of amyloid-β pathol-
ogy severity increase are also significantly predicted by SPD 
(Figures 3B,D; Table 2). Due to the relatively small sample size 
of mice and quantified regions from Harris et al. (25), we tested 
whether the results from the SPD model were due to chance by 
assessing whether significant results could be obtained using 
randomized distances between regions; we found that for the final 
measured timepoint of amyloid-β pathology, SPD using empirical 
distances between brain regions outperformed 91% of the 1,000 
randomizations, and 93% of the randomization when predicting 
the regional severities of rate of amyloid-β pathology increase 
(Figures 3E,F).

regional levels of aPP are Better 
Predicted via a Model of spatial, rather 
Than connectome Based, Diffusion
The data from Harris et  al. (25) also includes regional quanti-
fication of amyloid-β precursor protein (APP) levels using 
anti-hAPP antibody. While we find that amyloid-β pathology 
proliferation is not well explained by connectome-based spread 
models, but rather by spatial proximity-based models, we want 
to test whether regional levels of APP can be predicted using 
the connectome. However, our results again indicate that, while 
retrograde DNT does give a significant prediction of APP levels 
(Figures 4A,B), anterograde DNT and bidirectional NT do not, 
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FigUre 3 |  Amyloidopathy is not predicted by DNT or NT but rather by spatial proximity-based diffusion (SPD). (a) The βt vs. r2-value curve comparing the three 
DNT/NT and the SPD models’ predictions to regional rate of increase and (B) end-state regional amyloid plaque burden data from Harris et al. (25). Note all three 
DNT/NT models’ curves are non-predictive. (c) The plotted regression of the SPD model against the regional rate of increase and (D) end-state regional amyloid 
burden data. The r2-value from the SPD model using the Cartesian distance between region matrix performs better than most, but not all, randomized distance 
matrices for both (e) regional rate of pathology increase and (F) end-state regional amyloid burden data. Color legends are included. All exact r-squared values can be 
found in Table 2.
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and SPD outperforms even retrograde DNT at recreating relative 
regional levels of APP (Figures  4A,C; Table  2). Furthermore, 
the significant match between the predictions of retrograde 
DNT and regional APP levels appears to be driven by a single 
outlier region (Figure 4B), calling the validity of these results into 
question. Akin to our results about the spatiotemporal develop-
ment of amyloid-β pathology in the subsection above, we find 
that regional levels of APP are again best predicted by a model 
of diffusion based on spatial proximity with regions exhibiting 
high APP levels, more accordant with extracellular diffusion 
mechanisms than connectivity based or transsynaptic based 
proliferation. To emphasize the above results, we also include an 
anatomical illustration of the regional rates of suspected pathol-
ogy increase, from the measurement of regional APP levels until 
the final quantification of amyloid-β pathology can be seen in 
Figure 4D; note that SPD is a better model for spatiotemporal 
amyloid-β pathology patterns than is DNT/NT.

DiscUssiOn

While research into other protein pathology spread mechanisms 
in mouse models, such as work regarding synucleinopathy (18) 
and tauopathy (11–16) reveal clear pathology development pat-
terns mirroring anatomical connectivity networks and strongly 
suggest transsynaptic spread, no such clarity exits regarding 
spread patterns and mechanisms for misfolded amyloid-β. 
What is clear however is that amyloid pathology does spread 
outward in a manner that is highly dependent on the brain 
region into which amyloidogenic seeds are placed, even when 
using the same amyloid pathology source and transgenic mouse 
model (32, 33).

We accordingly undertook the present analysis to determine 
whether we could find clear evidence of transsynaptic spread 
or pathology development mirroring connectivity networks 
for amyloid-β, as some prior research has claimed (25, 26), or 
whether some other pattern and mechanism of spread better 
explains amyloid-β pathology development (24, 29). We first 
demonstrate that, especially compared with tau pathology 
development, amyloid-β pathology, across studies, is not most 
pronounced in regions that are most likely to accumulate pathol-
ogy if spread is via the mouse anatomical connectivity network 
(Figure 2; Table 1). We next demonstrate that, in assessing our 
lone longitudinal dataset (25) a model based on spread to spatially 
proximal (SPD), rather than a model assuming transmission to 
interconnected (NT/DNT) regions, better recreates the spati-
otemporal patterns of amyloid-β pathology development and 
the relative regional severities of amyloid-β plaques (Figures 3 
and 4; Table 2). These results and their further implications are 
discussed in detail in the subsections below.

Pathology spread into spatially Proximal, 
but not necessarily highly interconnected 
regions, implies extracellular spread
The present analysis shows results suggestive of amyloid-β 
patho logy spread being predominantly extracellular, rather than 
intra cellular. Modeling assuming transsynaptic spread failed 
to significantly recapitulate empirical patterns of amyloid-β 
pathology (Figures 2–4; Tables 1 and 2), while modeling based 
on spatial proximity significantly recreated observed spatiotem-
poral amyloid-β pathology development patterns (Figures  3 
and 4; Table  2). While prior studies implicate transsynaptic 
amyloid-β pathology transmission (25, 26), these findings are 
contradicted by other research demonstrating a lack of evidence 
for transsynaptic or even any form of intracellular transneuronal 
and transregional spread (24, 29). By contrast, studies of other 
pathological protein species’ mechanisms of spread, such as 
pathological tau, consistently implicate transsynaptic spread 
(11–16) with little evidence for other mechanisms.

Extracellular diffusion resulting in amyloid-β pathology 
transmission to the areas of the brain most spatially proximal 
to those already exhibiting amyloidopathy fits with the known 
characteristics of amyloid-β as a protein. First, APP, the precur-
sor protein for amyloid-β, is a transmembrane protein with a 
large extracellular domain, and it is from this large extracellular 
domain that amyloid-β is formed as a cleavage product from APP 
(34). Post-cleavage, amyloid-β generally exists in the extracel-
lular space, even as a healthy protein (35). Finally, amyloid-β 
in its pathological states also forms plaques almost exclusively 
extracellularly (36). None of this is to say that pathological 
amyloid-β might not gain capabilities of becoming internalized 
into neuron or spreading transneuronally or transsynaptically, as 
some authors have suggested (25). But given our meta-analytic 
results suggesting no mathematical basis for transsynaptic spread 
or any spread based on the brain’s connectivity network, and 
suggesting that pathology is more likely to spread into regions 
spatially close to rather than heavily interconnected with already 
affected areas, we posit that our present work, strongly implies 
some mechanism of pathology spread that is extracellular.  
We hope that our work serves as a starting point for more heavily 
quantitative investigations of amyloid-β pathology transmission 
with an aim toward clearing up the inconsistent results about  
how and where amyloid-β progresses around the brain.

Given that amyloid patterns are known to depend on exog-
enous seeding site (32, 33), a purely spatial mode of spread would 
suggest a radial distribution of pathology spread, which was not 
observed in our data. However, there is very little evidence that 
initial amyloid seeding is in fact focal; instead early amyloid 
pathology is found diffusely in the neocortex and then spreads 
to subcortical areas (8). Quite likely, amyloid pathology could 
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FigUre 4 | Amyloid precursor protein (APP) regional deposition patterns are, akin to amyloid burden, well modeled by spatial proximity-based diffusion (SPD).  
(a) The βt vs. r2-value curve comparing the predictions of the DNT/NT and SPD models regional APP deposition data from Harris et al. (25). (B) The plotted 
regression of retrograde DNT’s predictions vs. empirical APP regional deposition data. Note that the regression may largely be driven by the entorhinal cortex as  
an outlier, calling into question whether DNT diffusion is predictive. (c) The plotted regression of the SPD model’s predictions vs. empirical APP regional deposition 
data. Note that this regression is both significant and not driven by an outlier. (D) We also include an anatomical illustration of empirical pathology (labeled “Data”)  
as well as the predictions of the NT and SPD models, of regional rates amyloid pathology increase from the initial regional APP measurement to the final measured 
timepoint of amyloid pathology, from Harris et al. (25). In this illustration, yellow is more severe and purple more mild pathology. Color legends are included. All 
r-squared values are in Table 2.
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be caused or initiated by metabolic deficits that target particular 
regions, leading to amyloid initiation in broad areas of the brain, 
for instance in the default mod network (9). Due to broad initia-
tion, a radial spread from a focal source may not be manifested 
under spatial spread. Nonetheless, it is unlikely that spatial spread 
via extracellular spaces is the only process involved in amyloid 
pathology ramification. Several additional factors might play 
a role beyond pure spatial spread, and future research will be 
needed to identify and assess them.

Also of note is that our SPD model accurately recreated 
regional APP levels from Harris et al. (25). Given that APP is a 
transmembrane protein (34), spread based on spatial proximity, 
such as through the extracellular space, seems unlikely. First, it 
is possible that the anti-hAPP antibody used in the study (25) 
bound to a non-Aβ fragment of APP following cleavage, sAPPα, 
which akin to Aβ is also often released into the extracellular 
space (34) and could therefore plausibly spread into spatially 
proximal regions. Aβ also has known reactions with full-length 
transmembrane APP (34), and so spatially spreading pathologi-
cal Aβ could influence regional APP levels by upregulating APP 
expression or by inducing the release of transmembrane APP into 
the extracellular space. These hypotheses for why a model of diffu-
sion into spatially proximal regions accurately captured empirical 
APP levels, however, are conjecture at this point. Akin to the 
discussion of factors beyond spatial proximity contributing to the 
spatiotemporal development of Aβ pathology, above, elucidating 
why APP levels mirror Aβ pathology spread patterns in at least a 
pathological mouse model, will require careful future research.

extracellular spread of amyloid-β 
Pathology Fits with Known synaptic 
Problems resulting from its Pathology
Deficits in cellular function directly attributable to amyloid-β in 
mouse models are generally synaptic deficits (37, 38). Given the 
propensity for amyloid-β plaques to accrue at synapses (39), it 
is not surprising that such an accumulation of misfolded pro-
tein species would causes deficits in the ability to transmit and 
receive action potentials (37, 38). However, our findings imply-
ing extracellular spread based on spatial proximity to already 
affected regions, coupled with the above work demonstrating 
the propensity for amyloid-β pathology to cause synaptic and 
cell-signaling deficits raise an important question: why should 
misfolded amyloid-β, if it is spreading and circulating extracel-
lularly, preferentially cause issues at synapses, rather than at other 
areas along the very large neuronal membranes?

Work whose data are used in the present analysis regarding 
spatiotemporal amyloid-β pathology development provides a 
possible explanation. Some recent studies demonstrate amyloid-β 
pathology appears more likely to accrue in more active regions 
(26) close to those already exhibiting pathology. Furthermore, 
this work suggests electrical signaling between neurons may act 
as an attractant for pathological amyloid-β (26), inducing more 
amyloid-β to accumulate and therefore form plaques at cellular 
locations where electrical current leakage is the greatest: at the 
synapse (39). If, as our results indicate, amyloid-β pathology 
follows a pattern of transiting to spatially proximal, rather than 

interconnected areas, likely via some form of extracellular dif-
fusion, then electrical current leakage from the synapse could 
bias amyloid-β pathology spread toward those regions that are 
both spatially proximal and more likely to have high signaling 
(and therefore electrical) activity. This could further explain why, 
even though SPD consistently outperformed DNT/NT, it was still 
not as strong a model for predicting spatiotemporal amyloid-β 
pathology development as DNT/NT are for modeling tau pathol-
ogy (16). Amyloid-β pathology spread patterns might be best 
explained by a model incorporating both spatial proximity with 
already affected regions and the average signaling activity of those 
spatially proximal regions; our research suggests this as a topic for 
further study in elucidating amyloid-β transmission.

extracellular spread of amyloid-β 
Pathology is complicated by hypotheses 
of interactions with Known intracellular 
Pathological Proteins, Tau, and α-
synuclein
While amyloid-β is mainly an extracellular protein, other protein 
pathologies known to be comorbid with amyloid-β pathology are 
caused by intracellular proteins tau and synuclein. A potential 
complication for the model of extracellular spread of amyloid-β 
pathology into the most spatially proximal regions is complicated 
by evidence demonstrating potential interactions between 
amyloid-β and tau (30, 40, 41) and known co-occurrence of 
misfolded amyloid-β plaques embedded within Lewy Bodies 
composed primarily of misfolded synuclein (42). Synuclein is 
almost exclusively present at synaptic terminals and tau is an 
almost exclusively axonal protein, so given the prior work cited 
above showcasing known amyloid-β propensity for accumulating 
around and causing issues at synapses (37–39), a predominantly 
extracellular mechanism of misfolded amyloid-β spread does 
not necessarily negate the possibility of the interaction of these 
proteins. However, our present work does not provide a satisfying 
explanation as to how pathological proteins that are on the one 
hand predominantly intracellular and on the other are the likely 
extracellular transiting amyloid-β are likely to interact. We none-
theless feel it is important to point out the limitation to our current 
work and to encourage future research to pursue this question.
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