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Many neurodegenerative disorders, such as Parkinson’s disease (PD) and Alzheimer’s 
disease (AD), are characterized by loss of retinal ganglion cells (RGCs) as part of the neu-
rodegenerative process. Optical coherence tomography (OCT) studies demonstrated 
variable degree of optic atrophy in these diseases. However, the pattern of degenerative 
changes affecting the optic nerve (ON) can be different. In particular, neurodegeneration 
is more evident for magnocellular RGCs in AD and multiple system atrophy with a pattern 
resembling glaucoma. Conversely, in PD and Huntington’s disease, the parvocellular 
RGCs are more vulnerable. This latter pattern closely resembles that of mitochondrial 
optic neuropathies, possibly pointing to similar pathogenic mechanisms. In this review, 
the currently available evidences on OCT findings in these neurodegenerative disorders 
are summarized with particular emphasis on the different pattern of RGC loss. The ON 
degeneration could become a validated biomarker of the disease, which may turn useful 
to follow natural history and possibly assess therapeutic efficacy.

Keywords: optic nerve, retinal ganglion cells, optical coherence tomography, Parkinson’s disease, Alzheimer’s 
disease, Huntington’s disease, glaucoma, multiple system atrophy

inTRODUCTiOn

Many neurodegenerative disorders are characterized by increasing evidences that optic nerve (ON) 
degeneration is part of the central nervous system neurodegenerative process. In fact, optical coher-
ence tomography (OCT) and histological postmortem studies documented loss of retinal ganglion 
cells (RGCs) and their ON-forming axons in neurodegenerative disorders such as Alzheimer’s 
disease (AD) (1–4), Parkinson’s disease (PD) (5), Huntington’s disease (HD) (6), multiple system 
atrophy (MSA) (7, 8), spinocerebellar ataxias (9), spastic paraparesis (10), and others.

Retinal ganglion cells are neurons located in the retinal ganglion cell layer (GCL) characterized by 
a soma from which the originating axon runs initially in the retinal nerve fiber layer (RNFL). Then, 
these axons converge turning into the optic disc, cross the lamina cribrosa at the optic nerve head 
(ONH), and constitute the ON. They are particularly sensitive to neurodegenerative damage due to 
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defective mitochondrial dynamics and axonal transport, as well 
as oxidative stress and energy depletion, given the high metabolic 
demand and performances typical of these cells, mostly deter-
mined by the asymmetric myelination (11, 12).

Moreover, the deposition in RGCs of α-synuclein and 
β-amyloid (Aβ), typical hallmarks of these neurodegenerative 
disorders, has been already documented, respectively, in PD  
(13, 14) and AD (2, 15, 16).

Interestingly, the pattern of RGC loss described in these 
neurodegenerative disorders can be different. In fact, the axonal 
damage in AD is described as typically affecting the magnocel-
lular cells (M-cells), which is reflected by a preferential RNFL 
thinning in the superior and inferior quadrants (17). This pattern 
of RGC loss, which is also reported in MSA (7, 8), resembles that 
described in glaucoma, where a preferential loss of M-cells is 
established (18).

Conversely, RGC loss in PD involves preferentially the parvo-
cellular cells (P-cells), which is reflected by the temporal thinning 
of the RNFL (17). This pattern is similar to what is described for 
mitochondrial optic neuropathies, where typically the pathology 
affects the papillomacular bundle (PMB) and is hallmarked by the 
preferential loss of the P-cells leading to temporal pallor of the 
optic disc and a central visual field defect (11, 19).

This review is aimed at critically highlighting the differential 
pattern of RGC loss in some paradigmatic neurodegenerative 
disorders such as AD and PD, based on the main OCT and 
histological findings derived by literature.

RGC FeATUReS

Visual information generated by photoreceptors is transmitted 
through bipolar cells to RGCs, whose axons leave the eye reaching 
the lateral geniculate nucleus (LGN). At least 30 different mor-
phological types of RGCs have been recognized in the human 
retina, but only some of them are judged essential for the function 
of the four different visual pathways (20).

The midget RGCs (about 80% of total RGCs in the monkey 
retina) project to the parvocellular layers of the LGN, the parasol 
RGCs (5–15%) project to the magnocellular layers of the LGN, 
the bistratified RGCs form part of the koniocellular visual 
pathway projecting to the koniocellular layers of the LGN, and 
finally the melanopsin-containing RGCs (mRGCs, about 1% of 
total RGCs) project mostly to the suprachiasmatic nucleus of the 
hypothalamus, constituting the retino-hypothalamic pathway.

RGCs are characterized by specific common features, such as 
the location of their somata in the GCL, the arborization of their 
dendrites in the inner plexiform layer (IPL), and the gathering of 
their axons in the ON, which, by projecting to the LGN, connect 
their glutamatergic synapsis with the second order neurons of the 
visual pathway (21).

An important characteristic of the P-pathway is the existence 
of very small midget cells (or P-cells) that are connected to 
single-cone midget bipolar cells in the central 2 mm around the 
fovea (22, 23). This one-to-one neuronal circuitry is thought to 
form the basis of red–green color opponency. The parasol cells 
(or M-cells) constitute a smaller proportion of RGCs and their 
long (L) and middle (M) wavelength-sensitive cone inputs form 

the magnocellular pathway, which transmits achromatic visual 
information of high temporal but low spatial resolution and lumi-
nance and movement messages (24). The M-cells of primates have 
peculiar features represented by large cell bodies, thick axons, and 
wide radial branching dendritic trees. At difference, P-cells have 
small cell bodies, thin axons, and narrow dendritic trees with a 
more bushy and dense branching pattern (25). Moreover, large 
fibers exhibit faster pulse conduction than the smaller fibers (26).

Both RGC classes increase in size with increasing distance from 
the foveal slope, maintaining their distinct branching pattern at 
all eccentricities, but the average P-cell dendritic-field diameter is 
smaller than mean M-cell dendritic field throughout the retina.

At the ONH, RGC axons are distributed in a specific topo-
graphic manner (27). In fact, the retinal nerve fibers from the 
nasal half of the retina step directly into the optic disc as superior 
and inferior radiating fibers, fibers from the macular area come 
horizontally as PMB, and fibers from the temporal retina arch 
above and below the macula as superior and inferior arcuate 
fibers (27).

The above described anatomy of the P-pathway (one-to-one 
connection with bipolar cells in the central 2 mm around the fovea 
and the conveyance of color information) implies that the P-cells 
are predominantly represented by PMB entering the ONH from 
the temporal quadrant. Furthermore, topographically, deeper 
fibers from peripheral retina occupy peripheral location in the 
ONH (neighboring to the ONH edge), and superficial fibers from 
central retina occupy central location in the ONH (Figure 1A). 
Therefore, in the retro-laminar region of the ON, the axons from 
PMB (predominantly formed by p-RGCs) are arranged tempo-
rally in the nerve but along the path to the LGN, they gradually 
shift centrally, whereas larger fibers (predominantly formed by 
p-RGCs) are located in greater proportion in the periphery of the 
nerve (28) (Figure 1B).

OCT FinDinGS in neURODeGeneRATive 
DiSeASeS wiTH PReFeRenTiAL 
PARvOCeLLULAR DAMAGe

Parkinson’s Disease
Parkinson’s disease is a neurodegenerative disease whose core 
clinical features are bradykinesia, resting tremor or rigidity, and 
response to l-DOPA therapy (29). PD prevalence increases with 
age, which is the single most relevant risk factor (30). Visual dis-
turbances described in PD may range from reduced visual acuity 
and color vision to abnormal contrast sensitivity, dysfunction of 
eye movements and visual hallucinations (31, 32).

Moreover, the occurrence of ON pathology is reported by 
numerous OCT studies including time-domain and spectral-
domain studies (33–56) (Table 1).

Interestingly, the pattern of axonal loss reported by OCT 
studies points toward a preferential involvement of the temporal 
quadrant (5, 33, 38, 41–43, 48, 49, 52, 53, 57). Moreover, the 
evidence of a more severe RGC loss in the eye contralateral 
to the most affected body side is suggestive of a congruently 
asymmetric degenerative process in PD (42). This pattern of 
axonal loss is clearly distinguishable from the preferential loss 
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FiGURe 1 | (A) Distribution of retinal nerve fibers. Cross-sectional arrangement of axons, with deeper fibers originating from peripheral retina running closer to 
choroid occupying peripheral location in ONH, and superficial fibers originating nearer to the ONH occupy a more central portion of the nerve. (B) Arrangement of 
nerve fibers in the anterior visual pathway. In the pre-laminar, laminar, and proximal retro-laminar region of the ON, the axons from PMB are arranged temporally in 
the nerve but along the path to the LGN, they gradually shift centrally. ON, optic nerve; ONH, optic nerve head; PMB, papillomacular bundle; LGN, lateral geniculate 
nucleus.
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of M-cells documented in other parkinsonian syndromes such 
as MSA (7, 8) and resembles mitochondrial optic neuropathies 
(11). The most common mitochondrial optic neuropathies, i.e., 
Leber’s hereditary optic neuropathies (LHON) and dominant 
optic atrophy (DOA) are, in fact, typically characterized by ON 
pathology involving preferentially the smallest axons constituting 
the PMB leading to temporal pallor and central scotoma (11, 19). 
The P-cells are energetically more vulnerable to mitochondrial 
dysfunction, as clearly described by recent histological studies 
and mathematical modeling of the RGC loss in LHON (58). This 
susceptibility to mitochondrial dysfunction and particularly to 
oxidative stress may be related to the high energetic demand in 
relation to a low energetic potential, which is due to the high 
surface area/volume ratio, and to the absence of myelin around 
the axons in the unmyelinated portion of the ON (58).

In this context, the similar pattern of axonal loss in the ON 
characterizing PD and mitochondrial optic neuropathies has a 
common ground in the documented complex I defect and, more 
in general, mitochondrial dysfunction reported in PD (59).

Moreover, in PD eyes, it has been demonstrated that the area 
around the fovea, where INL and GCL emerge, is characterized 
by a significant remodeling as consequence of the neurodegen-
eration involving the inner nuclear layers and has been indicated 
as a marker of the disease with the best discriminative power 
compared with controls (60). Interestingly, as for the RNFL 
results reported by OCT studies (42), it has been described an 
interocular asymmetry for the foveal thickness, pointing again to 
an asymmetry of the neurodegenerative process in PD, congru-
ent with the motor symptoms of the disease (61). Finally, recent 
studies demonstrated the presence of α-synuclein deposition in 
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the retina of PD patients. This deposition is particularly evident 
in the inner retina including the GCL, the IPL, and the interface 
between IPL and inner nuclear layer (13, 14). Interestingly, there 
is a documented direct relationship between intracellular deposi-
tion of α-synuclein and mitochondrial dysfunction (59).

Huntington’s Disease
Huntington’s disease is a neurodegenerative disease inherited as 
an autosomal dominant trait, whose main features are the occur-
rence of choreic movements, as well as psychiatric and cognitive 
disturbances in young-adult individuals (62).

Moreover, HD patients early in the disease course suffer sleep 
and circadian dysfunction, which contribute to the cognitive 
deterioration (63). The presence of retinal degeneration, and 
in particular of RGC loss, has been recently reported by OCT 
studies (6, 64). In particular, Kersten and coauthors demonstrated 
that in these patients there is a RNFL thinning in the temporal 
sector correlating with the disease duration, similar to PD (64). 
As for PD, this axonal loss pattern may be explained by the role 
attributed to mitochondrial dysfunction in the pathogenesis of 
the disease. In particular, recent experimental evidences in HD 
point to an abnormal mitochondrial dynamics with defective 
fission (65, 66).

OCT FinDinGS in neURODeGeneRATive 
DiSeASeS wiTH PReFeRenTiAL 
MAGnOCeLLULAR DAMAGe

Alzheimer’s Disease
Alzheimer’s disease is the most frequent cause of dementia 
and is hallmarked by the accumulation of amyloid plaques 
and neurofibrillary tangles in the brain (67). AD is character-
ized by visual disturbances occurring early in the course of 
the disease and reflecting neuronal damage of the cerebral 
visual pathway. The symptoms affect various aspects of visual 
function such as visual field, color vision, contrast sensitivity, 
motion perception, visuospatial construction, visual attention, 
and fixation (68).

Several histological studies in AD demonstrated the impair-
ment of the entire visual pathway, documented initially in the 
brain and subsequently in the retina and ON (69–75). In 1986, 
Hinton and colleagues provided the first evidences of optic neu-
ropathy in AD, describing loss of RGCs and axons at postmortem 
histology of the ON (1). Subsequently, other histological studies 
showed degeneration of the inner retina, more pronounced in 
the superior and inferior quadrant of the ON (2, 70–75). In 2011, 
Koronyo-Hamaoui and colleagues documented for the first time 
extracerebral Aβ deposits in postmortem human retinas of AD 
patients and ex vivo in APPSWE/PS1ΔE9 transgenic mice after 
curcumin administration (15). In recent years, other histological 
studies of human retina confirmed the occurrence of extracel-
lular plaques and intracellular Aβ deposits in the inner retinal 
layers involving mainly the superior hemiretina (2, 16, 76, 77). 
La Morgia and colleagues demonstrated that mRGCs, a subgroup 
of RGCs intrinsically photosensitive, are selectively affected by 
the amyloid pathology in AD. Remarkably, the loss of these cells 

TABLe 1 | OCT results in PD.

OCT no. of patients Results

Inzelberg  
et al. (33)

Zeiss 3000 Stratus 10 PD
10 controls

↓ avg; inf-temp 
RNFL thickness

Yavas  
et al. (34)

Heidelberg Retinal 
Tomography

44 PD
21 controls

↓ avg; nasal, sup 
and inf-nas, and 
inf-temp RNFL 
thickness

Altintas̨  
et al. (35)

Zeiss 3000 Stratus 17 PD
11 controls

↓ avg; sup and nas 
RNFL thickness

Moschos  
et al. (38)

Zeiss 3000 Stratus 16 PD
20 controls

↓ inf and temp 
RNFL thickness

Garcia-Martin  
et al. (39)

Cirrus and Spectralis 75 PD
75 controls

↓ RNFL thickness  
in all four quadrants

Rohani  
et al. (40)

Topcon 3D OCT 27 PD
27 controls

↓ avg; all quadrants 
RNFL thickness

Kirbas  
et al. (41)

Cirrus 42 PD
40 controls

↓ avg; temp RNFL 
thickness

La Morgia  
et al. (42)

Zeiss 3000 Stratus 43 PD
86 controls

↓ temp RNFL 
thickness

Satue  
et al. (43)

Cirrus and Spectralis 100 PD
100 controls

↓ inf (Cirrus and 
Spectralis) RNFL 
thickness

Sen  
et al. (45)

Not mentioned in the 
abstract

35 PD
11 controls

↓ avg RNFL 
thickness

Satue  
et al. (47)

Cirrus and Spectralis 153 PD
242 controls

↓ avg (Cirrus and 
Spectralis); sup, 
inf, and temp 
(Cirrus); sup and inf 
(Spectralis) RNFL 
thickness

Garcia-Martin  
et al. (48)

Cirrus and Spectralis 46 PD
33 control

↓ avg (Cirrus and 
Spectralis); sup, inf, 
and temp (Cirrus); 
sup and temp 
(Spectralis) RNFL 
thickness

Garcia-Martin  
et al. (49)

Spectralis 129 PD
129 controls

↓ avg; nas-inf, 
temp-inf, and 
temp-sup RNFL 
thickness

Jiménez  
et al. (50)

Zeiss 3000 Stratus 52 PD
50 controls

↓ avg; all four 
quadrants RNFL 
thickness

Bayhan  
et al. (51)

SD-OCT (RTVue-100) 20 PD
30 controls

↓ nas RNFL 
thickness

Sari  
et al. (52)

SD-OCT 54 PD
54 controls

↓ inf and temp 
RNFL thickness

Kaur  
et al. (53)

SD-OCT 20 PD
20 controls

↓ avg; sup and 
temp RNFL 
thickness

Eraslan  
et al. (55)

SD-OCT (RTVue-100) 25 PD
23 controls

↓ avg RNFL 
thickness

Pilat  
et al. (56)

SD-OCT (Copernicus) 25 PD
25 controls

↓ avg; all four 
quadrants RNFL 
thickness

PD, Parkinson’s disease; avg, average; temp, temporal; sup, superior; inf, inferior; nas, 
nasal; RNFL, retinal nerve fiber layer; SD, spectral domain; OCT, optical coherence 
tomography.
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TABLe 2 | OCT results in AD.

OCT no. of patients Results

AD MCi HC

Pillai  
et al. (82)

Cirrus 4000 
HD

21 20 34 No significant differences

La Morgia 
et al. (2)

Stratus OCT 21 74 ↓ avg; sup RNFL thickness

Salobrar-
Garcia  
et al. (83)

OCT1000 
Topcon

23 28 No significant differences

Eraslan  
et al. (84)

RTVue-100 18 20 ↓ RNFL thickness and 
macular GCC thickness

Günes̨  
et al. (85)

OPKO/OTI 
SD-OCT

20 20 ↓ avg RNFL thickness

Liu  
et al. (86)

Stratus OCT 67 26 39 ↓ avg; sup RNFL thickness

Oktem  
et al. (87)

Cirrus 
HDOCT

35 35 35 ↓ avg RNFL thickness

Cheung  
et al. (88)

Cirrus 
HDOCT

100 41 123 ↓ GC-IPL thickness in all 
macular sectors
↓ Superior RNFL thickness

Gao  
et al. (89)

Cirrus 
HDOCT

25 26 21 ↓ avg; sup RNFL thickness
↓ Macular volume in AD 
and MCI

Bambo  
et al. (90)

Cirrus 
HDOCT

56 56 ↓ avg RNFL thickness

Larrosa  
et al. (91)

Cirrus 
HDOCT

151 61 ↓ avg; sup and inf RNFL 
thickness

Ascaso  
et al. (92)

Stratus OCT 18 21 41 ↓ avg RNFL thickness
↓ Macular volume in MCI 
vs HC

Polo  
et al. (93)

Cirrus 
HDOCT
Heidelberg 
Spectralis

70 70 ↓ avg; sup and inf RNFL 
thickness

Gharbiya 
et al. (94)

Heidelberg 
Spectralis

21 21 No differences in RNFL 
thickness

↓ Choroidal thickness

Kromer  
et al. (95)

Heidelberg 
Spectralis

22 22 ↓ nas and sup sectors 
RNFL thickness

Moreno-
Ramos  
et al. (96)

OCT1000 
Topcon

10 10 ↓ avg RNFL thickness

Marziani  
et al. (97)

RTVue-100
Heidelberg 
Spectralis

21 21 ↓ Macular RNFL and 
macular RNFL + GCL in all 
sectors

Kirbas  
et al. (98)

OCT1000 
Topcon

40 40 ↓ avg; sup RNFL thickness

Moschos 
et al. (99)

Stratus OCT 30 30 ↓ avg; sup and inf RNFL 
thickness

Kesler  
et al. (100)

Stratus OCT 30 24 24 ↓ avg; sup (AD) and inf 
(MCI) RNFL thickness

Lu  
et al. (101)

Stratus OCT 22 22 ↓ avg; sup and inf RNFL 
thickness

Paquet  
et al. (102)

Stratus OCT 26 23 15 ↓ avg RNFL thickness

(Continued)

5

La Morgia et al. Patterns of RGC Damage in Neurodegeneration, 2017

Frontiers in Neurology | www.frontiersin.org December 2017 | Volume 8 | Article 710

occurred even with a normal RGC count, pointing to a specific 
AD pathology affecting mRGCs (2).

With the advent, in the last 15 years, of OCT, a non-invasive 
optical imaging technique of the retina and ONH, many studies 
investigated the occurrence of ON pathology in AD and five 
comprehensive meta-analyses summarized the results provided 
by these OCT studies (3, 4, 78–80) (Table 2).

In 2017, the most recent meta-analysis by den Haan and col-
leagues described the results on the average peripapillary RNFL in 
24 studies including 887 AD patients and 864 controls, and the 4 
peripapillary RNFL quadrants in 20 studies. The RNFL thickness 
was thinner in AD compared with controls [standardized mean 
difference (SMD) −0.98], corresponding to an absolute reduction 
of about 10  µm. RNFL thinning was more pronounced in the 
superior and inferior peripapillary quadrants and was age-related 
(Table 2) (3). The same meta-analysis reported also data about 
mild cognitive impairment (MCI) patients (322 AD patients, 216 
MCI patients, and 367 healthy controls), and RNFL thickness 
of MCI patients resulted intermediate between AD patients and 
healthy controls with a SMD of −0.71 compared with controls.

Furthermore, seven studies reported that total macular thick-
ness is significantly reduced in AD retinas compared with con-
trols with the largest effect on the outer macular ring [according 
to standard macular measures from the Early Treatment Diabetic 
Retinopathy Study (ETDRS)] (81). Moreover, the meta-regression 
by den Haan showed that OCT type, mini-mental state examina-
tion score, glaucoma exclusion score, and age were not associated 
with the SMD in the AD group compared with controls.

Overall, it must be emphasized that the results of OCT stud-
ies in AD are quite heterogeneous, due to the relatively small 
sample sizes and the different methods used for the data analysis. 
Moreover, not all the studies examined reported a thinning of the 
RNFL in AD patients (82). The main results of OCT studies in AD 
are summarized in Table 2 (82–105). Notwithstanding the tech-
nical limitations and some contrasting results, a specific pattern 
of axonal loss clearly emerged in the ON of AD patients, closely 
resembling the pattern of RGC loss described in glaucoma, i.e., 
the RNFL atrophy in the superior and inferior quadrants (18).

The relative sparing of the RNFL in the temporal quadrant and 
the predominant involvement of the superior and inferior RNFL 
quadrants (e.g., SDM for AD vs controls in temporal sector was 
−0.42 vs −0.99 in superior sector) indicate a preferential contri-
bution of parasol RGCs projecting to the magnocellular pathway 
(M-cells), which are mainly located in the extra-macular retina 
and are not specifically contributing to visual acuity (16, 24). In 
this context, it should be mentioned that some authors suggested 
that RNFL thinning in the superior and inferior quadrants might 
be justified by the fact that more neurons physiologically are 
located in these quadrants where therefore neurodegeneration is 
more apparent (equal percentage corresponds to a greater absolute 
reduction in thickness) (3). However, this pattern remains clearly 
distinguishable from that described in PD, where a predominant 
loss of the P-cells is reported (57). Furthermore, recent histologi-
cal findings in postmortem AD retinal specimens reported that 
the axonal loss predominantly affected the larger fibers in the 
superior quadrants, and, to a lesser extent, the nasal and inferior 
quadrants, whereas the temporal quadrants, were largely spared 
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OCT no. of patients Results

AD MCi HC

Berisha  
et al. (103)

Stratus OCT 9 8 ↓ RNFL thickness in the 
superior quadrant

Iseri  
et al. (104)

Stratus OCT 14 15 ↓ avg RNFL thickness
↓ Macular volume

Parisi  
et al. (105)

Stratus OCT 17 14 ↓ avg RNFL thickness

AD, Alzheimer’s disease; avg, average; temp, temporal; sup, superior; inf, inferior; 
nas, nasal; RNFL, retinal nerve fiber layer; GCC, ganglion cell complex; GCL, ganglion 
cell layer; OCT, optical coherence tomography; IPL, inner plexiform layer; MCI, mild 
cognitive impairment.

TABLe 2 | Continued
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(2, 16). The reasons why the M-cells are more vulnerable to AD 
pathology is still unknown but might be related to the different 
vulnerability of RGCs to amyloid deposition, which has been 
already demonstrated in mRGCs, characterized by a big soma 
and branched dendrites, similarly to M-cells (2).

Multiple System Atrophy
Multiple system atrophy is a neurodegenerative disorder typically 
defined by parkinsonian and cerebellar features and autonomic 
failure (106). The occurrence of RGC loss has been recently 
reported by different OCT studies (8).

Mendoza-Santiesteban and colleagues compared 24 MSA 
patients to 20 PD and 35 controls demonstrating a significant 
RNFL and ganglion cell complex (GCL +  IPL) thinning in the 
MSA patients compared with controls. Interestingly, in the MSA 
group the RNFL thinning was significant in the inferior quadrant 
relatively sparing the temporal region, thus clearly distinguish-
able from the PD cohort where a predominant temporal pattern 
was consistently found. The authors speculated that the different 
pattern of axonal loss could be due to different patterns of myeli-
nation by oligodendrocytes of M-cells axons (7), which might 
also explain the absence of visual complaints and normal visual 
acuity reported by MSA patients (7, 8). Similar results in terms 
of pattern of RNFL loss have been reported also by other studies 
(107–109).

Glaucoma
Elevated intraocular pressure (IOP) is the main risk factor for 
glaucoma, but even glaucomatous patients with IOP within 
normal limit will progress in loosing RGCs (110). The hypoth-
esis that larger RGCs are preferentially affected in human, and 
experimental glaucoma has received remarkable credit since 
Quigley and colleagues formulated it in 1987 (18, 28, 111). This 
hypothesis was corroborated by postmortem examination of the 
human LGN of glaucoma patients where a selective neuronal loss 
in the layers receiving input from parasol cells was shown (112). 
Over the years, the selective damage of M-cells or S-cone pathway 
(113) has been debated with contrasting opinions (114–117).

Nonetheless, recent studies in experimental glaucoma 
demonstrated that RGCs undergo morphologic changes before 
cell death, which are represented by reduction of soma volume, 
axon size, and dendritic tree area. These changes are consistent 

with cell shrinkage as an explanation for the apparent survival 
of midget cells reported in earlier studies (118). Weber and col-
leagues (119, 120) found a reduction in thickness and complexity 
of the dendritic tree in primate glaucomatous retinas, highlight-
ing that M-cells and P-cells were involved to a similar extent 
(121). Moreover, psychophysical studies comparing responses 
of M and P pathways, found contrasting results, some sup-
porting similar dysfunction for both pathways (122), whereas 
others suggested that visual functions such as contrast sensitivity 
and contrast gain signature, mediated by the M pathway, were 
reduced in glaucoma (123).

Even if the mechanisms underlying axonal damage in glaucoma 
are still not completely understood, the pattern of peripapillar and 
macular RNFL thinning is now well described by OCT studies.

Schuman and colleagues in 1995 (124) showed for the first 
time a thinning of the RNFL in glaucomatous eyes as compared 
with normal eyes, more evident in the inferior quadrant. In 2005, 
using Stratus OCT (time-domain OCT) Leung and colleagues 
noticed the greatest reductions in peripapillary RNFL thickness in 
glaucoma at the superotemporal (11 o’clock) and inferotemporal  
(7 o’clock) sectors. These changes are congruent with the dis-
tribution of the most commonly reported visual field defect in 
glaucoma (125). Subsequently, numerous OCT studies have 
confirmed the typical pattern of relative sparing of peripapillary 
RNFL in the temporal quadrant and the resulting greater diag-
nostic performance to distinguish normal eyes from eyes with 
early glaucoma by looking at the inferior (inferotemporal) and 
superior (superotemporal) RNFL quadrants (126). In more recent 
years, with the advent of spectral-domain OCT and its greater 
spatial resolution, it has been possible to measure with higher 
reliability the thickness of the RNFL and the retinal ganglion cell 
plus inner plexiform (RGC+) just in the macula (127). Hood 
and coauthors demonstrated a greater thinning of the macular 
RGC+ thickness in the inferior macula (superior visual field) in 
glaucoma patients (128), corresponding to the typical arcuate 
RGC damage associated with local peripapillar RNFL thinning 
in a confined region of the disc, which the authors named “the 
macular vulnerability zone” (about 7:00 o’ clock). Furthermore, 
the authors reported that the temporal region of the disc, where 
axons come from the upper and nasal macula, showed a milder 
damage until late stages of the disease.

Overall, the pattern described by OCT studies in glaucoma 
clearly points to a predominant damage of the inferior and supe-
rior ON quadrants where M-cells are preferentially located, with 
a relative sparing of the temporal sector (P-cells), similar to what 
has been described in AD and MSA.

Conclusions
Optical coherence tomography is an extraordinary tool to assess 
anatomy in vivo, to describe subtle differences in the patterns of 
neurodegeneration and to provide possible mechanistic insights 
for ON damage in different human diseases.

Mechanisms of neurodegeneration may act at different levels 
of the RGC/ON system, which is composed by RGC dendritic 
tree, the soma, the axon in its unmyelinated intraretinal compo-
nent and the transition through the lamina cribrosa at the ONH, 
and the post-laminar myelinated component. Moreover, large 
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and small RGCs and thicker and thinner axons display different 
conduction velocities, thus metabolic requirements and myelin 
sheath turnover. All these elements, and others that we know less, 
such as vascularization, support from glial cells and anatomical 
microenvironment come into play, possibly differentiating 
mechanistically the neurodegenerative pattern.

It must be also considered that a trans-synaptic degeneration 
may occur in some circumstances, such as in the specific case 
documented in AD where both the SCN and the mRGCs are 
affected by amyloid deposition supporting the hypothesis of a 
global involvement of the retino-hypothalamic tract (2, 129). 
Despite evidences are not conclusive it cannot be excluded that 
retinal degeneration in these disorders can be also contributed by 
trans-synaptic neurodegeneration.

Current evidences for PD suggest a number of possible 
co-occurring pathological events. Dopaminergic depletion 
may affect the connecting circuitry such as the amacrine cells, 
possibly leading to RGC de-afferentation and dendritic remod-
eling. However, mounting evidences highlight α-synuclein 
deposition in PD retinas, and mitochondrial dysfunction, not 
surprisingly, may ultimately lead to a prevalent damage of the 
P-cells. This is consistent with current OCT results pointing to a 
predominant “mitochondrial-like” pattern of ON degeneration. 
The α-synuclein deposition in the retina, which might support a 
primary neurodegenerative process, parallels the recent findings 
of α-synuclein deposition demonstrated in the skin nerves of PD 
patients (130).

In AD, similar to PD, there is deposition of an abnormally 
folded protein, i.e., β-amyloid, which, however, presents with a 
peculiar retinal topography involving preferentially the periph-
eral retina in the superior quadrant, as recently shown (16). At 
this regard, Koronyo and coauthors have recently demonstrated 
that amyloid plaques can be visualized in vivo in AD human eyes 
using oral curcumin, opening the possibility to use the eye as a 
reliable and easily accessible biomarker for this disease (16).

Overall, in AD the OCT results, as well as the histological 
studies, point to a predominant affection of the M-cells, which 
somehow links AD to what is observed in glaucoma. This parallel 
may suggest that a relevant role is played by the ONH anatomy, 
where fibers turn 90° to engage into the transition through the 
lamina cribrosa, where a still poorly understood mechanism hits 
the larger axons driving M-RGC loss. The dichotomy between the 
two opposite patterns of prevalent P-cells vs M-cells vulnerability 
is further reflected in other two neurodegenerative disorders, HD 
as opposed to MSA. Remarkably, MSA that is a synucleinopathy 
with parkinsonism displays an OCT pattern more similar to 
AD, whereas HD is closer to PD. This latter link may be again 
supported by the common intrinsic mitochondrial dysfunction, 
whereas the link between MSA and AD in terms of retinal pathol-
ogy remains puzzling and deserves further investigations.

Overall, OCT proves to be a powerful tool to assess anatomi-
cally neurodegeneration in vivo providing, once solidly validated 
by complementary postmortem histological studies, a great 
potential in all neurodegenerative disorders for monitoring 
natural history and ultimately possibly validate neuroprotective 
therapeutic strategies by proving their efficacy.
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