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The coupling strength between electroencephalogram (EEG) and electromyography 
(EMG) signals during motion control reflects the interaction between the cerebral motor 
cortex and muscles. Therefore, neuromuscular coupling characterization is instructive in 
assessing motor function. In this study, to overcome the limitation of losing the charac-
teristics of signals in conventional time series symbolization methods, a variable scale 
symbolic transfer entropy (VS-STE) analysis approach was proposed for corticomuscular 
coupling evaluation. Post-stroke patients (n = 5) and healthy volunteers (n = 7) were 
recruited and participated in various tasks (left and right hand gripping, elbow bending). 
The proposed VS-STE was employed to evaluate the corticomuscular coupling strength 
between the EEG signal measured from the motor cortex and EMG signal measured 
from the upper limb in both the time-domain and frequency-domain. Results showed 
a greater strength of the bi-directional (EEG-to-EMG and EMG-to-EEG) VS-STE in 
post-stroke patients compared to healthy controls. In addition, the strongest EEG–EMG 
coupling strength was observed in the beta frequency band (15–35 Hz) during the upper 
limb movement. The predefined coupling strength of EMG-to-EEG in the affected side 
of the patient was larger than that of EEG-to-EMG. In conclusion, the results suggested 
that the corticomuscular coupling is bi-directional, and the proposed VS-STE can be 
used to quantitatively characterize the non-linear synchronization characteristics and 
information interaction between the primary motor cortex and muscles.

Keywords: corticomuscular coupling, symbolic transfer entropy, stroke, electroencephalogram, electromyography

inTrODUcTiOn

Electroencephalogram (EEG) is a non-invasive brain imaging technique that uses scalp elec-
trodes to measure the voltage fluctuations induced by the mass electrical activity of neurons (1). 
Electromyography (EMG) technique is usually used to record the electrical activity produced by 
skeletal muscles (2). In the process of movement, the central nervous system associated with relevant 
brain regions and the peripheral nerve system associated with specific muscles is automatically 
synchronized in addition to the synergistic effect between different brain regions (1, 2). As such, the 
synchronization strength reflects the interaction between the primary motor cortex and the muscles 
and provides theoretical basis for the rehabilitation of stroke and dyskinesia patients (3).

Since Conway et al. (4) first reported a correlation between EEG and EMG in the process of exer-
cise in 1995, dynamic interactions between brain activities and muscle motion feedbacks have been 
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TaBle 1 | Demographic information the subjects.

subject 
#

age Used 
hand

status condition

S1 45 Left Suffering from 
stroke for 2 months

Small amount of bleeding in 
right intracranial brain, left foot 
cannot walk flexibly

S2 47 Right Suffering from 
stroke for 1 month

Right brain intracranial 
hemorrhage, limbs can only 
complete the basic actions

S3 49 Right Suffering from 
stroke for 1 month

Right brain intracranial 
hemorrhage, limbs can 
complete basic movements

S4 51 Right Suffering from 
stroke for 2 months

Right brain intracranial 
hemorrhage, upper limbs can 
only complete simple actions

S5 47 Right Suffering from 
stroke for 1 month

Right brain intracranial 
hemorrhage, upper limbs can 
only complete simple actions

S6 27 Right Healthy No
S7 26 Right Healthy No
S8 24 Right Healthy No
S9 25 Right Healthy No
S10 27 Right Healthy No
S11 26 Right Healthy No
S12 25 Right Healthy No
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widely investigated. It was found that the coherence of EEG–EMG 
signals is closely related to the motion tasks (5). For instance, the 
oscillation in the beta band is associated with mild-to-moderate 
isometric contraction, and the oscillation in the low range of the 
gamma band is related to strategies for controlling stronger muscle 
force production and dynamic movements (6). Various coherence 
analysis techniques, including cortical–muscular functional cou-
pling (7, 8), Granger causality analysis (9, 10), transfer entropy (TE) 
analysis (11, 12), and symbolic transfer entropy (STE) analysis (13) 
have been developed and applied to EEG and EMG signal coupling 
analysis. Among these, the STE technique is an effective method 
to analyze the relationship between neural and muscular activity 
coupling. In general, the STE yields characteristics not depending 
on the established model and non-linear quantitative analysis (14). 
It can be used to estimate the functional coupling strength and 
information transfer direction between cortices and muscles and 
to reveal movement control and response mechanisms during 
movements (15). For instance, the STE has been used to analyze 
the non-linear functional connection between EEG single and 
surface EMG signals of hand muscles (16), which demonstrated 
that the functional corticomuscular coupling is significant in the 
beta band in the static force output for healthy subjects.

However, the STE also holds ineligible challenges in practice. 
For example, the number of symbols applied in the time sequence 
in traditional STE is fixed, which is therefore not flexible and 
dynamic characteristics of signals are easily lost. In addition, the 
STE has only been applied to health subjects so far, has not been 
tested in stroke patient population yet (16–18).

To bridge this gap, a variable scale symbolic transfer entropy 
(VS-STE) analysis approach was developed in this study to better 
investigate the corticomuscular coupling in both post-stroke patients 
and healthy volunteers. In particular, the corticomuscular coupling 
strength was assessed based on the EEG signals measured from the 
motor cortex and EMG signals obtained from upper limb in both 
time-domain and frequency-domain. The EEG–EMG coupling 
strength of subjects were also quantitatively evaluated in terms of 
significant area, which provided evidence to apply corticomuscular 
coupling in the rehabilitative evaluation of motor function disorders.

MaTerials anD MeThODs

experimental Design
Participants
Twelve male subjects, including a control group (n  =  7, age: 
25.7 ± 1.11 years, all right handed) and a patient group (n = 5, 
age: 47.8 ± 2.28 years) were recruited in this study. The details 
of the subjects are summarized in Table 1, where S1, S2, and S3 
are patients with mild stroke, S4 and S5 are patients with severe 
stroke, and S6–S12 are healthy volunteers. The study protocol 
was approved by the Institutional Review Board of Guangdong 
Provincial Work Injury Rehabilitation Hospital. Prior to the 
experiment, all the subjects were informed of the details of the 
experiments and signed the informed consent form.

Experimental Paradigm
To stabilize force outputs, a spring grip meter (EH101, Lynx Mall, 
China) was used in hand gripping tasks at 5 kg, 10 kg force levels, 

and elbow flexion task. The complete paradigm is illustrated 
in the Figure 1. All motor tasks for each subject started with a 
resting condition for 20 s, then subjects were asked to perform 
specific motor execution task for 5 s according to the instruction 
of a screen placed 1-m in front of their eyes, and then relaxed 
for 20 s. Each motor task contained five repeats, and all subjects 
performed each motor task using their left and right hand, 
respectively. After each motor task was completed, the subjects 
rested for 20 min before switched to next motor task to prevent 
muscle fatigue. Finally, the whole experiment ended up with 30 
trials (2 hands × 3 tasks × 5 repeats) for each subject. As subjects 
S4 and S5 are severe stroke survivors, gripping tasks were only 
performed in the subject S4 at 5 and 10 kg force levels in both 
hands, and the 5 kg force level in both hands, and at 10 kg force 
level in the right hand in the subject S5. All other subjects suc-
cessfully completed all experiments.

Data Collection
An EEG acquisition system (Brain Products GmbH, Germany) 
was utilized to collect 32-channel EEG signals from the whole 
head and 12-channel EMG signals from both sides of upper limbs 
(Figure 2A). EEG electrodes were placed on the scalp according 
to the international 10–20 standard system (FP1, FP2, F7, F8, F4, 
F3, FZ, FC5, FC1, FC2, FC6, T7, C3, CZ, C4, T8, CP5, CP1, CP2, 
CP6, TP9, P7, P3, PZ, P4, P8, TP10, PO9, O1, OZ, O2, PO10), and 
the binaural mastoid was used as reference electrodes. EMG sig-
nals were recorded from upper limb muscles including the flexor 
digitorum superficialis (FDS), brachioradialis muscle, radial 
wrist flexor, ulnar wrist flexor, musculus biceps brachii (MBB), 
and triceps (Figure 2B). The skin surface was carefully prepared 
and cleaned by alcohol before the electrodes were attached. The 
sampling frequency of EEG and EMG signals was set to 1,000 Hz.
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FigUre 1 | Illustration of the experimental paradigm.
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EEG and EMG Signal Preprocessing
To study the coupling relationships between the EEG and the EMG 
signals associated with various motor tasks, the EEG signals of C3, 
C4, CP5, and CP6 channels, which covered the premotor cortex 
and the somatosensory cortex of the brain, and the EMG signals 
of the FDS and biceps muscle were selected for further analysis.

As the EEG and EMG signals are vulnerable and susceptible to 
noise such as powerline interference and baseline drift, such arti-
facts were subsequently removed by the EEG recording amplifiers 
and analysis software during data collection. The independent 
component analysis was employed to remove electrooculogram 
artifact, and the wavelet decomposition was employed to remove 
motion artifact (19) and improve the quality of EEG and EMG 
signals for further analysis.

Variable-scale Transfer entropy analysis
Time-Domain Analysis of EEG–EMG Signals
Symbolic transfer entropy analysis technique is an effective method 
to analyze the relationship between neural and muscular activity 
coupling. Symbolization (16–18), a technique processing coarse 
graining of the physiological signal before the calculation of TE, can 
capture large-scale dynamic characteristics of the signal and therefore 
reduce the effects of noise. For STE, the accuracy of symbolization 
affects the accuracy of the TE calculation and the dynamic coupling 
performance of the system. In particular, for traditional STE, fixed 
number of symbols is applied to symbolize the time sequence in 
advance. If the symbol sets is too large, data partitioning becomes 
smaller, which increases the computation cost and aggravates the 
noise. On the other hand, if the symbol set is too small, the data 
partition becomes thick, and the dynamic characteristics of signals 
are easily lost. To address the above shortcomings, a variable scale 
parameter symbolization method was proposed in this paper. The 
procedures of this proposed method is described as follow:

 (1) Given a time series signal, the mean, maximum, and mini-
mum values of the time series are first computed;

 (2) A variable symbolic scale is set and denoted as piece, which 
segments the time series into pieces + 1 copies. The larger 
value of piece results in smaller segmentations and therefore 
more details of the signal can be retained;

 (3) Then symbolize the time series. The segmentation fell into the 
smallest interval is assigned with the symbol − pieces

2
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by − +
pieces
2

0 5. , and so on. The largest symbol is pieces
2

.

The specific function form is as shown in Eq. 1:
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where i represents the length of the time series, S(i) repre-
sents the symbolized sequence, min(x) and max(x) represent 
the minimum and maximum values of the time series, delta 
represents the value of increasement per interval, which  
is max

pieces
( ) ( )x x−

+
min
1

.
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FigUre 2 | (a) Experimental environment of the electroencephalogram and 
electromyography (EMG) data measurement; (B) illustration of the locations 
of EMG electrodes on upper limb.
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TE is an indicator of the directional delivery of time series 
information, for instance, TEX→Y denotes the amount of informa-
tion transferred from X to Y.

If given time series X = {x1, x2, …, xT} and Y = {y1, y2, …, yT},  
where T is the length of the time series, x1, y1 are the first 

observation, and x2, y2 are the second observation of time series, 
respectively. The TE of Y to X is defined as TEY→X shown in Eq. 2, 
and the TE of X to Y is defined as TEX→Y shown Eq. 3 (20–22):
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(3)

where n is the discrete time index, τ is the predicted time, and p(⋅) 
represents the probability distribution.

Combining the variable scale parameter symbolization method 
and TE, a VS-STE approach was proposed in this paper to analyze 
the relationship between cerebral cortex and muscle electrical 
coupling and to explore the corticomuscular coupling. Generally, 
VS-STE is a method based on probability distribution and 
Shannon entropy to detect the asymmetry between time series, 
so as to obtain the causality between time series. In particular, the 
TE of EEG–EMG reflects the amount of information exchange 
between the cerebral cortex and motor neurons. Therefore, the 
TE of EEG to EMG represents the amount of information that the 
cerebral cortex transmits to the control muscle, and TE of EMG to 
EEG represents the amount of information that muscle cells feed 
back to the cerebral cortex.

Frequency-Domain Analysis of EEG–EMG Signals TE
After the pretreatment of Section “EEG and EMG Signal 
Preprocessing,” two sets of EEG and EMG time series signals 
were marked as X = {x1, x2, …, xM} and Y = {y1, y2, …, yM}, respe-
ctively. Then, the EEG and EMG signals, which ranged from 1 
to 50 Hz, were filtered into 49 sub-band signals with a frequency 
interval of 1 Hz using a finite impulse response filter. Based on 
the definition of TE in Eqs  2 and 3, the TE of each sub-band 
of the EEG and EMG signals was expressed as TEX→Y(f) and 
TEY→X(f), where f represents the sub-band frequency. In general, 
the greater the entropy, the larger the amount of information was 
transferred in this band.

Definition of Coupling Strength
To quantify the brain’s ability to control the arm and the arm’s 
response to the brain control command, a parameter named sig-
nificant area was employed in this study to quantitatively describe 
the coupling strengths (CS) of EEG and EMG signals in different 
directions (16). Based on significant area, the CS from EEG to 
EMG is defined as CSX→Y, which shows the ability of the cerebral 
cortex to control the motor muscle, and CSY→X, which indicates 
the response of the motor muscle to the control command, as 
shown in Eqs 4 and 5, respectively:

 
CS TEX Y X Y

f

f f→ →= ⋅∑∆ ( ),
 

(4)

 
CS TEY X Y X

f

f f→ →= ⋅∑∆ ( ),
 

(5)

where Δf represents the sub-band resolution, TEX→Y(f) and 
TEY→X(f) represent the TE at the frequency f in different directions.
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TaBle 2 | Delay time of all the subjects (ms).

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

τ(EEG → EMG)/ms 31 27 25 29 31 21 25 23 26 19 24 27
τ(EMG → EEG)/ms 27 23 21 26 28 26 28 27 22 27 27 23

EEG, electromyography; EMG, electroencephalogram.

FigUre 3 | Different delay time of TE with respect to the direction of 
information flow.

FigUre 4 | Mean and SD of the STE hand gripping task with respect to 
different scale parameters. (a) Left hand 5 kg gripping; (B) right hand 5 kg 
gripping; (c) left hand 10 kg gripping; (D) right hand 10 kg gripping; (e) left 
hand elbow bend; (F) right hand elbow bend.
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resUlTs

Theoretically the premotor area in the cerebral cortex is primarily 
activated when the subject performed motor task on the contralat-
eral limb. The primary motor area (M1) is activated when the 
body maintains a movement, while the primary somatosensory 
area (S1) is activated when the sensation of the limb is received 
(10). Therefore, EEG signals from C3/C4 channel located in the 
primary motor zone, CP5/CP6 channel in the primary somatic 
sensory area, and EMG signals from the FDS, the bicipital muscle 
(MBB) channel were selected to study the TE in the article. For 
each 5-s motor task, the selected data length was N = 5,000.

Determination of the information Delay
There were certain delays in the flow of information in both direc-
tions between EEG and EMG (23). In particular, STE is believed 
to reach the peak between τ = 20 and 30 ms. Therefore, in this 
case, the STE of EEG-to-EMG and EMG-to-EEG were computed 
across all subjects by shifting the delay τ from 0 to 50  ms on 
the EEG signal of the C3 channel and the EMG signal of right 
hand’s FDS. Specifically, the delay of each individual subject was 
determined according to the optimal value of the STE (16). The 
STE of the subject S1 is shown in Figure 3 as an example, which 
shows that the delay of subject S1 is 31 ms from EEG to EMG and 
27 ms from EMG to EEG. The summary of all subjects is shown 
in Table 2. It can be observed that delays of the descending (EEG 
to EMG) and ascending (EMG to EEG) pathways are different for 
individual subject, but generally concentrated around 20–30 ms, 
which is consistent with the results of a previous study (24).

scale Parameter selection of Vs-sTe
As we introduced earlier, the scale parameter represents the 
degree of symbolization of the time series signal. If the number 

of symbols applied in the time sequence in STE is fixed before-
hand, it is not flexible for further processing and the dynamic 
characteristics of the signals are easily lost. In this study, for each 
hand gripping task, EEG signals of C3/C4 channels and EMG 
signal of the FDS were first selected, then VS-STE method was 
used to analyze the coupling strength between EEG and EMG 
with respect to different scale parameters. For all subjects, the 
mean and SD of STE underwent 5 kg gripping, 10 kg gripping, 
and elbow flexion tasks in both hands after symbolization, are 
shown in Figure 4, respectively.

As shown in Figure  4, as the scale parameter piece 
increased, higher STE can be obtained from the symbolized 
time series, which indicated the loss of dynamic information 
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FigUre 5 | The bi-directional STEs between electroencephalogram and electromyography with respect to different tasks. (a) Left hand 5 kg gripping; (B) right 
hand 5 kg gripping; (c) left hand 10 kg gripping; (D) right hand 10 kg gripping; (e) left hand elbow flexion; (F) right hand elbow flexion. PA, patients; HC, healthy 
controls; STE, symbolic transfer entropy.

FigUre 6 | Summarized coupling strength (CS) of patient group (S1–S5) with respect to various motor tasks. (a) Left 5 kg; (B) right 5 kg; (c) left 10 kg; (D) right 
10 kg; (e) left elbow flexion; (F) right elbow flexion.
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was alleviated. However, it was also observed that the SD 
increased as the scale parameter increased, resulting in higher 
fluctuation of the STE. Therefore, it is necessary to compre-
hensively consider the mean and SD of STE to choose the scale 
parameter.

To select the appropriate scale parameters for symbolization, the 
objective function G was defined in Eq. 6 as follow in this article:

 

G a M b S
a b
= −
+ =







∗ ∗

1
,
 

(6)

where M and S denote the normalized mean and SD values of STE 
with respect to different scales, a and b are constants. Here, a and 
b are set to 0.5. The optimal scale parameter was then determined 
when the objective function reached its peak.

In this article, the scale parameter was set as 25 based on the 
Eq. 6, with which the time series was symbolized, then further 
coupling analysis of EEG–EMG signals was carried out.

analysis of Time-Domain sTe in subjects
The bi-directional STE between EEG and EMG signals was com-
puted using the pre-selected scale parameter for all motor tasks 
across all 12 subjects. The average bi-directional STEs between 
EEG and EMG signals of each group under different motor tasks 
were shown in Figure 5.

From Figure 5, it can be observed that for all motor tasks the 
mean value of STE from the EEG to EMG signals was greater than 
that from the EMG to EEG signals in the patient group as well as 
the control group. It can also be noticed that the mean value of 
the STE between the EEG and EMG signals in the patients tended 
to be higher than that of the healthy subjects, as demonstrated in 
Figure 5.

analysis of Frequency-Domain  
sTe in subjects
Because different EEG rhythms may be involved in different 
ways during movement, the oscillatory responses of different 
frequency bands may be different with respect to various move-
ments. Therefore, the STE between EEG and EMG signals were 
analyzed in multi-frequency bands for all subjects in this article. As 
reported in the previous study (16), significant area was employed 
to evaluate the coupling strength (CS) between EEG signals and 
EMG signals of specific frequency bands, including theta band 
(4–8 Hz, θ), alpha band (8–14 Hz, α), beta band (15–35 Hz, β), 
and gamma frequency band (35 Hz or more, γ). The results of 
the frequency-domain analysis for all the patients after stroke 
(S1–S5) and all healthy subjects were shown in Figures 6 and 7, 
respectively. The mean and SD of the coupling strength across all 
subjects were computed and summarized in Table 3.

FigUre 7 | Mean coupling strength (CS) of healthy subjects (S6–S12) with respect to various motor tasks. (a) Left 5 kg; (B) right 5 kg; (c) left 10 kg; (D) right 
10 kg; (e) left elbow flexion; (F) right elbow flexion.
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It is noticeable from Figures  6 and 7 that the coupling 
strength of EEG-to-EMG and EMG-to-EEG in the beta and 
gamma bands of all subjects were larger than theta and alpha 
bands during the execution of three motor tasks. In particular, 
for patients group, the mean value of the coupling strength in 
beta frequency band all exceeded 9.42 (9.65 ± 0.20), while the 
controls group showed similar results in beta frequency band 
7.59 (7.89 ± 0.29). In addition, as shown in Figures 6 and 7 and 
Table  3, the results also demonstrated that in the beta band, 
the coupling strength from EEG to EMG was slightly higher 
than that from EMG to EEG band in control group, while for 
post-stroke patients the coupling strength from EEG to EMG 
appeared to be lower than that from EMG to EEG except 5 kg 
hand gripping in the right hand.

To better compare the difference of corticomuscular coupling 
strength between stroke patients and healthy subjects, according 
to the results in Table  3, the strength differences between the 
ascending neural pathway (EMG-to-EEG) and descending neu-
ral pathway (EEG-to-EMG) with respect to different motor tasks 
were evaluated by two sample t test using SPSS software (V22.0, 
IBM Corp., Armonk, NY, USA) within the β band. Results sug-
gested that there is a significant difference (p < 0.05) in the cou-
pling strength between patient group and control group, except 
for the 5 kg gripping task in right hand (p = 0.3272 > 0.05). As 
subject S4 and S5 were unable to complete the elbow flexion task 
due to severe stroke, the statistical test was not performed for 
elbow flexion task since the available samples in patient group 
was too small.

DiscUssiOn anD cOnclUsiOn

In this study, the corticomuscular coupling strength of both 
post-stroke patients (n = 5) and healthy volunteers (n = 7) were 
assessed under various motor tasks using the proposed VS-STE 
analysis method.

In time-domain, the VS-STE between EEG signals selected 
from the primary motor area and the somatosensory sensory 
area of the brain, and EMG signals was analyzed with respect 
to different motor tasks in all the five post-stroke patients and 
seven healthy controls. The results revealed that the STE from 
EEG to EMG signals was increased in patients after stroke dur-
ing movements compared to healthy controls (Figure 5), which 
indicated that the amount of information transferred from the 
motor cortex to the muscles tended to increase in the post-stroke 
patients to complete the same movement. The reason may lie in 
the fact that more cerebral cortex areas, such as sensory motor 
cortex, auxiliary exercise area, pre-exercise area, and ipsilateral 
posterior parietal cortex area, were needed to be activated for the 
post-stroke patients to complete and maintain stable movements 
(23). In addition, the STEs from EMG to EEG in all motor tasks 
were also increased in patient group compared to those of control 
group, which may be caused by control disorder resulted from 
the damage of the motor function area and thereby prevent them 
activating the motoneuron and motor cortex exactly (25). The 
neural mechanism behind the appearance of abnormal coordina-
tion patterns during post-stroke recovery are largely unknown, 
but they are possibly related to a loss in cortical control and an 

TaBle 3 | Comparison (mean ± SD) of the coupling strength across all subjects.

Tasks Fre. group left hand right hand Overall

eeg > eMg eMg > eeg eeg > eMg eMg > eeg

5 kg θ PA 1.86 ± 0.43 1.89 ± 0.39 1.97 ± 0.48 1.90 ± 0.15 1.91 ± 0.05
HC 1.74 ± 0.18 1.63 ± 0.20 1.42 ± 0.14 1.25 ± 0.19 1.51 ± 0.21

α PA 3.26 ± 0.75 3.28 ± 0.67 3.45 ± 0.79 3.31 ± 0.23 3.33 ± 0.09
HC 3.05 ± 0.31 2.95 ± 0.36 2.48 ± 0.25 2.29 ± 0.24 2.69 ± 0.36

β PA 9.55 ± 1.39 9.60 ± 1.22 10.18 ± 1.58 9.74 ± 1.13 9.76 ± 0.29
HC 9.31 ± 0.73 8.99 ± 0.93 7.63 ± 0.65 6.81 ± 0.87 8.19 ± 1.17

γ PA 6.79 ± 1.64 7.01 ± 1.54 7.16 ± 1.45 7.08 ± 0.83 7.01 ± 0.16
HC 6.82 ± 0.44 6.49 ± 0.37 5.64 ± 0.55 5.26 ± 0.62 6.05 ± 0.72

10 kg θ PA 1.83 ± 0.52 1.87 ± 0.27 1.93 ± 0.39 1.79 ± 0.43 1.86 ± 0.06
HC 1.50 ± 0.20 1.29 ± 0.29 1.58 ± 0.12 1.41 ± 0.20 1.45 ± 0.12

α PA 3.20 ± 0.85 3.30 ± 0.46 3.36 ± 0.58 3.16 ± 0.79 3.26 ± 0.09
HC 2.62 ± 0.35 2.34 ± 0.38 2.76 ± 0.22 2.54 ± 0.24 2.57 ± 0.17

β PA 9.29 ± 0.51 10.39 ± 1.91 9.31 ± 1.06 10.10 ± 2.05 9.78 ± 0.56
HC 7.95 ± 0.78 6.94 ± 0.74 8.18 ± 0.78 7.31 ± 1.07 7.59 ± 0.63

γ PA 6.72 ± 0.47 7.28 ± 1.31 6.71 ± 1.02 6.97 ± 1.71 6.92 ± 0.27
HC 5.91 ± 0.42 5.39 ± 0.39 5.64 ± 0.63 5.30 ± 0.49 5.56 ± 0.44

Elbow bend θ PA 1.70 ± 0.60 1.82 ± 0.38 1.79 ± 0.62 1.75 ± 0.33 1.76 ± 0.05
HC 1.68 ± 0.39 1.49 ± 0.47 1.53 ± 0.21 1.24 ± 0.42 1.48 ± 0.17

α PA 2.99 ± 0.58 3.17 ± 0.68 3.15 ± 1.07 3.06 ± 0.62 3.09 ± 0.08
HC 2.97 ± 0.70 2.71 ± 0.76 2.67 ± 0.37 2.26 ± 0.65 2.65 ± 0.30

β PA 8.82 ± 2.44 9.83 ± 1.09 9.40 ± 1.97 9.64 ± 0.95 9.42 ± 0.44
HC 8.87 ± 1.76 8.31 ± 1.98 7.87 ± 1.14 6.55 ± 2.04 7.90 ± 0.87

γ PA 6.67 ± 1.19 7.15 ± 0.79 6.69 ± 1.03 7.11 ± 0.76 6.98 ± 0.22
HC 6.31 ± 0.74 5.67 ± 1.12 5.46 ± 0.86 4.92 ± 1.13 5.59 ± 0.43

PA, patients; HC, healthy controls; EEG, electromyography; EMG, electroencephalogram.
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