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Introduction: Volumetric image analysis to detect progressive brain tissue loss in patients 
with multiple sclerosis (MS) has recently been suggested as a promising marker for “no 
evidence of disease activity.” Software packages for longitudinal whole-brain volume 
analysis in individual patients are already in clinical use; however, most of these methods 
have omitted region-based analysis. Here, we suggest a fully automatic analysis pipeline 
based on the free software packages FSL and FreeSurfer.

Materials and methods: Fifty-five T1-weighted magnetic resonance imaging (MRI) 
datasets of five patients with confirmed relapsing–remitting MS and mild to moderate 
disability were longitudinally analyzed compared to a morphometric reference database 
of 323 healthy controls (HCs). After lesion filling, the volumes of brain segmentations 
and morphometric parameters of cortical parcellations were automatically screened 
for global and regional abnormalities. Error margins and artifact probabilities of regional 
morphometric parameters were estimated. Linear models were fitted to the series of 
follow-up MRIs and checked for consistency with cross-sectional aging in HCs.

Results: As compared to leave-one-out cross-validation in a subset of the control data-
set, anomaly detection rates were highly elevated in MRIs of two patients. We detected 
progressive volume changes that were stronger than expected compared to normal 
aging in 4/5 patients. In individual patients, we also identified stronger than expected 
regional decreases of subcortical gray matter, of cortical thickness, and areas of reduc-
ing gray–white contrast over time.

Conclusion: Statistical comparison with a large normative database may provide com-
plementary and rater independent quantitative information about regional morphological 
changes related to disease progression or drug-related disease modification in individual 
patients. Regional volume loss may also be detected in clinically stable patients.

Keywords: structural magnetic resonance imaging, automated morphometry, multiple sclerosis, atrophy 
progression, individualized medizine

Abbreviations: CIS, clinically isolated syndrome; CSF, cerebrospinal fluid; EDSS, expanded disability status scale; eTIV, esti-
mated total intracranial volume; FDR, false discovery rate; FLAIR, fluid-attenuated inversion recovery; GM, gray matter; HC, 
healthy control; LOOCV, leave-one-out cross-validation; MRI, magnetic resonance imaging; MS, multiple sclerosis; NEDA, 
no evidence of disease activity; RR-MS, relapsing–remitting multiple sclerosis; SBA, surface-based analysis; T1w, T1-weighted; 
VBM, voxel-based morphometry; WM, white matter.
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INtRodUCtIoN

Recently, the “no-evidence of disease activity” criteria (NEDA-3) 
have been extended (NEDA-4) in order to add cerebral atrophy 
as a potential surrogate biomarker for progression of multiple 
sclerosis (MS). Data from the FREEDOMS core and extension 
trials revealed that NEDA-4 status in the first year is a better 
predictor of long-term outcomes than NEDA-3. Volumetry has 
gained increasing attention as a possible approach to enable 
earlier and more accurate prognosis (1) and as a secondary 
outcome measure in clinical trials (2). Loss of brain tissue 
due to the progression of the disease may be easily overlooked 
during expert reading of magnetic resonance imaging (MRI). 
Monitoring of disease progression and therapy control may 
profit from quantitative volumetric approach to estimate lesion 
load and brain atrophy. Novel automatic methods for whole-
brain volumetry (3–8) enable robust and effective longitudinal 
monitoring of atrophy and disease progression, while treatment 
goals in MS have shifted to require the setting of novel targets for 
disease monitoring.

Voxel-based morphometric (VBM) and surface-based 
morphometric group studies in MS patients (9–15) identified 
reduced mean overall cortical thickness and regional subcorti-
cal and cerebellar gray matter (GM) volume loss. Focal cortical 
thinning in frontal and temporal brain regions with a tendency to 
predominantly affect the left hemisphere was observed after first 
onset even in subgroups with mild disability. After relapses, in 
more severely disabled patients, cortical thinning was also evident 
in the pre- and postcentral gyrus. The presence of widespread 
cortical thinning has been suggested as a predictor for cognitive 
impairment, while atrophy of the superior frontal gyrus, the 
thalamus, and the cerebellum were independent predictors for 
conversion of clinically isolated syndrome (CIS) patients to 
MS (16). Reduced white matter (WM) volume and increased 
curvature of the cortical band has also been detected earlier 
in CIS (17). A follow-up study revealed significantly increased 
loss of total GM in MS patients with disability progression after 
5 years (67 patients) as compared to patients with stable disability. 
Similar results were obtained for cortical GM and the volume of 
the putamen, whereas no difference was found in WM atrophy 
progression. At 10 years (50 patients) only a trend toward larger 
loss of total GM volume in patients with disability progression 
was detected (18).

Ahead of translating such findings into clinical practice, 
further research needs to address the extent and reproducibility 
of regional morphometric alterations in individual patients (i.e., 
whether they may contribute to subgroup classification and 
diagnostics). In this study, we suggest an automated analysis 
pipeline and statistical framework allowing the generation of 
morphometric reports that can be integrated into the diagnostic 
workup. Regional morphometric parameters estimated from 
single T1-weighted MRI datasets of individual MS patients are 
statistically compared to 323 healthy control (HC) datasets with a 
wide age range. The analysis is built on the free software packages 
FSL and FreeSurfer, yet the concept is not necessarily restricted 
to these environments. After testing the pipeline on subsets of the 
HC group, we provide a first proof-of-concept using 55 follow-up 

MRIs in five patients with a confirmed diagnosis of relapsing–
remitting MS (RR-MS) and mild to moderate disability.

MAteRIALs ANd Methods

The study was approved by the Kantonale Ethikkommission Bern. 
All subjects provided written informed consent and the study was 
performed in accordance with the Declaration of Helsinki.

Patients
We applied our methodology to 55 consecutive MRI scans in five 
patients with RR-MS under treatment with natalizumab (Biogen 
Corp., Cambridge MA, USA). Inclusion criterion was that patients 
had at least ten follow-up MRI exams at our institution, covering 
at least 3 years of observation time. Overall, follow-up time was 
5.03 ± 0.83 years (mean and SD) and the time interval between 
scans was 0.55 ± 0.06 years. Demographic patient information 
is provided in Table 1. Scanner specifications and sequences are 
compiled in Table S1 in Supplementary Material.

healthy Controls
Patient MRIs were statistically compared to a normative dataset 
(Figure 1A) consisting of HCs that were acquired during previ-
ous studies performed at the Inselspital, Bern, see Table S2 in 
Supplementary Material. After calculation of the region-specific 
morphometric parameters, only age, sex, an anonymized subject 
ID and MRI parameters (manufacturer, model, and sequence) 
were stored in the fully anonymized database as confounding 
variables. The data were derived from N = 323 high-resolution 
T1-weighted (T1w) imaging datasets from 267 neurologically 
healthy subjects (142 datasets from male subjects and 181 from 
females, mean age 35.9  years, SD 18.0  years, and age range 
7–79  years, see Figure S1 in Supplementary Material for the 
age and sex distribution). For other demographic and technical 
parameters, see Table 2. Twenty-one participants were scanned 
twice, two were scanned three or four times, five were scanned 
five times, and one was scanned six times with separation smaller 
than 2 years.

We used subsets of our normative dataset to explore the 
expected rate of statistical anomalies in HCs by testing the 
selected subjects against the remainder in a leave-one-out cross-
validation (LOOCV). One subset encompassed 34 randomly 
selected MRIs from 31 HCs (10% of all HCs, but at least one MRI 
from each previous study) and resembled the age, sex, MR type 
and sequence distribution of the whole normative dataset. To 
test whether deviations detected in patients depended on the dif-
ferent age, sex, scanner, and sequence characteristics in patients 
and controls (see Table 2), we also compiled a HC subset with 
characteristics matched to the MRIs of patients 2 and 3.

Lesion detection and Filling
Multiple sclerosis lesions may affect estimates of partial volume 
estimates (PVE) of GM, WM, and CSF (19). Similar biases are 
to be expected for volume segmentations. For cortical thick-
ness measurements, the effect can be insignificant (20). Despite 
the recent finding that lesion filling might occasionally yield 
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tAbLe 1 | Demographic and clinical information on patients.

 Pat. 1 Pat. 2 Pat. 3 Pat. 4 Pat. 5

sex Female Female Female Female Female
Age (years)
At first scan 16.32 29.93 31.72 21.43 41.41
At last scan 22.19 35.24 36.78 25.09 46.67
Mean follow-up intervals (years) 0.65 0.48 0.56 0.52 0.53
Disease duration at first scan 4.33 n.a. 12.42 2.75 4.5
New lesions +1 (TP2) +1 (TP2) +2 (TP7) +1 (TP7) +2 (TP2)
edss
At first scan 1.5 n.a. 2 1.5 2
At last scan 1 n.a. 4 1 2
Annual change rate −0.087 n.a. 0.435 −0.169 0.067
Rate different from zero p = 0.388 n.a. p = 0.395 p = 0.386 p = 0.567
Spearman correlation with age p = 0.246 n.a. p < 10−4 p = 0.036 p = 0.266
MR scanner Verio Verio Verio Verio Verio
MR sequence
MDEFT 0 1 1 2 0
MP-RAGE van der Kouwe 10 12 10 8 11

EDSS, expanded disability status scale; MDEFT, modified-driven equilibrium Fourier transform; MP-RAGE, magnetization-prepared rapid gradient-echo; “+n (TPm)” means that n 
new lesions were discovered at time point m of the follow-up series, which were not present at time point m-1.
Values with significance p < 0.05 are displayed in bold-face.
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spuriously thinned cortex near juxta-cortical lesions (15), we 
integrated lesion filling ahead of morphometric analysis of MS 
patients. To detect lesions, we first co-registered fluid-attenuated 
inversion recovery (FLAIR) images acquired during the same ses-
sion to the T1w images. We made use of Nabla Net (21), a recently 
published method using a deep convolutional architecture (a fully 
convolutional network in which an encoder–decoder structure 
computes high-level features that are combined with lower-level 
features using skip connections) and winning algorithm at the 
MICCAI 2016 MSSEG challenge to automatically produce lesion 
masks from FLAIR images. We calculated lesion volumes at each 
visit and used the lesion masks as inputs to FSL’s lesion_fill-
ing command to obtain T1w images with lesions filled by white-
matter intensities. In HCs, these steps were not performed.

Automated Processing of t1-Weighted 
Images
Processing of lesion filled (if applicable) T1w images was per-
formed using the free software packages FSL and FreeSurfer on a 
quad-core workstation under Ubuntu Linux, release 14.04 LTS. 
For displaying statistics and results, self-written Octave scripts 
were used (CR). In the paper, two significance levels α = 0.01 and 
α = 0.05 are used and results are contrasted.

Details of the volumetric and morphometric analysis pipeline 
are provided in the Presentation S1 in Supplementary Material. 
In brief, the total volumes of cerebrospinal fluid (CSF), GM, 
and WM were estimated using FSL1 [version 5.0 (22)]. For 
estimation of the volumes of segmentations of the GM, WM, 
and CSF volume we used FreeSurfer2 (version 5.3.0). Regions 
of interest (ROIs) included segmentations of the hippocampus 
and the amygdala, the thalamus, the basal ganglia, the ventricles, 

1 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/.
2 https://surfer.nmr.mgh.harvard.edu.

the corpus callosum, and the cerebellum. The procedures are 
described in detail in Ref. (23, 24).

For surface-based analysis (SBA), the interfaces between WM 
and GM as well as between GM and CSF were estimated with 
FreeSurfer (Figure 1B). The technical details of these procedures 
have been described previously (25–27). Cortical ROIs were 
defined by automatic parcellation of the cortex (28) according 
to the atlases by Desikan et  al. (29) and Destrieux et  al. (30) 
and surface-based morphometric parameters were reported as 
parcellation-wise averages. Details on the extraction of the fol-
lowing nine regional volumetric and morphometric parameters 
are summarized in Presentation S1 in Supplementary Material: 
cortical thickness (mean and SD), cortical surface area, cortical 
GM volume, mean and Gaussian curvature of the cortex, curva-
ture and folding index, and the contrast between GM and WM 
along the cortical band.

Quality Control
FreeSurfer’s automatic surface tessellation, volume segmentation, 
and cortex parcellation procedures may occasionally produce 
errors, which in turn may decrease the accuracy of anomaly 
detection. This can be prevented either by labor-intensive visual 
quality control in each individual or by statistical rejection of out-
liers. To automatically reject outliers, values of raw morphometric 
parameters X in each ROI exceeding within-group thresholds X< 
and X> more than 1.5 interquartile ranges from the 25% and 75% 
percentiles of the full distribution were rejected automatically. 
After a provisional polynomial fit to the empirical age dependence 
(see Figure 1C and text below), the same procedure was repeated 
for the residues x = X − Xpoly. Then, a final age fit was performed 
on the cleaned data. In our large control group (N = 323), we lim-
ited artifact rejection to this automated processing (Figure 1D). 
In the smaller group of follow-up MRIs from the same patient 
(10 ≤ N ≤ 13, see Table 1), this rejection scheme was followed up 
by visual inspection of doubtful brain regions using FreeSurfer’s 
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FIgURe 1 | Continued
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tAbLe 2 | Demographic and technical parameters of the full control dataset, 
random, and patient-matched subsets used for leave-one-out cross-validation 
(LOOCV) and the multiple sclerosis (MS) patients.

 All healthy 
controls 

(hCs)

Randomly 
selected 

hCs

Patient-
matched 

hCs

RR-Ms 
patients

subject number 267 31 18 5
dataset number 323 34 19 55
Age
Mean (SD) 35.9 (18.0) 35.6 (17.8) 27.8 (5.4) 30.9 (8.7)
Range 7–79 8–72 21–39 16–46
Follow-up time 
(years)
Mean (SD) n.a. n.a. n.a. 5.03 (0.82)
Interval, mean (SD) n.a. n.a. n.a. 0.55 (0.06)
sex
Male 141 13 0 0
Female 182 21 19 55
MR scanner
Verio 168 17 19 53
Trio 155 17 0 2
MR sequence
MDEFT 171 18 3 4
MP-RAGE standard 62 7 0 0
MP-RAGE van der 
Kouwe

35 3 16 51

MP-RAGE ADNI 55 6 0 0

The age and sex distribution of the control dataset is shown in Figure S1 in 
Supplementary Material.
ADNI, Alzheimer’s disease neuroimaging initiative; MDEFT, modified driven equilibrium 
Fourier transform; MP-RAGE, magnetization-prepared rapid gradient-echo; RR-MS, 
relapsing–remitting multiple sclerosis.

FIgURe 1 | Data analysis and statistical evaluation, see Section “Materials and Methods” for details. (A) T1w magnetic resonance imaging (MRI) acquired during all 
patient visits were compared with a normative database of a large number of healthy controls (HCs), accounting for age, sex, and scanner parameters. (b) The 
MRIs were processed with FreeSurfer to define the pial (red) and gray–white surface (blue). From these, the morphometric parameters of interest were calculated 
region-wise. (C) The cross-sectional age dependence of morphometric parameters in HCs (open symbols) was fitted by a low-order polynomial. The overall 
measurement accuracy was estimated from HCs with follow-up MRIs within short temporal separation (open squares) and displayed as error bars in patient data 
(filled circles). (d) From the fit residues outliers were rejected (crosses) and linear age trends were fitted to the patient data. The dark shaded areas symbolize the 
regions where artifacts could be detected as outliers. Artifacts producing small values (light shaded region) remained undetected. (e) Valid measurements (red) and 
artifacts (blue) were both modeled as Gaussians with different widths. (F) The uncorrected p-value pucor of an observation in patients was calculated from the 
distribution of fit residues in HCs. The artifact probability part was estimated from a scaled empirical outlier fraction. The scaling factor was determined from the 
fraction of artifacts detectable as outliers. (g) Feature vectors were generated as the signed base-10 logarithm of 2,976 p values calculated per cortical region and 
morphometric parameter. (h) Feature vectors of two HCs and two follow-up magnetic resonance imagings (MRIs) of two multiple sclerosis (MS) patients as a 
function of feature number. Insignificant features (p > 0.01 uncorrected) are displayed in gray. Increased values are displayed in red and decreased values in blue, 
with full color indicating that deviations are significant after false discovery rate (FDR) correction.
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freeview software with the pial and gray–white surfaces over-
layed over the T1w MRI. In rare occasions, measurements caused 
by artifacts were subsequently excluded manually.

After exclusion of statistical outliers from the HC dataset, the 
expected region- and parameter-specific measurement accura-
cies were estimated as the square root of the mean intra-subject 
squared error of the 87 MRI datasets from the Nrep = 31 healthy 
subjects who had undergone more than one MRI acquisition 
with separation smaller than 2  years, see Presentation S1 in 
Supplementary Material for details.

standardized Result Presentation
To support expert inspection of T1w MRIs and provide addi-
tional quantitative information, we displayed the patients’ 

morphometric parameters and their measurement accuracies in 
each ROI together with the normative values as a function of age, 
see Figure  2. We used an in-house written Octave script (CR) 
to generate a standardized result display for all morphometric 
parameters, all volume segmentations and all cortical parcella-
tions without preselection. All results were stored as png figures 
and automatically generated html pages were used to allow 
unrestricted navigation and switching between region-based and 
measure-based result compilations.

Besides the raw morphometric parameters in physical units 
as estimated by FreeSurfer and FSL (left part of Figure  2A), 
brain volume normalized versions were evaluated (right part of 
Figure 2A). To this end, all parameters were scaled to the mean 
estimated total intracranial volume (eTIV) of the full control 
dataset as reported by FreeSurfer. The geometrically expected 
scaling exponents (31) were accounted for, i.e., volumes were 
scaled as eTIVn with exponent n = 1, areas with exponent n = 2/3 
and thicknesses as well as radii with exponent n = 1/3. According 
to their definition as functions of inverse radii, the mean curva-
ture and the intrinsic curvature index were scaled with exponent 
n = −1/3 and the Gaussian curvature and the folding index were 
scaled with n = −2/3.

To assess inter-hemispheric asymmetries of morphometric 
parameters, we estimated asymmetry indices by calculating the 
difference between corresponding right and left structures and 
normalizing to their sum (Figure 2B). For complete symmetry, 
this index is zero and ranges between −1 for extremely left-
dominated and +1 for extremely right-dominated structures.

The gray–white contrast is highly dependent on the acquisition 
sequence and the MR scanner type. For example, the MDEFT 
sequence produces higher contrast than MP-RAGE sequences. 
This can be seen in the left part of Figure  2C, where distinct 
point clouds of HC data are apparent, each one stemming from 
a different scanner–sequence combination. To compensate this 
influence, we normalized contrasts to the same mean value for 
each scanner–sequence combination rather than to mean eTIV 
(right part of Figure 2C).

Since morphometric parameters, and thus the significances 
of observations, are age-dependent (32–38), all results were dis-
played as a function of age. Polynomial age trends were fitted to the 
estimates of all N = 323 members of the normative dataset and sta-
tistical analysis was performed on the fit residues (Figures 1C–E).  
To avoid overfitting, the polynomial degree d was increased 
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FIgURe 2 | Standardized result display of morphometric parameters as a function of age using the example of the mean cortical thickness (A) and corresponding 
asymmetry index (b) as well as the mean percentage of gray–white contrast (C) in the right superior frontal gyrus (first visit of patient 1). The patient’s parameter 
estimates are shown as a filled symbol with error bars representing the parameter and region-specific estimated measurement reliability. The open symbols 
represent the values for the healthy controls (HCs). Large open symbols are controls matching the patient exactly for sex, MR scanner, and specific sequence; small 
open symbols have at least one mismatch. The best-fitting polynomial age trend (see text) and its confidence bounds are shown as solid lines. The left part of (A,C) 
reports the raw parameter values in physical units, whereas eTIV (A) or scanner-sequence normalized values (C) are shown in the right part. At the top of each 
panel, the parameter estimates are reported together with their estimated errors and the age-adjusted expectations in HCs (means and range). At the bottom, the 
test statistics and their significance are given. Also the odds for a valid versus erroneous measurements, the empirical outlier fractions and the estimated artifact 
probabilities are reported.
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stepwise between zero (constant fit) and a maximal value of 
dmax until the higher degree ceased to reduce the variance of the 
residues significantly (F-test for nested models). We heuristically 
chose dmax = N/20 = 16 as an upper limit. A Bonferroni correction 
of the significance level α by a factor 1 ≤ d ≤ dmax was applied to 
account for the number of multiple tests actually required on step 
d of this procedure in the simplest possible way. The polynomial 
age trends and corresponding confidence intervals for the full 
cloud of the normative dataset were displayed together with the 
patients’ morphometric parameters; see Figure 2.

empirical outlier Rate, Artifact 
Probabilities, and odds for Valid vs. 
erroneous Measurements
Despite outlier and artifact rejection (see above), the measure-
ment of morphometric parameters may result in spurious values 
caused by image artifacts or too-weak gray–white contrast. We 
modeled residues x caused by artifacts by Gaussian probability 
densities centered at fit residue x = 0. The width σout was estimated 
by the mean absolute fit residues of all those HCs that were dis-
carded as outliers (Figure 1E). Under these circumstances, the 
probability of finding artifact-related measurements as extreme 
as or even more extreme than the empirically detected outlier 
thresholds x< and x>, i.e., the probability 0 ≤ pout ≤ 1 of detecting 
artifacts as outliers, is given in terms of the cumulative density 
function of the normal distribution with width σout:

 
p x xout out out

= + −( ) ( )< >Φ Φσ σ1 .
 (1)

As artifacts may occur at any magnitude, some may result 
in parameter estimates within the range [x<,x>] and these cases 
remain undetected by our quality control procedures. To esti-
mate the region- and parameter-specific artifact probability, we 
counted the empirical outlier numbers Nout found in the N = 323 

HCs (see above) and scaled the outlier rate up by a factor 1/pout 
(see Figure 1F):

 p N N part out out= / / .∗1  (2)

We set part =  0 if for a morphometric parameter or ROI no 
outliers were observed in HCs, taking into account that this 
value is only a lower limit of the true artifact probability. From 
the artifact probability, we calculated the region- and parameter-
specific odds for a valid as opposed to an erroneous (i.e., artifact-
corrupted) observation by

 odds /art art= −( )1 p p  (3)

and trusted the observation when odds » 1.

statistical Assessment
Sex (38, 39), MR type (38, 40), and sequence (41) can bias 
morphometric estimates. To reduce confounding effects, the 
statistical significance of deviations between the patient and the 
controls was assessed by restricting the analysis to that subset of 
HCs who fully matched the patient’s characteristics with respect 
to sex, MR type, and acquisition sequence. The significance of an 
observed deviation of a patient’s fit residue x from the normative 
data can be influenced by three factors, (i) the probability of the 
observation being valid (as opposed to erroneous, i.e., caused by 
any kind of artifact), (ii) the width of the distribution of the nor-
mative data, and (iii) the measurement error of the observation 
itself. Treatment of issue (i) has already been discussed in the last 
paragraph. The larger the odds for valid measurement, the more 
trustworthy an observation. Issues (ii) and (iii) were treated by 
calculating the probability of finding an empirical observation at 
x if its true value x’ is uncertain with a measurement error σmeas. 
Assuming normally distributed fit residues in the subset of HCs 
used for statistics (mean at x = xnorm and SD σnorm), straightforward 
algebra yields that the variances add up σ2 = σnorm

2 + σmeas
2 and, 
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thus, the p values are given by the cumulative density function 
Φσ of a Gaussian distribution with mean xnorm and SD σ in the 
following way (Figure 1F):

 p x x x x xucor norm normif ( ) ( ) −= − >1 Φσ ,  (4a)

 p x x x x xucor norm norm if ( ) ( )= − <Φσ .  (4b)

Feature Vectors
To assess the reproducibility of direction and magnitude of 
deviations xrm in ROIs r and morphometric parameters m, we 
defined feature vectors by signed base-10 logarithms of p values 
(Figure 1G)

 L x p xrm rm 10 rm= sign log− ⋅( ) ( ( )). (5)

This yielded large values where the deviations were significant 
and small ones otherwise (Figure 1H). The overall length of the 
feature vectors was 2,976, see Table S3 in Supplementary Material.

estimation of Regional Atrophy 
Progression from Follow-up MRIs
The evaluation concept presented above can be extended to group 
studies (independent measurements) and follow-up analysis of 
individual patients (dependent measurements). If the results 
of more than two exams are available, one can test not only for 
different mean position of the fit residues x in patients and HCs 
but also for different age dependence. The first question can be 
answered by a two-sample t-test (variant for unequal group sizes 
and unequal variances). To address the age dependence, we fitted 
a linear model x(t) = a*t + x0 to the patients’ residues x at time 
points t. If this model described the patients’ age trend well (i.e., 
the residual variance S2 was not larger than the measurement 
error σmeas

2 in a chi-squared test on the variance), we performed 
a z-test to evaluate whether the slope a differed from zero. For n 
measurements, the slope uncertainty is given in terms of S2 and 
the variance σt

2 of the measurement time points by

 
∆a = ⋅

−
S

ntσ
1

2
.
 

(6)

We used the same approach to assess the stability of the lesion 
volume or of the disability level (EDSS) during the follow-up 
period.

significance highlighting
When generating the standardized result representation, 
deviations of the single patient estimate or of the longitudinal 
change during the follow-up period from the expectation were 
automatically highlighted with a yellow figure background if the 
p value was smaller than the significance level α. The highlighting 
indicated statistical anomalies that required secondary inspection 
by a trained expert. Correction for multiple comparisons during 
extensive testing (>103 tests in each dataset) was performed using 
the concept of false discovery rate (FDR) (42). Deviations that 
remained significant after FDR correction were highlighted with 
a red figure background.

ResULts

technical Parameters
Several morphometric parameters evaluated in cortical parcel-
lations (cortical GM volume, cortical surface area, mean and SD 
of the cortical thickness, four curvature measures, and the gray–
white contrast) turned out to be dependent on each other in the 
HC data. Figure S2 in Supplementary Material reveals a strong 
correlation of the cortical GM volume with mean thickness and 
the surface area, but these measures were only weakly correlated 
with one another. Similarly, the SD of the cortical thickness was 
correlated with the mean thickness and the GM volume. The four 
curvature parameters were highly correlated with each other and 
the gray–white contrast was weakly negatively correlated with 
them.

The degree distribution of best low-order polynomial fits to the 
age trends of asymmetries, raw, and eTIV or scanner–sequence 
normalized morphometric parameters in the normative dataset 
are displayed in Figure 3A. Despite allowing a maximal degree 
dmax = 16, constant (d = 0) and linear (d = 1) fits were sufficient 
in over 90% of asymmetry indices. For morphometric param-
eters on the left and right hemisphere, the same was true when 
quadratic fits were included. The maximal polynomial degree 
d = 4 was used in very rare cases and d = 3 was necessary in 
a higher fraction of cortical parcellations for the mean and the 
SD of cortical thickness than for GM volumes, cortical surface 
areas, and curvature measures (see Figure S3A in Supplementary 
Material).

The fraction of outliers found in the normative dataset is 
displayed in Figure  3B and a detailed compilation is given in 
Figure S3B in Supplementary Material. The largest mean outlier 
fractions were observed for curvature measures. The spatial 
distribution of odds for valid versus erroneous measurements is 
shown in Figure 4 for the example of the mean cortical thickness. 
Values larger than 10 were very common and the highest odds 
(i.e., highest confidence in valid measurements) were located on 
the frontal lobes. The lowest odds (i.e., largest likelihood for arti-
facts in cortical thickness) were found in the cingulate gyrus and 
the insula. Figures S4–S11 in Supplementary Material show the 
corresponding information for all other cortical morphometric 
parameters.

Reproducibility of Feature Vectors
The feature vectors Lrm encode deviations from the age- and 
sex-adjusted expectation in HCs. Figure 5 shows Pearson’s cor-
relation matrix between the Lrm calculated from different MRIs. 
In the HCs of the randomly selected LOOCV test set (Figure 5A), 
the correlation coefficients were predominantly small. Matrix 
elements connecting different MRI datasets of the same healthy 
subjects were among the largest ones (datasets 2 and 17, 3 and 8, as 
well as 6 and 16). By contrast, in the patient dataset (Figure 5B), 
a prominent block pattern became apparent, clearly reflecting 
patient-individual properties of the Lrm. The observation that 
correlation between feature vectors of different patients was in 
general higher than between different HCs might be associated 
with disease-related effects in RR-MS that need further investiga-
tion in a larger cohort.
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FIgURe 4 | Spatial distribution of the odds for valid versus erroneous measurement of the mean cortical thickness. In the top row, the odds are displayed on the 
surface of a standard brain. To allow better visibility of regions located inside sulci, the same data are displayed on an inflated standard brain in the bottom row. The 
odds for other morphometric parameters are displayed in Figures S4–S11 in Supplementary Material.

FIgURe 3 | (A) Summary of the degree distribution of the best polynomial age fits to all morphometric parameters measured in the healthy controls (HCs).  
(b) Distribution of outlier fractions of morphometric parameters in HCs. White, asymmetry indices; black, raw parameters on both hemispheres; gray, parameters after 
normalization to estimated total intracranial volume (eTIVn) or scanner and sequence. Parameter-specific results are compiled in Figure S3 in Supplementary Material.
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Anomaly detection in hCs
The overall rates of statistical anomalies with p < α in the random 
and patient-matched LOOCV subsets and the MRIs of patients 
2 and 3 are reported in Table 3 for analysis at significance levels 
α = 0.01 and α = 0.05. We used binomial tests to check the null 
hypotheses that the anomaly rates were given by α, on the one 
hand, and by the empirical rate obtained in the random LOOCV 
subset on the other. At significance level α = 0.01, anomaly rates 
without FDR correction (yellow background in our standard 
result representation) were between 1.50 and 1.74% in HCs. 
This turned out significantly larger than expected (Bonferroni 
corrected for multiple comparisons). With the exception of the 
asymmetry indices this was not the case when repeating the 
analysis at a significance level α  =  0.05. The overall anomaly 
rates in the patient-matched HCs (uncorrected for multiple 
comparisons) were not different from the ones empirically found 

in the randomly selected HCs. However, FDR-corrected anomaly 
detections (red background in our standard result representation) 
were smaller in the patient-matched HCs than in the random HC 
subset.

When comparing patient MRIs to LOOCV in HCs, the anom-
aly rates were elevated by at least a factor of 2. All differences were 
highly significant with p = 0 to machine precision. Anomaly rates 
for all morphometric parameters separately are compiled in Table 
S4 in Supplementary Material. With the exception of the PVE 
(and to a lesser extent also of the SDs of the cortical thickness) 
anomaly rates were elevated in the patients for all morphometric 
parameters. This effect was less prominent when anomaly detec-
tion was FDR-corrected to account for multiple comparisons. 
In healthy subjects, the rate of (potentially false) detections was 
higher for the Gaussian curvature, the curvature and the folding 
index than for the other morphometric parameters.
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FIgURe 5 | Pearson’s correlation matrices of the feature vectors Lrm (see text). (A) randomly selected leave-one-out cross-validation (LOOCV) test set and (b) 
multiple sclerosis (MS) patients. Magnetic resonance imaging (MRIs) belonging to the same patient are separated by black lines.
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exemplary Use Case: Progressive Volume 
Loss in Patients with Relapsing–Remitting 
Multiple sclerosis
A study evaluating the usefulness of the proposed analysis pipeline 
for single time-point MRIs in a larger number of temporal lobe 
epilepsy patients is presented elsewhere (43). Here, we concentrate 
on progressive volumetric and morphometric changes detectable 
in individual patients with RR-MS. During observation time all 
patients had only a small amount of new lesions (Table 1) and none 
of the slopes of linear fits to the lesion volumes estimated from the 
FLAIR images was statistically different from zero (Table 4). The 
slope of a linear fit to the EDSS disability index was not different 
from zero, either (Table 1). However, the Spearman correlation 
coefficient of EDSS with age was significant for patients 3 and 4.

Table 4 summarizes results for the PVE of all patients. With 
the exception of patient 4, none of the PVEs deviated significantly 
from the age-adjusted expectation (significance level α = 0.05), 
neither at the first nor at the last MRI exam of the observation 
period. In patient 4, we detected reduced GM volume for a 
female of 21 years at the first MRI exam (p = 0.008). At the last 
exam, brain volume was too small and CSF volume too large 
(both p = 0.034) for a female of 25 years. PVE changes were often 
significantly larger than expected from cross-sectional aging in 
the control group. Brain volume loss and CSF volume increase 
were stronger than expected in 4/5 patients and GM loss was 
stronger than expected in 3/5 patients. Examples of GM volume 
loss and CSF volume increase in patient 1 are presented in 
Figure 6. Indeed, the volumes were still within the normal ranges, 
but progressive decline over the past 6 years deviated from the 
expectation (p = 0.003 for GM and p < 10−3 for CSF, both after 
normalization for eTIV).

The fraction of patients presenting with deviations of volume 
segmentations, of mean cortical thickness, or of the gray–white 
contrast deviations of from age- and sex-adjusted expectations 

in the first and last MRI is compiled in Figures S12–S17 in 
Supplementary Material. Here, we focus on more severe than 
expected linear changes of these parameters. For the volumes of 
the lateral ventricles, the brain stem, and the right-hemispheric 
cerebellar GM, we observed deviations from the expected change 
rate in both directions, see Figure 7. Note that the blue-to-white 
color scale can either indicate significantly stronger than expected 
decrease or weaker than expected increase and vice versa for the 
red-to-yellow colorbar. An example of more severe than expected 
volume loss of the right caudate volume (found in 4/5 patients, 
same for the left hemisphere) in patient 3 is given in Figure 8 
(p = 0.002 after normalization for eTIV).

Concerning changes of mean cortical thickness in individual 
patients, we found deviations from the expectation in both direc-
tions, see Figure  9. Weaker than expected thickness decrease 
(or even increase) was observed predominantly in the bilateral 
temporal lobes and insula. By contrast, stronger than expected 
thickness decrease was observed predominantly in the bilateral 
cingulate, parieto-occipital regions and in the pre- and postcen-
tral gyri and sulci. In Figure 10, we demonstrate at the example of 
the short insular gyri on the left that the coexistence of thickness 
increase and decrease is not an artifact of our methodology. We 
found pronounced thickness increase in patient 1 (Figure 10A), 
whereas marked thickness decrease was detected in patient 5 
(Figure 10B).

dIsCUssIoN

Methodological developments
Several studies using MR-based morphometry have indicated 
that GM atrophy in RR-MS emerges not only as a global but also 
rather regional process, affecting the temporal lobe, the pre- and 
postcentral gyrus, cingulate gyrus, basal ganglia, and the thala-
mus (44, 45). Long-term atrophy progression of GM was found 
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tAbLe 3 | Overall assessment of anomalies found in the randomly selected and the patient-matched LOOCV test sets as well as in the patient datasets at two 
significance levels α = 0.01 and α = 0.05.

p < 0.01 p < 0.05

test count puncorr pFdR puncorr pFdR

LooCV: 34 random healthy controls (hCs)
Raw Count 67,558 1,088 343 3331 464

Percentage 1.61% 0.51% 4.93% 0.69%
p_bino (nominal) 0 n.a. 0.207 n.a.
p_bino (empirical) – – – –

Estimated total intracranial volume (eTIV) and scanner/sequence normalized Count 67,558 1,116 349 3548 462
Percentage 1.65% 0.52% 5.25% 0.68%
p_bino (nominal) 0 n.a. 0.001 n.a.
p_bino (empirical) – – – –

Asymmetry Count 33,524 582 56 2,244 114
Percentage 1.74% 0.17% 6.69% 0.34%
p_bino (nominal) 0 n.a. 0 n.a.
p_bino (empirical) – – – –

LooCV: 19 matched hCs
Raw Count 37,753 567 126 1985 164

Percentage 1.50% 0.33% 5.26% 0.43%
p_bino (nominal) 0 n.a. 0.012 n.a.
p_bino (empirical) 0.048 <10−6 0,002 <10−9

eTIV and scanner/sequence normalized Count 37,753 578 129 2,030 170
Percentage 1.53% 0.34% 5.38% 0.45%
p_bino (nominal) 0 n.a. <10−3 n.a.
p_bino (empirical) 0.033 <10−6 0,140 <10−8

Asymmetry Count 18,734 279 17 1,274 25
Percentage 1.49% 0.09% 6.80% 0.13%
p_bino (nominal) <10−9 n.a. 0 n.a.
p_bino (empirical) 0.005 0.004 0.283 <10−7

Multiple sclerosis (Ms) patients 2 and 3: 19 magnetic resonance imagings (MRIs)
Raw Count 37,753 1460 528 3,533 736

Percentage 3.87% 1.40% 9.36% 1.95%
p_bino (nominal) 0 n.a. 0 n.a.
p_bino (empirical) 0 0 0 0

eTIV and scanner/sequence normalized count 37,753 1,530 545 3,736 764
percentage 4.05% 1.44% 9.90% 2.02%
p_bino (nominal) 0 n.a. 0 n.a.
p_bino (empirical) 0 0 0 0

Asymmetry Count 18,734 879 183 2,256 329
Percentage 4.69% 0.98% 12.04% 1.76%
p_bino (nominal) 0 n.a. 0 n.a.
p_bino (empirical) 0 0 0 0

The randomly selected subset (34 MRI datasets) was tested against the expected error rate α (binomial tests). By contrast, the MS patient and patient-matched subsets were also 
tested against the empirical anomaly rates obtained in the randomly selected subset. p Values in bold-face indicate significantly enlarged and in italic significantly decreased values 
(after FDR correction for multiple comparisons). Specific results of morphometric parameters are compiled in Table S4 in Supplementary Material.
FDR, false discovery rate; LOOCV, leave-one-out cross-validation; n.a., not applicable.
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associated with disability progression, whereas no effect was 
found for WM (18). To monitor longitudinal GM changes, we 
have employed a fully automatic pipeline for volumetric and mor-
phometric evaluation of individual and follow-up high-resolution 
T1w MRI datasets (Figure 1) based on the free software packages 
FSL and FreeSurfer. We referenced our method to a large and 
extendable control group of currently N = 323 healthy subjects 
exhibiting a population-based distribution and tailored statistical 
post-processing accounting for age, sex, brain size, gray–white 
contrast, and technical parameters as potential confounders. The 
reliability of regional estimates of morphometric parameters was 

estimated from repeated MRI acquisitions with separation less 
than 2 years in a subset of 31 of our HCs (87 MRIs). Similarly, the 
HC outlier fraction observed in specific morphometric param-
eters and brain regions was used to estimate the corresponding 
artifact probability and, finally, the odds for valid versus errone-
ous observations. The larger these odds, the more the software’s 
estimates can be trusted.

All these quantifiers were integrated into a standardized result 
presentation (Figure 2) and can be made available to the expert 
to provide quantitative support for clinical MRI review. As some 
of the surface-based morphometric parameters (especially the 
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FIgURe 6 | Progressing atrophy in patient 1 over 5.9 years [10 magnetic resonance imaging (MRI) exams]. (A) Exceeding the expected decrease of gray matter 
(GM) volume. (b) Exceeding the expected increase of cerebrospinal fluid (CSF) volume after correction for estimated total intracranial volume (eTIV).

tAbLe 4 | Partial volume estimates (PVE) at first and last magnetic resonance imaging (MRI) exam and annual rate of volume change.

Pat. 1 Pat. 2 Pat. 3 Pat. 4 Pat. 5

 (ml) p-Value (ml) p-Value (ml) p-Value (ml) p-Value (ml) p-Value

gM volume (ml)
First MRI 630 0.08 514 −0.494 514 0.462 565 −0.008 588 0.073
Last MRI 538 −0.284 503 0.485 511 0.463 527 −0.088 574 0.077
Annual change rate −11.5 −0.003 −5.2 −0.142 −5.4 −0.036 −11.8 −0.032 −2.9 −0.209

WM volume (ml)
First MRI 492 −0.207 446 −0.256 463 −0.484 496 0.213 499 −0.231
Last MRI 480 0.483 438 −0.206 464 −0.448 473 −0.294 496 −0.262
Annual change rate −2.8 0.136 −1 0.434 2.1 0.046 3.4 0.057 0 0.296

CsF volume (ml)
First MRI 236 −0.286 259 0.19 245 −0.49 289 0.174 283 0.481
Last MRI 245 0.429 269 0.101 257 0.377 285 0.034 284 0.468
Annual change rate 2.8 4 × 10−4 2.5 0.043 0.9 0.025 −1.4 −0.302 1.4 0.047

brain volume (ml)
First MRI 1,120 0.286 959 −0.19 977 0.49 1060 −0.174 1,090 −0.481
Last MRI 1,020 −0.429 941 −0.101 975 −0.377 1,000 −0.034 1,070 −0.468
Annual change rate −14.2 −4 × 10−4 −6.3 −0.043 −3.3 −0.025 −8.4 0.302 −2.9 −0.047

Lesion volume (ml)
First MRI 7.08 n.a. 11.3 n.a. 13.12 n.a. 8.39 n.a. 4.04 n.a.
Last MRI 5.74 n.a. 11.31 n.a. 14.28 n.a. 8.42 n.a. 3.19 n.a.
Annual change rate −0.05 −0.388 −0.03 −0.401 0.12 0.536 0.5 0.774 −0.07 −0.389

Values with significance p < 0.05 after eTIV correction are displayed in bold-face. The sign of the p-value indicates whether the observed deviation was larger or smaller than 
expected.
CSF, cerebral-spinal fluid; GM, gray matter; WM, white matter.
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surface area and curvatures of the highly folded cortical band) are 
barely amenable to visual inspection of MR slices, this comple-
ments the information available to the human expert.

The analysis pipeline underwent LOOCV in HCs. In a ran-
domly selected subset of 34 HCs, it yielded low but significantly 
elevated anomaly rates (see Table  3). These deviations were 
most likely due to a slight violation of the implicit normality 

assumption by distributions with heavier tails. Testing a subset 
of 19 patient-matched HC datasets against the empirically 
expected anomaly rates, no major deviations were observed. 
By contrast, anomaly rates were significantly elevated by at least 
a factor of 2 in individual analysis of 19 follow-up MRI exams 
of two MS patients (see Table 3 and Table S4 in Supplementary 
Material).
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FIgURe 8 | Progressive volume loss of the right caudate in patient 3.

FIgURe 7 | Percentage of patients showing more severe than expected linear changes of volume segmentations during the follow-up period. The top row shows 
deviations toward stronger increase or weaker decrease on a red-to-yellow color scale. The bottom row shows deviations toward stronger decrease or weaker 
increase on a blue-to-white color scale. The images are in neurological orientation, i.e., the left side of the images correspond to the left hemisphere.
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Use Case: detecting Regional Atrophy in 
RR-Ms
As a proof-of-concept, we applied the analysis to one use case, i.e., 
the longitudinal follow-up in patients with RR-MS (5 patients, 
55 MRIs with a mean follow-up time of 5 years). Despite low to 
moderate disability in all five patients, the expanded disability 
status scale (EDSS) correlated with the time elapsed during the 
observation period in two of the patients (Table  1). Patient 3 
had an extensive duration of disease and patient 4 had abnormal 
PVE in the first and last MRI of the follow-up series (Table 4). 

In all other patients, the PVE were normal in all MRIs of the 
follow-up series. Reduced cortical thickness in the first or last 
MRI of the follow-up series was found predominantly in the 
pre- and postcentral gyrus of both hemispheres and too small 
gray–white contrast was predominant in the left lateral temporal 
lobe (see Figures S14–S17 in Supplementary Material). Atrophy 
of deep GM structures was also observed in individual MRIs (see 
Figures S12 and S13 in Supplementary Material). These regional 
atrophy patterns are consistent with previous MS group studies 
(9–16) and have been assigned to cognitive impairment in MS. 
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FIgURe 10 | Progressive change of cortical thickness in the short insular gyri on the left. (A) Patient 1 shows thickness increase. (b) Patient 5 shows thickness loss.

FIgURe 9 | Percentage of patients showing excess linear change of cortical thickness during the follow-up period. The top row shows deviations toward stronger 
than expected increase or weaker than expected decrease on a red-to-yellow color scale. The bottom row shows deviations toward stronger decrease or weaker 
increase on a blue-to-white color scale. In Figure S18 in Supplementary Material, a similar result compilation is shown for changes in gray–white contrast.
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According to Steenwijk et al. (45) “cortical atrophy in multiple 
sclerosis occurs in a non-random manner and develops (at least 
partly) according to distinct anatomical patterns.” Thus, analysis 
of regional atrophy patterns need to be further explored as mark-
ers for clinical deterioration.

In addition to analysis of morphometric anomalies in volume 
segmentations and cortical parcellations at a single time point, the 
proposed pipeline was used to detect and quantify progression of 
regional atrophy by fitting a linear model and classifying whether 
the change rate deviated from the cross-sectional expectation 
(Figures 6–10). After normalization to eTIV, we found stronger 
than expected brain volume loss in 4/5 patients (Table 4). Cortical 
thickness change as a regional atrophy progression marker in 
individuals differed from the expectation in both directions, i.e., 

stronger than expected as well as weaker than expected thickness 
loss or even increase (Figures 9 and 10).

statistical and Methodological 
Considerations
Morphometric parameters vary systematically with age and sex 
(32–39). In addition, the performance of morphometry tools 
depends on image quality, which in turn is influenced by technical 
factors, such as MR scanner type and manufacturer, field strength, 
and acquisition sequence (39–41). In comparison between two 
groups of sizes Nsml and Nlrg, these issues can be taken into account 
either by matching patients and HCs as exactly as possible or by 
introducing nuisance variables into the analysis. Unfortunately, 
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at the clinically relevant limit where the smaller “group” is an 
individual patient or MRI dataset (Nsml = 1), the number of per-
fectly matched HCs available at most institutions is usually very 
small and application of nuisance parameters is mathematically 
hindered by the problem of inverting singular matrices.

A further difficulty with group discrimination is that statistical 
power crucially depends on the size of the smaller group and may, 
thus, be very weak in the extreme case where Nsml = 1. To deal 
with these problems, we analyzed residues after fitting low-order 
polynomial age trends to the morphometric parameters of the 
HCs (Figure 1) and restricted statistical testing to a suitable subset 
of HCs that matched the patient in all categorical characteristics 
(i.e., sex, MR type, and acquisition sequence). This constituted a 
compromise between minimization of potential sources of bias 
and maximizing the size Nlrg of the accessible control group—and 
thus the statistical power.

Our normative dataset contained neither HCs below 7 years 
nor subjects older than 79 years and had a gap between 13 and 
17 years. It is important to note that application of the proposed 
statistical analysis of fit residues to patients with ages near or 
beyond the borders of the controls’ age range must be considered 
with extreme caution. The reason is that extrapolation of the 
polynomial fit to the age dependence of the included HCs rapidly 
loses reliability outside the age range covered by the normative 
dataset and in consequence might introduce large systematic 
errors in and beyond these border regions.

Direct comparison of longitudinal age trends derived from 
follow-up exams in the same patients with the cross-sectional age 
trend in the HC group must also be approached with caution. Our 
normative database contains repeated MRIs only from a relatively 
small number of subjects. As the temporal separation between 
repeated MRI exams was no longer than 2  years (i.e., small as 
compared to the whole age range of 7–79 years), we used these 
datasets to estimate measurement reliabilities rather than healthy 
aging trajectories. For future applications, one should consider 
building normative databases of follow-up MRIs in HCs.

In the current version of our pipeline, we omitted FreeSurfer’s 
time-consuming longitudinal analysis stream. Whereas, for 
vertex-wise analysis, it is expected that intra-subject image coreg-
istration would increase reproducibility and accuracy of repeated 
measurements; due to the implicit averaging procedures, we do 
not expect great improvements in our current ROI-wise approach.

Besides volumes of total CSF, GM, and WM and volumes of 
segmentations, our pipeline primarily uses surface-based mor-
phometric (SBA) parameters provided by the software FreeSurfer 
and reports region-wise averages. SBA has advantages, both over 
VBM analysis as well as over expert analysis. Classic VBM is 
limited to regional GM volumes and concentrations. Although 
non-standard VBM techniques are available to estimate cortical 
thickness (46, 47), their test–retest reliabilities were lower than for 
surface-based measurement in a population of dementia patients 
(48). Other morphometric parameters (cortical surface area and 
curvature) have not yet been assessed with VBM, neither are they 
easily accessible to expert MRI inspection. During slice-by-slice 
image analysis by an expert neuroradiologist, abnormal surface 
areas or curvatures in the highly curved cortical band remain 
undetectable to the reader.

CoNCLUsIoN

We propose a pipeline for automated morphometric analysis 
of individual and follow-up MRI exams. In the present study, 
the analysis pipeline, the outlier and artifact handling, and the 
statistical post-processing were developed and the feasibility was 
demonstrated. In future work, the tool needs to be evaluated in 
larger groups of MS patients and in patients with other patholo-
gies. Importantly, the analysis concept presented here is by no 
means limited to FSL and FreeSurfer results as input data. An 
extension to input data generated by different software packages 
needs to be evaluated. Extension of our current segmentation- 
and parcelation-wise analysis to voxel- and vertex-wise analysis 
must also be addressed.

A first application to 55 datasets of five MS patients enabled us 
to detect critical regions of stable and progressing atrophy, which 
matched the predilection areas identified during group studies, 
i.e., focal thinning and loss of gray–white contrast in frontal, 
central, and temporal cortex regions as well as subcortical and 
cerebellar GM volume loss. Further studies with larger patient 
groups are necessary to confirm these preliminary findings. In 
addition, it remains to be investigated, whether individual atro-
phy progression or stability in these regions may be employed 
as surrogate markers for the efficiency of disease-modifying 
treatment in RR-MS.

Application to follow-up MRIs of patients and HCs proved 
high correlation of the feature vectors L of Eq. 5 within the same 
subject as well as within the RR-MS group. We, thus, envision 
that the feature vectors would be promising candidates for input 
to machine learning algorithms to classify not only subjects but 
also syndromes in MS and other pathologies such as epilepsy and 
dementia subtypes.
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