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Background and objective: Cognitive impairments have been reported in patients with 
hyperprolactinemia; however, there is a lack of knowledge of brain structure alterations 
relevant to hyperprolactinemia in prolactinomas. Thus, we aimed to identify changes in 
brain structure in prolactinomas and to determine whether these changes are related to 
cognitive performance and clinical characteristics.

Methods: Participants were 32 female patients with prolactinomas and 26 healthy 
controls (HC) matched for age, sex, education, and handedness. All participants under-
went magnetic resonance imaging brain scans, neuropsychological assessments, and 
clinical evaluations. Voxel-based morphometry analysis was used to identify changes 
in gray matter volume (GMV). Partial correlation analysis and multiple linear regression 
were performed to determine the relationship between GMV, cognition, and clinical 
characteristics.

results: Compared to HC, patients with prolactinomas demonstrated a decrease in 
GMV in the left hippocampus, left orbitofrontal cortex, right middle frontal cortex (MFC), 
and right inferior frontal cortex (IFC). In addition, patients performed worse than controls 
on tests for verbal memory and executive function, and this was significantly related to 
the GMV of the left hippocampus and right MFC, respectively. Moreover, in the patients, 
we found a negative relationship between serum prolactin levels and the GMV of the 
left hippocampus and right IFC, whereas a positive relationship was found between the 
GMV of the left hippocampus and serum levels of estradiol and luteinizing hormone.

conclusion: In patients with prolactinomas, specific brain structure abnormalities 
have been identified and are associated with cognitive impairments and dysfunctional 
hormones. This study enhances our understanding of brain structure changes that may 
occur with prolactinomas and provides novel and fundamental evidence for previous 
behavioral findings relevant to hyperprolactinemia.

Keywords: prolactinomas, voxel-based morphometry, gray matter volume, cognitive impairments, dysfunctional 
hormones
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inTrODUcTiOn

Prolactin (PRL)-secreting pituitary adenomas (prolactinomas) 
are highly prevalent in females (1) and are the main pathologic 
cause of hyperprolactinemia (2). Prolactinomas may cause 
disturbance of endogenous hormone levels. Hyperprolactinemia 
inhibits pulsatile gonadotropin-releasing hormone secretion 
leading to direct inhibition of gonadal steroidogenesis in serum, 
including estradiol (E2), progesterone, follicle-stimulating 
hormone (FSH), luteinizing hormone (LH), and testosterone 
resulting in hypogonadism (2, 3). Clinical symptoms in women 
include galactorrhea, amenorrhea, anovulatory infertility, loss of 
bone mineral mass, and headache or visual disturbance due to 
tumor mass effects (2, 3).

In addition to these physical manifestations (2, 3), dysfunc-
tional hormones lead to cognitive impairments (4, 5), yet, little 
is known about changes in brain structure in patients with 
prolactinomas. In the brain, hormone receptor expression has 
been identified in several regions and is generally located in 
the cell membrane or intracellularly in the nucleus, as well as 
in the glia, spines, and presynaptic terminals. These receptors 
include the PRL receptor (6), androgen receptor (7, 8), and 
estrogen receptor (9, 10). PRL may profoundly impact brain 
structure and function (6) and inhibit sex steroid hormones 
such as estrogen and testosterone, which also regulate neuronal 
morphology and numbers by influencing axonal guidance and 
synaptogenesis (11). Similar to prolactinomas, pregnancy often 
involves rapid fluctuations in hormone levels compared to 
non-pregnancy (12). Hoekzema et al. explored how pregnancy 
affects the brain and found a substantial reduction in gray matter 
volume (GMV) in brain areas correlated with social cognition, 
such as the bilateral inferior and middle frontal cortex (MFC), 
cingulate cortex, and hippocampus (13). However, they did not 
investigate the relationship between endogenous hormones 
and brain structure at the pre-pregnancy stage. Brain structure 
alterations relevant to rapid fluctuations in hormone levels have 
also been reported to occur during puberty (14), adolescence 
(15), and in pituitary adenomas with Cushing’s disease (16). 
However, to our knowledge, no studies have investigated the 
potential alterations in brain structure that may occur with 
prolactinomas. This is another condition in humans that 
involves an abnormal increase in endogenous hormone levels, 
which provides an intriguing opportunity to explore the effect 
of hyperprolactinemia on brain structure.

We hypothesized that female patients with prolactinomas 
would show a decline in cognitive function and structural 
brain alterations. We also hypothesized that there may be 
a relationship between cognitive performance, hormonal 
biochemical estimations, and structural brain changes. Thus, 
we performed the first cross-sectional study of patients with 
pituitary adenomas to explore brain structure changes using 
a voxel-based morphometry (VBM) approach, an unbiased 
whole-brain approach for the detection of structural differ-
ences in GMV. Furthermore, we determined the relationship 
between structural alterations, cognitive performance, and 
clinical characteristics.

MaTerials anD MeThODs

Participants
All procedures were in accordance with the Declaration of 
Helsinki and approved by the Ethical Committee of Wuhan 
General Hospital of PLA. The study protocol was fully explained 
and written informed consent was obtained from all participants. 
The inclusion criteria for patients were as follows: (1) female 
patients with a diagnosis of prolactinomas with hyperprolactine-
mia (2, 3) from the neurosurgery department of Wuhan General 
Hospital of PLA during April 2015 to June 2017; (2) patients 
who underwent magnetic resonance imaging (MRI) brain scan, 
neuropsychological assessments, and clinical evaluations; (3) at 
least 9 years education. The exclusion criteria for patients were 
as follows: (1) left-handed female patients; (2) patients were in 
pubertal stage; (3) significant visual field defect (unable to take 
the cognitive assessment); (4) a history of neurological or psy-
chiatric disorders, acquired brain injury, drug or alcohol abuse 
[subjects who drink alcohol over 2.0 standard drinks (10  g of 
pure alcohol) on days and meet any 2 of the 11 criteria under the 
DSM-V in the past year] (17), serious smoke (subjects who have 
smoked over 10 cigarettes on days and manifested at least 2 of the 
11 symptoms outlined in the DSM-V criteria within a 12-month 
period) (17), medication intake (including dopamine agonist 
and oral contraceptives); (5) contraindication for undergoing 
the MRI scan. According to above criteria, a total of 32 patients 
and 26 healthy controls (HC) matched for age, education, and 
handedness were included in this study (Figure 1).

neuropsychological Tests
Neuropsychological tests were administered within 2  days of 
the MRI scan and were carried out during a quiet period while 
participants were at rest. Cognitive performance was assessed by 
a professional psychologist. Executive function was measured 
using the Wisconsin Card Sorting Test (WCST)—online through 
a web-based program.1 Nonverbal memory and verbal memory 
were assessed using the Picture Recall Test, Visual Recognition 
Test, and Story Recall Test of the Wechsler Memory Scale–Revised, 
Chinese version (18). Attention was assessed using the Digit Span 
Forwards and Backwards Tests of the Wechsler Adult Intelligence 
Scale–Revised, Chinese version (19). Cognitive assessment took a 
total of approximately 30 min.

hormonal assays
On the day of the MRI scan, fasting peripheral blood samples 
were collected by venipuncture between 8:00 a.m. and 9:30 a.m. 
to control for circadian variation in hormone levels. After col-
lection, clotted and heparinized blood was delivered on ice to 
the clinical laboratory of Wuhan General Hospital. The “total” 
circulating hormone levels was obtained from serum. Serum 
levels of PRL (ng/ml), E2 (pg/ml), FSH (mIU/ml), LH (mIU/ml), 
progesterone (ng/ml), testosterone (ng/ml), growth hormone 
(GH) (ng/ml), thyroid-stimulating hormone (TSH, uIU/ml), 

1 http://www.dweipsy.com/lattice/.
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FigUre 1 | Overall workflow of the study design and pipeline of data analysis. Abbreviations: MRI, magnetic resonance imaging; VBM, voxel-based morphometry; 
GMV, gray matter volume; ROIs, regions of interest.
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and cortisol (nmol/l) were determined by chemiluminescent 
immunoassays (Roche, cobas® 8000, Switzerland). Serum dilu-
tion for the PRL measurement (1:100) was performed to rule out 
the “hook effect,” if necessary.

Mri Data acquisition
All the participants were scanned using a 1.5T GE scanner (GE 
EXCITE, Milwaukee, WI, USA) with a head coil. Participants 
were placed in a supine position with their head fixed by 
cushions to minimize head motion, and all participants were 
provided earplugs (29  dB rating) to attenuate scanner noise. 
Next, high-resolution structural brain images were collected 
using a three-dimensional T1-weighted MRI sequences with 
an axial Fast Spoiled Gradient Echo sequence [repetition time 
(TR) = 11.5 ms, echo time (TE) = 5.1 ms, flip angle = 15°, matrix 
size = 256 × 256 pixels, field of view = 240 mm × 240 mm, slice 
thickness = 0.6 mm, and 232 contiguous transverse slices].

A neurosurgeon blinded to patients’ clinical features manually 
delineated the tumor volume via the MRIcro toolbox.2 None of 
the HC presented brain structural abnormalities as assessed by 
another experienced neurosurgeon, blindly.

VBM Preprocessing
All high-resolution structural brain images were processed using 
a VBM analysis with the CAT12 toolbox3 and the SPM12 software 
package (Welcome Department of Cognitive Neurology, London, 
UK4) running on Matlab R2016a (Mathworks Inc., Natick, MA, 
USA). First, using the module “Segment Data” of CAT12, every 
T1-weighted image was normalized to a template space and seg-
mented into gray matter (GM), white matter, and cerebrospinal 
fluid. The modulated warped GM images were then normalized 
to MNI-152 standard space with an isotropic voxel resolution of 
1.5 mm × 1.5 mm × 1.5 mm. The images of all participants were 
then averaged to generate a study population-specific template. 
Next, using “Display one slice for all images,” we checked the data 

2 http://www.mccauslandcenter.sc.edu/crnl/tools/.
3 http://dbm.neuro.uni-jena.de/cat/.
4 http://www.fil.ion.ucl.ac.uk/spm/software/spm12/.

quality to figure out if some reasonable results were obtained by the 
segmentation and normalization procedures (if the native volume 
had artifacts or a wrong orientation). Using a boxplot and correla-
tion matrices, we also checked sample homogeneity to identify 
outliers by visualizing the correlation between the volumes. The 
GM map of each individual was smoothed with an 8  mm full 
width at the half-maximum Gaussian kernel. Finally, using the 
“Estimate TIV” module, the total intracranial volume (TIV) for all 
the subjects was estimated. Both the automated image processing 
and visual check were done by two investigators blindly.

gMV analysis
To control the study volume for analysis, we created a study 
population-specific explicit optimal threshold GM mask in which 
only statistical analysis was performed. Using a general linear 
model in SPM12, we conducted an exploratory whole-brain 
VBM analysis to compare voxel-wise GMV difference in the 
study population-specific GM mask between the prolactinomas 
and HC with TIV, age, and education as covariates of no interest. 
A voxel-level false discovery rate (FDR) method with significant 
threshold of p < 0.05 was used for multiple comparisons. All the 
brain maps were visualized with the BrainNetViewer toolbox.5 
Furthermore, the brain regions with significant differences in 
GMV were selected as regions of interest, and mean GMV values 
were extracted from the patients’ group to determine whether 
brain structural changes were correlated to cognitive performance 
and clinical characteristics (Figure 1).

statistical analysis
Baseline clinical characteristics were presented using mean values 
and ranges (minimum and maximum values) for continuous 
variables, while the median and interquartile range for continu-
ous variables with highly skewed distributions. The difference in 
continuous variables was tested using two-sample student’s 
t-test or the Mann–Whitney U-test due to the distributions of 
our data. A partial correlation analysis was used to assess cor-
relations between the mean GMV and neuropsychological tests 

5 http://www.nitrc.org/projects/bnv/.

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive
http://www.mccauslandcenter.sc.edu/crnl/tools/
http://dbm.neuro.uni-jena.de/cat/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.nitrc.org/projects/bnv/


TaBle 1 | Demographic and clinical characteristics: prolactinomas patients and 
healthy controls (HC).

Prolactinomas (n = 32) hc (n = 26) p-Value

Age (years) 46.22 (28.00–54.00) 45.88 
(33.00–53.00)

0.424a

Education (years) 11.41 (9.00–17.00) 11.92 (9.00–11.00) 0.270a

History of onset 
(months)

6.00 (2.25–42.00) NA

Tumor volume (cm3) 3.15 (1.50–7.95) NA
TIV (cm3) 1,416.69 

(1,200.59–1,738.50)
1,525.21 

(1,310.66–1,794.57)
0.001b

Serum PRL (ng/ml) 98.86 (64.47–242.83) NA
Serum E2 (pg/ml) 42.78 (7.04–92.25) NA
Serum progesterone 
(ng/ml)

0.24 (0.08–0.94) NA

Serum FSH (mIU/ml) 7.46 (4.58–18.33) NA
Serum LH (mIU/ml) 4.75 (1.04–20.11) NA
Serum testosterone 
(ng/ml)

0.14 (0.06–0.30) NA

Serum GH (ng/ml) 0.65 (0.16–2.14) NA
Serum TSH (mIU/ml) 1.84 (1.09–2.74) NA
Serum cortisol 
(nmol/l)

390.70 (259.13–460.78) NA

aMann–Whitney U-test.
bStudent’s t-test (two-tailed).
TIV, total intracerebral volume; PRL, prolactin; E2, estradiol; FSH, follicle-stimulating 
hormone; LH, luteinizing hormone; GH, growth hormone; TSH, thyroid-stimulating 
hormone.

TaBle 3 | GMV differences between patients with prolactinomas and healthy 
controls (p < 0.05, FDR corrected).

Brain 
regions

hem Ba Mni coordinate of 
peak

cluster size 
(voxels)

T-value

x y z

HIPP L −27 −13.5 −18 81 5.04
OFC L 47 −40.5 18 −15 72 4.65
MFC R 10 30 55.5 7.5 57 5.13
IFC R 44 40.5 13.5 30 128 5.13

GMV, gray matter volume; HIPP, hippocampus; OFC, orbitofrontal cortex; MFC, middle 
frontal cortex; IFC, inferior frontal cortex; Hem, hemisphere; BA, Brodmann area; MNI, 
Montreal Neurological Institute; FDR, false discovery rate; L, left; R, right.

TaBle 2 | Group difference in neuropsychological tests.

Prolactinoma 
patients (n = 32)

healthy controls 
(n = 26)

p-Value

executive function

WCST, median (IQR) 4.50 (4.00–5.00) 5.00 (5.00–6.00) 0.008a

non-verbal memory
Picture recall 8.00 (7.00–10.75) 10.00 (8.00–11.25) 0.178a

Visual recognition 9.00 (7.00–11.00) 9.00 (8.75–11.00) 0.106a

Verbal memory
Story recall 7.75 (2.00–16.00) 9.73 (5.00–17.00) 0.023b

attention
Digit span forward 8.00 (6.00–10.75) 9.00 (8.00–11.25) 0.088a

Digit span backward 8.00 (5.00–10.00) 7.50 (6.75–10.00) 0.305a

aMann–Whitney U-test.
bStudent’s t-test (two-tailed).
Values of each neuropsychological test reflect the degree of cognitive performance. 
The higher values, the better performance in executive function, non-verbal/verbal 
memory, and attention; while the lower values, the worse performance in cognitive 
function.
WCST, Wisconsin Card Sorting Test; IQR, interquartile range.
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while adding the TIV, age, and education as additional covariates 
to control the confounding effects. Multiple linear regression 
analysis was performed to explore the independent relation-
ship between clinical characteristics and the mean GMV with 
adjustment for the TIV, age, and education. Correlation analyses 
between GMV and neuropsychological tests, and GMV and 
clinical characteristics were performed as post  hoc analyses. In 
addition, the Box–Cox transformation was applied for variables 
that did not conform to the assumptions of normality (20). 
Results were expressed as the beta coefficient of the linear regres-
sion model. p < 0.05 was considered statistically significant. All 
statistical analyses were performed with EmpowerStats6 and R (R 
Foundation for Statistical Computing, Vienna, Austria).

resUlTs

Demographic, clinical, and 
neuropsychological Data
Demographic and clinical data for all participants is presented 
in Table  1. No significant differences were observed between 
patients with prolactinomas and matched HC in age (p = 0.424) 
and education (p  =  0.270). However, we did find a significant 
difference in the TIV (p = 0.001). Neuropsychological results are 
shown in Table 2. Compared to HC, patients with prolactinomas 
performed significantly worse on the tests of verbal memory 
(Story Recall, p  =  0.023) and executive function (WCST, 
p = 0.008).

6 www.empowerstats.com.

gMV Differences
A voxel-level FDR correction for multiple comparisons (p < 0.05) 
in the exploratory whole-brain analysis confirmed significant 
volumetric differences in patients with prolactinomas, in regions 
such as the left orbitofrontal cortex (OFC), the left hippocampus, 
the right MFC, and the inferior frontal cortex (IFC) (Table  3; 
Figure 2).

gMV, cognitive Performance, and clinical 
characteristics
We found that patients with greater volumes of the left hippocam-
pus and right MFC performed better on tests for verbal memory 
(Story Recall Test: r = 0.538, PFDR-corrected = 0.003) and executive 
function (WCST: r  =  0.375, PFDR-corrected  =  0.045), respectively 
(Figures 3A,B).

Multiple linear regression analysis of serum levels of PRL, 
E2, FSH, LH, progesterone, testosterone, GH, TSH, and cortisol, 
tumor volume, and history of disease onset as dependent vari-
ables, and the mean GMV of left hippocampus, left OFC, right 
MFC, and right IFC as independent variables in the prolactino-
mas group, showed a negative relationship between serum PRL 

http://www.frontiersin.org/Neurology/
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FigUre 2 | Significant difference in GMV in patients with prolactinomas (PA) compared to healthy controls (HC). (a) Decreased GMV were presented in the left 
HIPP. (B) Decreased GMV were presented in the OFC. (c) Decreased GMV were presented in the right MFC. (D) Decreased GMV were presented in the IFC (FDR 
corrected, p < 0.05). Abbreviations: GMV, gray matter volume; HIPP, hippocampus; OFC, orbitofrontal cortex; MFC, middle frontal cortex; IFC, inferior frontal cortex; 
FDR, false discovery rate.
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TaBle 4 | Multiple linear regression analyses of GMV and clinical characteristics 
in patients with prolactinomas.

clinical 
characteristics

The mean gMV of brain alterations

Left hiPP Left OFc Right MFc Right iFc

PRL −0.022b 0.001 −0.007 −0.037a

E2 0.013b 0.000 0.003 0.006
Progesterone 0.004 −0.002 −0.001 0.001
FSH 0.006 −0.011 −0.011 0.015
LH 0.009a −0.003 0.002 0.013
Testosterone 0.007 −0.003 −0.006 −0.001
GH 0.004 0.004 −0.002 0.005
TSH −0.004 −0.017 −0.006 0.006
Cortisol 0.000 0.000 0.000 0.000
Tumor volume −0.004 0.009 −0.006 0.005
History of disease onset 0.000 0.003 0.000 0.001

ap < 0.05, adjusted for total intracranial volume, age, and education.
bp < 0.01, adjusted for total intracranial volume, age, and education.
Variables underwent Box–Cox transformation: PRL, E2, progesterone, FSH, LH, 
testosterone, GH, TSH, tumor volume, and history of disease onset.
The multiple linear regression model was adjusted for total intracranial volume, age and 
education.
The correlation analyses conducted between GMV and clinical characteristics were 
performed as post hoc analyses.
GMV, gray matter volume; HIPP, hippocampus; OFC, orbitofrontal cortex; MFC, middle 
frontal cortex; IFC, inferior frontal cortex; PRL, prolactin; E2, estradiol; FSH, follicle-
stimulating hormone; LH, luteinizing hormone; GH, growth hormone; TSH, thyroid-
stimulating hormone.

FigUre 3 | Correlations between neuropsychological measurements and 
mean GMV values (post hoc analyses). (a) Correlation between the Story 
Recall Test performance and mean GMV values in the left HIPP. (B) 
Correlation between the Wisconsin Card Sorting Test (WCST) performance 
and mean GMV values in the right MFC. Abbreviations: GMV, gray matter 
volume; HIPP, hippocampus; MFC, middle frontal cortex.
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levels and mean GMV of the left hippocampus (p <  0.01) and 
right IFC (p <  0.05), whereas there was a positive relationship 
between the mean GMV of the left hippocampus and serum lev-
els of E2 (p < 0.01) and LH (p < 0.05). No significant relationship 
was found between the mean GMV and any of the other clinical 
measurements (Table 4).

DiscUssiOn

In this study, we found that patients with prolactinomas showed 
GMV decline in the left hippocampus and prefrontal cortex 
including the left OFC, the right MFC, and the right IFC, 

suggesting brain structure damages in patients with prolactino-
mas. The decline of GMV in left hippocampus and right MFC 
were significantly correlated with cognition deficits in verbal 
memory and executive function, respectively. In addition, serum 
hormone levels including PRL, E2, and LH, presented independ-
ent relationships with the mean GMV. These findings provide 
fundamental evidence for previous reports of cognitive dysfunc-
tion in a population with high PRL serum levels (4, 21, 22).

Changes in GM extracted from high-solution MRI images can 
reflect changes in the number of synapses, glial cells, neuronal 
cell bodies, dendrites, myelinated and unmyelinated axons, and 
capillaries. Thus, the reductions in GMV shown in our study 
may at least be related to decreasing in partial components. 
Brain structure is the foundation of brain function (23). In this 
study, GMV changes were found in the left hippocampus and 
prefrontal cortex, regions generally involved high-level cognitive 
functions. Memory impairments are frequently reported with 
hyperprolactinemia including decline in short-term memory, 
verbal or non-verbal memory (4, 21). Consistently, we found 
that patients with prolactinomas showed a sharply decreased 
GMV in left hippocampus that was correlated to verbal memory 
deficits. The hippocampus is an important brain structure for 
information consolidation from short-term memory to long-
term memory and non-verbal memory in both animals and 
humans (24, 25). Scientists have also suggested that the hip-
pocampus is part of the medial temporal lobe memory system 
responsible for declarative memory, which is often related to any 
kind of memory that can be explicitly verbalized in the recall 
paradigms (24, 25), such as story recall paradigm in our study. 
In recall response generation, specifically recollecting verbal or 
non-verbal information, left-lateralization is typically related 
to language processing (26). Previous studies have shown that 
hyperprolactinemia that occurs frequently in the population 
of schizophrenia also affects the structure of the hippocampus 
(27). Moreover, the left hippocampus seems to be more vulner-
able to high PRL levels than that of the right, which is consistent 
with our results (28).

Impairments of executive function have also been reported 
to occur with hyperprolactinemia (4, 21). These cognitive 
dysfunctions are involved mainly in the prefrontal cortex  
(29, 30), a region that we also found abnormalities in patients 
with prolactinomas. As a sub-region of the prefrontal cortex, the 
anterior part of right MFC (BA 10) is an area of the dorsolateral 
prefrontal cortex (DLPFC) and has connections with the OFC, 
thalamus, hippocampus, caudate nucleus, and primary and sec-
ondary association regions of the neocortex. The DLPFC plays 
an important role in executive function, such as planning, work-
ing memory, and cognitive flexibility (31), which are measured 
by the WCST with adequate sensitivity (32). Interestingly, our 
study also showed a close relationship between the mean GMV 
of the right MFC and executive function in patients with prol-
actinomas. The pars opercularis of the right IFC, also known as 
Brodmann’s Area 44 (corresponding to left Brodmann’s Area 44, 
commonly known as Broca’s area), is characterized as a pivotal 
region for inhibitory control, implemented by the front-basal-
ganglia circuits (33). However, we did not find a significant 
relationship between the GMV of right IFC and the WCST 
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performance, which may be due to its limited specificity to the 
localization of subareas of the prefrontal cortex (34). Besides this, 
executive function involves widespread brain areas including 
the prefrontal cortex, caudate nucleus, and subthalamic nucleus 
(35, 36). However, substantial evidence has shown that during 
Go/No-Go tasks, the right IFC is the region most frequently 
activated (33). Importantly, our team has performed Go/No-Go 
tasks for the patients with pituitary adenoma and demonstrated 
that the amplitude of N2d and P3d over the frontal electrode 
sites was more weaker and delayed compared to HC. These 
results indicated a decline at earlier and later stages of inhibi-
tory processes in these participants and implicate malfunction 
of inhibitory controls (37). In addition, lesion or interference 
studies of the OFC have shown its widespread functions in 
response to inhibition, flexible associative encoding, emotion, 
and reward. However, these existing interpretations are not 
freestanding or the core function of the OFC (38). This may 
explain why we did not find a significant relationship between 
the OFC and cognitive performance in our study.

Previous studies have also established that changes in brain 
structure and impairments in cognition occur in patients with pro-
lactinomas. We further investigated the underlying relationship 
between abnormalities in brain structure and clinical character-
istics, while taking into consideration that the hippocampus and 
prefrontal cortex are target brain structures of hormonal action 
(6, 8, 9, 39). Further multiple linear regression analysis revealed 
that the left hippocampus and right IFC were adversely influenced 
by high serum PRL levels, whereas the left hippocampus was 
positively associated with serum levels of E2 and LH. Previous 
studies in rodents have shown that proper levels of PRL plays an 
important role in preventing a stress-induced decrease of adult 
hippocampal neurogenesis and exerts neuroprotection against 
excitotoxicity in hippocampal neurons mainly via PRL receptors 
(40, 41). Nevertheless, if the concentration of PRL is abnormally 
high, it may adversely and dramatically affect cognitive process-
ing (4, 21, 42, 43). Consistent with our results, previous studies 
have found that E2 may be synthesized in the hippocampus and 
perform neuroprotective effects that are beneficial to memory 
by regulating spines and synapse in the hippocampus (9, 39). 
Previous studies have also shown that the LH receptor is present 
in the hippocampal formation and regulates age-related cogni-
tive decline (44, 45). However, we found a positive relationship 
between LH serum levels and the structure of the hippocampus, 
which may be attributed to the underlying inhibitory effect of 
the high PRL levels in serum (46). Moreover, we also found that 
serum PRL levels were correlated to the right IFC, suggesting 
that higher PRL levels may have a detrimental effect on executive 
function. This effect may be indirectly mediated by the dopamine 
(47), or directly regulated by the high concentration of PRL in 
the right IFC (6). Another interesting finding was that the TIV 
in the patients with prolactinomas was significantly lower than 
HC. Previous studies have found that high serum levels of PRL 
could lead to cognitive detriments such as memory and executive 
function, which are closely linked to brain structures (4, 13, 21). 
In addition, hyperprolactinemia can inhibit sex steroid hormone 
release, which is well known to play a crucial role in regulating 
GM architecture and brain size in humans (48, 49). Thus, this 

finding provides evidence that patients with prolactinomas 
suffer from not only the GM loss in regional areas but also TIV. 
However, the underlying mechanism of structural alterations 
relevant to dysfunctional hormones is not yet clearly understood 
due to a limited number of in vivo or ex vivo studies in animals.

Although we report several novel findings, there are some 
limitations of our study. First, scans were done on a 1.5T scan-
ner, which has a lower resolution as compared to newer 3T or 
later models. Nevertheless, all the quality controls for structural 
MR images were processed using the highest standards using 
the “Display one slice for all the images” module and the 
“Check sample homogeneity” module in the CAT12 toolbox. 
Second, although we have enrolled our participants with very 
strict criteria, the small sample size may have influenced our 
results. Finally, the cross-sectional design used, does not allow 
us to determine causality between hyperprolactinemia, changes 
in brain structure and cognitive dysfunctions. Regardless, our 
results provide novel insights into the profound impact of 
hyperprolactinemia on the cerebral GM structure in patients 
with prolactinomas.

cOnclUsiOn

In conclusion, this study demonstrates that female patients 
with prolactinomas suffer cognitive impairments and GM loss 
in the left hippocampus and prefrontal cortex. In addition, there 
are important links between hormone levels, cognitive per-
formance, and GMV. Our findings suggest that dysfunctional 
hormones in serum may have a pivotal role in GM decline and 
cognitive impairments. Further studies with a larger sample 
size and longitudinal observations are needed to investigate 
the relationship between dysfunctional hormone levels, brain 
structure and cognitive performance over time in patients with 
prolactinomas.
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