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Previous animal research suggests that the spread of pathological agents in Alzheimer’s 
disease (AD) follows the direction of signaling pathways. Specifically, tau pathology has 
been suggested to propagate in an infection-like mode along axons, from transentorhi-
nal cortices to medial temporal lobe cortices and consequently to other cortical regions, 
while amyloid-beta (Aβ) pathology seems to spread in an activity-dependent manner 
among and from isocortical regions into limbic and then subcortical regions. These 
directed connectivity-based spread models, however, have not been tested directly in 
AD patients due to the lack of an in  vivo method to identify directed connectivity in 
humans. Recently, a new method—metabolic connectivity mapping (MCM)—has been 
developed and validated in healthy participants that uses simultaneous FDG-PET and 
resting-state fMRI data acquisition to identify directed intrinsic effective connectivity (EC). 
To this end, postsynaptic energy consumption (FDG-PET) is used to identify regions with 
afferent input from other functionally connected brain regions (resting-state fMRI). Here, 
we discuss how this multi-modal imaging approach allows quantitative, whole-brain 
mapping of signaling direction in AD patients, thereby pointing out some of the advan-
tages it offers compared to other EC methods (i.e., Granger causality, dynamic causal 
modeling, Bayesian networks). Most importantly, MCM provides the basis on which 
models of pathology spread, derived from animal studies, can be tested in AD patients. 
In particular, future work should investigate whether tau and Aβ in humans propagate 
along the trajectories of directed connectivity in order to advance our understanding of 
the neuropathological mechanisms causing disease progression.

Keywords: Alzheimer’s disease, spread of pathology, effective connectivity, metabolic connectivity mapping, 
simultaneous Mr-Pet imaging

iNtrODUctiON

Alzheimer’s disease (AD) is characterized by the extracellular accumulation of misfolded 
amyloid-β peptides (Aβ), i.e., Aβ plaques, and intracellular aggregates of hyperphosphorylated tau 
proteins, i.e., neurofibrillary tangles (NFTs) (1). With disease progression, Aβ plaques and NFTs 
increase in number, yet following distinct spatio-temporal trajectories as revealed by postmortem 
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FigUre 1 | Animal studies have proposed two molecular mechanisms of neuropathological spread in Alzheimer’s disease (A) Pathological tau seems to propagate 
in an infectious- or prion-like mode: fibrillary protein seeds travel through the axon and across synapses to healthy cells, where they induce template-directed 
misfolding and aggregation of, until then, naïve proteins. Seminal work by Clavaguera et al. (8) shows that injections of brain extracts from a transgenic mouse line 
expressing mutant human tau induces misfolding of endogenous tau in recipient mice. Notably, over time, tau aggregates were found beyond the injection site in 
remote brain areas pointing to a self-propagating, trans-synaptic spread mechanism. (B) Deposition of Aβ has been shown to occur in an activity-dependent 
manner, such that chronic synaptic hyperactivity, e.g., in highly connected brain regions, is causally related to Aβ burden. This has been convincingly demonstrated 
by Yamamoto et al. (12) who applied chronic optogenetic activation of the hippocampal perforant pathway in a transgenic mice line expressing the amyloid β 
precursor protein. Their data revealed that optic stimulation of the lateral entorhinal cortex over 5 months heightens Aβ deposition specifically in presynaptic 
projection areas (i.e., dental gyrus), possibly though induced hyperactivity. Panel (B) is modified from Yamamoto et al. (12), open access article under the CC BY 
license (http://creativecommons.org/licenses/by/4.0/).
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neuropathological investigations and molecular imaging (2–4). 
NFTs first emerge in the locus coeruleus and transentorhinal 
cortex—around the time when first symptoms arise—which 
subsequently spread to the hippocampus and other limbic 
regions before finally emerging in isocortical areas (2). Recent 
tau positron emission tomography (PET) imaging has largely 
confirmed this pattern of spread (4, 5). Conversely, several years 
before first symptom onset, Aβ plaques are initially found in the 
neocortex and subsequently spread to subcortical brain areas at 
advanced disease stages (6). This pattern has been essentially 
replicated by amyloid-PET imaging (3).

Animal models suggest that the spread of these pathologies 
depends critically on the directionality of neural connections 
(7). Figure 1 provides a schematic illustration of these spreading 
processes. Tau pathology appears to disseminate in an infection-
like or prion-like fashion, whereby a self-propagating “infectious” 

tau protein emerges in intracellular compartments, spreads along 
the axon, and trans-synaptically induces pathological changes 
in nearby normal counterparts (8, 9). Aβ has been suggested to 
spread in an activity-dependent manner: Aβ aggregates trigger 
aberrant synaptic activity, resulting in hyperactivity (10, 11), 
which in turn induces increasing rates of Aβ pathology in remote 
but directly connected regions via axons, likely via induced 
hyperactivity (12).

Neuroimaging has further delineated these spreading path-
ways in humans (5, 13–16) showing that a regions vulnerability 
to pathological changes depends on connectivity strength, rather 
than proximity, to the initially affected areas. Myers et  al. (13) 
found that areas with high functional connectivity (FC) during 
rest, especially the posterior default mode network (DMN), were 
associated with higher Aβ burden using a within-subject spatial 
correlation approach. However, a more direct link between 
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FigUre 2 | Metabolic connectivity mapping identifies intrinsic effective connectivity (EC), a proxy for directionality of signaling, in the human brain. (A) By using 
resting-state fMRI only, functional connectivity (FC), i.e., temporal correlations (r) between the spontaneous blood-oxygen-level-dependent fluctuations of a cluster X 
and Y, reflects non-directional communication among macroscopic brain regions. (B) Simultaneously acquired fMRI and FDG-PET data allow for the estimation of 
EC, i.e., the voxel-wise correlations (r) of FC and energy consumption. Since cellular recordings (see text) showed that the majority of signaling-related energy is 
consumed postsynaptically, positive correlations in a given region indicate signaling input along a FC pathway. This novel method can detect disease-related 
changes in directed connectivity in Alzheimer’s disease patients and further allows one to test directed connectivity-based spread models suggested by animal 
research. This figure is modified from Riedl et al. (17).
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pathology spread and directed connectivity—as suggested by 
animal models—have not been established in AD patients due 
to the lack of methods to identify directed connectivity pathways 
in humans.

Developments in simultaneous multi-modal imaging now 
offer new approaches to investigate directional signaling, or 
effective connectivity (EC), in vivo. Specifically, a new measure of 
intrinsic EC (iEC) has recently been established that exploits the 
simultaneous acquisition of energy metabolism and FC measures 
on a hybrid MR-PET scanner (17). In this paper, we discuss how 
this new approach adds a novel quantitative measure of spreading 
directionality in AD patients.

Metabolic connectivity Mapping (McM) 
Provides a Measure of signaling 
Directionality in AD Patients
Numerous studies have used undirected FC, defined as statistical 
dependencies between the activity signals of two brain regions, 
to investigate pathways of pathology propagation [e.g., Ref. (16)]. 

However, correlation analyses do not provide information on 
the influence that one region exerts over another. To understand 
the signaling hierarchy across distributed networks of regions, 
measures of EC, i.e., the directed, causal, activity-dependent 
relationship between regions, are usually more insightful (18).

A novel approach to identify EC in humans integrates undi-
rected FC with local energy consumption based on simultane-
ously acquired 18F-fludeoxyglucose (FDG) PET and resting-state 
functional magnetic resonance imaging (17). This method, 
called “metabolic connectivity mapping,” reveals ongoing or iEC 
(Figure 2). The underlying principle of this method is that most 
energy is spent on signaling processes, 75% of which is consumed 
postsynaptically (19). At the macroscopic level, it can be assumed 
that an increase in local metabolism reflects an increase in affer-
ent EC from source regions. In more detail, the directionality of 
a single functional pathway linking two regions is investigated 
by taking the cluster FC time series for one region (the potential 
seed region), which is correlated with the time series of each 
voxel in another region (the potential target region), reaping one 
score of FC for each voxel in the target region. On a voxel-wise 
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level, these scores of FC are then correlated with FDG activity, 
which, if correlated, infer that this region is the target of this 
functional pathway. If the same analysis with the seed and target 
regions switched also shows a significant correlation between FC 
and FDG values, this is a bidirectional pathway. This analysis is 
repeated for all region pairs, resulting in a voxel-wise, whole-
brain mapping of EC.

Riedl and colleagues (17) have already applied this method 
to infer the healthy signaling hierarchy in states of externally 
directed attention (eyes open condition) versus internally 
directed attention (eyes closed condition). The authors observed 
bidirectional communication between early and higher visual 
areas of occipito-parietal lobes plus top-down signaling from 
a frontoparietal “dorsal attention” network, independent of 
condition. As soon as participants opened their eyes, parts of the 
salience network (including insular and cingulate cortices) exert 
additional top-down influences on the calcarine sulcus. These 
data support the idea that MCM reveals dynamically changing 
signaling pathways and, critically, captures the direction of com-
munication among neural networks.

Looking at Other Methods to infer ec in 
Humans, their Application to AD, and 
Methodological issues
Other researchers have used statistical approaches to infer EC 
from undirected fMRI data, including Granger causality map-
ping (GCM) (20, 21), dynamic causal modeling (DCM) (22), and 
Bayesian network (BN) learning (23). These methods have been 
used to investigate changed network dynamics in AD patients, 
reporting disrupted EC in the DMN, though with certain  
caveats.

Granger causality mapping is based on the assumption that 
causes precede, and help to predict, consequences. Vector autore-
gressive models are used to analyze causal interactions between 
two brain regions, in which the blood-oxygen-level-dependent 
(BOLD) signal of one region Y at a particular time is modeled 
as a linear weighted sum of its own past BOLD fluctuations and 
that of another region X. Activity in area X is said to “Granger” 
cause activity in area Y if the past of X contains information that 
helps to predict the future of Y, over and above the information 
already in the past of Y itself [for review, see Ref (24)]. Applied to 
AD, GCM revealed altered EC among DMN regions. While the 
connection strength to the posterior cingulate cortex was mark-
edly reduced in AD patients compared to healthy controls, the 
medial prefrontal cortex showed stronger coupling with bilateral 
inferior parietal regions (25). Contrasting results were found 
by another GCM study reporting relatively preserved posterior 
cingulate cortex connectivity in AD patients (26). Disease-related 
changes in GCM have also been found in other networks besides 
the DMN, e.g., in the executive control network (27). Notably, 
several assumptions underlie the application of linear autoregres-
sive models to fMRI. While a detailed account can be found in 
Ref. (28), the strongest criticism that has been raised concerns 
spurious “causality” that is in fact the result of naturally occur-
ring time-lags among different brain regions. For example, GCM 
applied to simulated fMRI time-series data was shown to perform 

relatively poorly, which “suggests that the directionality results 
may not be trustworthy” (29).

In contrast to GCM, DCM does not estimate EC directly from 
the observed activity among different brain regions, but instead 
infers causality from hidden (unobserved) neuronal states that 
cause those observations. These hidden states are described in 
terms of bilinear differential equations, which define how the 
present state of a particular region influences the dynamics of 
another under experimental manipulation. In order to infer 
causal interactions at the neural level, DCM integrates a hemo-
dynamic forward model that describes the transformation from 
neural activity to the measured BOLD signal. Finally, a Bayesian 
model selection is used to identify the most likely among a set of 
competing DCMs by comparing the probability of observing the 
data under a particular model [for technical details, see Ref (30)]. 
Up to now, only one research group implemented DCM in AD 
patients (31). In this work, strength of EC was computed during 
a simple motor task. Compared to healthy control participants, 
AD patients had significantly reduced EC between the left and 
right primary somato-motor cortices. The relative lack of DCM 
studies in the AD literature might be attributed to some restric-
tions inherent to this approach. The most fundamental issue is 
that the assumptions held by the hemodynamic forward model, 
i.e., the mapping between neuronal activity (hidden states) and 
measured BOLD response, are most probably violated in AD 
patients due to the damaged vasculature. In brief, neuronal 
activity drives vasodilation and thereby increases blood flow, 
which inflates blood volume and reduces the concentration of 
deoxyhemoglobin. The latter enters the hemodynamic response 
equation [for more details, see Ref. (32)]. A growing body of 
evidence indicates that Aβ not only effects neurons but also 
cerebral blood vessels (33, 34). Decreased arterial blood flow 
has been found in healthy old carriers of the APOE ε4 genotype, 
individuals with mild cognitive impairment and AD patients 
[reviewed by Zhang et  al. (35)]. Consequently, the interpreta-
tion of DCM results obtained within the AD spectrum is less 
straightforward; reduced EC could point to altered neuronal 
interactions and/or AD-related changes in the neurovascular 
coupling. Furthermore, parameter estimates are wholly depend-
ent on which set of brain regions are included in the DCM, 
since it is neither mathematically nor computationally feasible 
to efficiently search over the full range of all possible regions. 
Therefore, the resulting patterns of EC are only a parsimonious 
model of the “real” causal architecture. The problem of missing 
or novel nodes not considered in the predefined model could 
be quite serious in AD, where atrophy might profoundly alter 
inter-regional connectivity (36).

Unlike the aforementioned EC methods, BN approaches aim 
to train a suitable EC model from the data alone, without the need 
for prior knowledge and considering the entire brain (23). A BN 
modal is a directed acyclic (no loops that start or end at the same 
node) graph that consists of nodes representing neuronal regions 
and edges that symbolize inter-region connectivity. Conditional 
probability densities are used to determine the functional net-
work structure. BN-inferred EC patterns of AD patients show 
a global disruption of connectivity from the hippocampus to 
other main hubs of the DMN, e.g., to the posterior cingulate and 
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medial prefrontal cortex, while coupling between left and right 
hippocampi were abnormally increased in patients compared to 
controls (37). Despite the advantages that BN methods encom-
pass compared to other network modeling techniques, the test 
results obtained from Smith et  al.’s simulation study is not all 
positive (29). Although BN methods were found to excellently 
detect network connections, estimated directionality was close 
to chance performance. One restriction in this respect is that BN 
cannot model reciprocal connections.

McM can capture the spread of 
Pathology in Whole-Brain and Quantitative 
terms
We propose that MCM is a promising new tool that, based 
on the benefits of multi-modal MR-PET imaging, allows one 
not only to map iEC changes in AD patients but also to link 
such changes with pathology spread. Especially in the context 
of AD, this approach offers several advantages compared to 
other EC methods. First, MCM is a data-driven or model-free 
approach which requires comparably little pre-assumptions. 
In fact, unidirectional as well as reciprocal connections can be 
captured between any regions spanning the whole brain. This is 
a favorable property considering that little is known about how 
AD targets the EC structure of the human brain. Second, MCM 
is less error-prone to naturally occurring as well as AD-related, 
inter-regional variations in the neurovascular coupling that 
cause inhomogeneity in the measured BOLD signal. The reason 
for that is, EC is not directly estimated from the BOLD response, 
but from correlating the BOLD time series between distinct 
regions making it invariant to the signal amplitude. In terms of 
between-subject variations, Riedl and colleagues (17) showed 
that MCM can reveal robust and condition-specific changes of 
EC in a group of healthy participants. Thus, the authors con-
cluded “that the assessment of changes in EC may be more robust 
to vascular heterogeneity.” Third, capturing signal directionality 
from two imaging modalities with similar voxel size also has 
distinct advantages regarding sensitivity. Since the data are col-
lected simultaneously and independently from the same patient, 
preprocessing steps commonly applied before statistical analyses, 
which spatially distort the data, e.g., spatial normalization and 
smoothing, can be omitted. Instead, the new approach allows EC 
mapping in individual subject space and may be even sensitive 
for single-subject analyses. A final, practical advantage of MCM 
is that EC can be assessed during the resting state, free of any 
cognitive demand. Mapping iEC opens up novel opportunities 
for linking the brain’s endogenous signaling hierarchy in AD 
patients with molecular theories about pathology propagation 
for which experimental evidence has as of yet been restricted to 
animal models.

Despite being a highly promising method, it is important to 
highlight the limitations of MCM. First, there is a large differ-
ence between FDG-PET imaging and fMRI in terms of temporal 
resolution: the former can only acquire one saturated image after 
a period of 30-min scanning, which can cause problems when 
analyzed in conjunction with a relatively temporally precise and 
dynamic measure such as fMRI-based FC (38). It is important 

to adopt a study design that measures stable FC across extended 
periods when using MCM, so as to ensure similar time scales 
across both imaging modalities (17).

Second, vascular heterogeneity in terms of vascular density 
and cerebral blood flow has been shown to influence BOLD-FC 
(39–41), which can lead to spatial inhomogeneities in the meas-
ured BOLD signals and hence may induce false-positives/nega-
tives in the spatial FDG-FC voxel-wise correlations. However, as 
mentioned previously, since MCM utilizes FC rather than the 
BOLD signal directly, concern over this potential limitation is 
somewhat reduced (17).

Finally, one must keep in mind that MCM can only obtain a 
proxy of EC, since it uses energy consumption as an indication 
of signaling direction. Recent studies have shown strong support 
for the underlying assumption that energy consumption is mostly 
conducted directly at neurons (42), but the findings for a possible 
role of astrocytes in glucose uptake suggest that the underlying 
mechanisms of neuroenergetics may not be so clear cut (43). 
The BOLD signal is also a proxy measure of neuronal activity, 
but the neuronal basis of the BOLD signal has been widely 
supported (44–46). The established drawbacks of PET in terms 
of resolution and sensitivity and its utility in the study of AD 
pathology should also be taken into consideration when apply-
ing MCM to investigate EC and spread models of AD pathology, 
which have been extensively discussed in other articles (47–52). 
Additionally, other multi-modal imaging techniques such as 
fMRI with MR spectroscopy or flumazenil-PET may also offer 
interesting insight into AD pathology and FC [for reviews, see 
Ref (53–55)] but, unlike FDG-PET/fMRI, they do not yet offer 
the key aspect of directionality of functional pathways, along 
which animal models have shown amyloid-β and tau pathology 
to spread (7).

Application of McM in AD Patients and 
Other Neurodegenerative conditions
Specific approaches to testing spread models of pathology are 
outlined below. The general logic of these approaches is to com-
pare maps of pathology characteristics, derived from imaging AD 
patients, and maps of iEC characteristics and changes in these 
maps in pre-stage AD patients, such as mild cognitive impair-
ment or subjective cognitive impairment. On the one hand, PET-
based pathology imaging has demonstrated significant amounts 
of pathology in these pre-stage AD patients, on the other hand, 
FC, which forms the basis of EC is largely preserved, facilitating 
reliable EC. The ultimate question, then, would be to what extent 
the pathology patterns can be explained by EC pathways. As a 
simple example, we suggest that, for a pair of regions sharing 
intact unidrectional EC and a significant gradient of pathology, 
some variance in this pathology gradient across patients can be 
explained by variance in the strength of EC beyond underlying 
functional or structural connectivity. A further example might 
be a longitudinal approach, in which the increase of a region’s 
pathology is explained by iEC into this region at the time of first 
measurement.

Furthermore, the application of MCM to the investigation of 
other neurodegenerative conditions seems promising. Despite 
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their clinical heterogeneity, many neurodegenerative diseases 
share a common neurological signature—the misfolding and 
accumulation of specific proteins. Besides AD, this is the case 
in Parkinson’s disease characterized by α-synuclein; sporadic 
amyotrophic lateral sclerosis and rare fronto-temporal demen-
tia showing aggregates of TAR DNA-binding protein 43 or in 
Huntington’s disease with huntingtin aggregates. Cell culture 
and/or animal studies more and more firmly demonstrate that 
these misfolded proteins share the ability of self-perpetuating 
neuron-to-neuron spreading, implying that neuronal connec-
tions probably play a critical role in disease propagation [see Ref 
(7, 56, 57), for recent reviews]. First evidence for a direction-
dependent spreading mechanism have been particularly shown 
for α-synuclein. Pathological changes in Parkinson’s disease 
appear in a prototypical sequence starting in the lower brainstem 
and olfactory bulb, from where they proceed to the midbrain and 
the substantia nigra, before being found in the basal forebrain 
and ultimately in the neocortex (58). Moreover, α-synuclein’s 
ability to propagate transneuronally along defined neuronal 
pathways has been confirmed in transgenic mice. After intrac-
erebral injection of brain-derived, pathological α-synuclein, the 
asymptomatic recipient animals developed Parkinson’s disease-
like lesions which were also observed in interconnected regions 
far beyond the injection sites (59). Estimating direction of 
neuronal communication in humans by MCM may hence allow 
testing such an infection-like spreading model in Parkinson’s 
disease patients.

cONcLUsiON

Better knowledge of the mechanisms that cause propagation 
of Aβ and tau pathology from an initially isolated target site to 
remote regions of wider brain networks will pave the way for 
more precise diagnostics and novel treatment strategies. Given 
the clear predictions of animal models that AD pathology spreads 
in the direction of neuronal pathways, future research should aim 
to explicitly test this idea in AD patients. MCM has been demon-
strated to be a capable tool for detecting iEC, a proxy for directed 
connectivity, in healthy participants. Applied to AD patients, 
this multi-modal imaging approach allows future studies to test 
whether the spread of tau and Aβ pathology in humans follows 
the hypothesized trajectories of iEC.
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