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Ischemic stroke is one of the major health problems worldwide. The only FDA approved 
anti-thrombotic drug for acute ischemic stroke is the tissue plasminogen activator. Several 
studies have been devoted to assessing the therapeutic potential of different types of 
stem cells such as neural stem cells (NSCs), mesenchymal stem cells, embryonic stem 
cells, and human induced pluripotent stem cell-derived NSCs as treatments for ischemic 
stroke. The results of these studies are intriguing but many of them have presented 
conflicting results. Additionally, the mechanism(s) by which engrafted stem/progenitor 
cells exert their actions are to a large extent unknown. In this review, we will provide a 
synopsis of different preclinical and clinical studies related to the use of stem cell-based 
stroke therapy, and explore possible beneficial/detrimental outcomes associated with 
the use of different types of stem cells. Due to limited/short time window implemented 
in most of the recorded clinical trials about the use of stem cells as potential therapeutic 
intervention for stroke, further clinical trials evaluating the efficacy of the intervention in a 
longer time window after cellular engraftments are still needed.
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iNTRODUCTiON

The number of stroke-related deaths is increasing and stroke remains one of the major causes of 
deaths and disability worldwide (1, 2). Between 1990 and 2010, the global incidence rate of stroke 
seemed to be stable, while other parameters such as the incidence of first stroke, prevalence of stroke, 
disability-adjusted life-years lost due to stroke, and the number of stroke-related deaths increased 
by 68, 84, 12, and 26%, respectively (1). Differences between rates and numbers might reflect varia-
tions in population structure, increase in life expectancy, and the global improvement of health care 
services.

Two main types of stroke are recognized: ischemic and hemorrhagic stroke. Ischemic stroke 
accounts for over 80% of the total number of strokes. Thrombolysis and/or thrombectomy is the only 
validated therapeutic strategy for ischemic stroke (3, 4). Neurorestorative stem cell-based therapy 
is currently a major priority for stroke research (5, 6). Following ischemic events an inflammatory 
cascade, is initiated eventually leading to damage of brain tissue.
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FigURe 1 | Stem cells and neural progenitor cells have been used to replace neural tissue death following a cerebral insult. Adult (mesenchymal and neural stem 
cells) and embryonic stem cells (ESCs) exhibited excellent differentiation capacity toward the neural phenotypes (neurons, oligodendrocytes, and astrocytes) in vitro 
and in vivo. In our view instead, induced pluripotent stem cells (iPSCs) constitute the greatest prospect for a future cell therapy. iPSCs are derived directly from the 
patient’s connective tissue through a small biopsy and exhibit the same properties of ESCs, overcoming the problems related to immune rejection, and bypassing 
the need for embryos. They can be generated in a patient-matched manner, implicating that each individual could have their own pluripotent stem cell line. Finally, 
iPSCs can be used in personalized drug discovery and to understand and deepen the patient-specific basis of disease (7–10).
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DiFFeReNT CeLLULAR SOURCeS USeD 
FOR STeM CeLL-BASeD THeRAPY OF 
STROKe

The drastic damage to brain tissues following ischemic stroke 
includes not only destruction of a heterogeneous population  
of brain cell types, but also major disruption of neuronal con-
nections and vascular systems. Several types of stem/progenitor 
cells such as embryonic stem cells (ESCs), neural stem/precursor 

cells, mesenchymal stem cells (MSCs), induced pluripotent  
stem cells (iPSCs), and induced neurons have been assessed as 
potential cellular-based therapy for stroke. The results of studies 
of these different cellular types are conflicting. In some studies, the 
engrafted cells survived, proliferated, differentiated, and restored 
lost neuronal and vascular elements. Other studies have shown 
only a limited neurorestorative ability on the part of transplanted 
cells. In the next section of this review, we elaborate on different 
stem cell types used for cellular-based therapy of stroke (Figure 1).
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eMBRYONiC STeM CeLLS

Derived from the inner mass of blastocysts, ESCs are pluripotent 
cells having the ability to differentiate into all other body cells 
except those of the placenta (11). The regenerative capacity of 
ESC in stroke is related to their ability to give rise to different 
neuronal and glial elements forming the brain tissues (i.e., neu-
rons, astrocytes, and oligodendrocytes) (12). Engrafted murine 
ESCs in cerebral tissue in an ischemic mouse model migrated 
toward damaged brain areas in the opposite cerebral hemi-
sphere, restored histological and behavioral deficits (13), and 
repaired damaged synaptic connections associated with stroke  
lesions (14).

NeURAL STeM/PReCURSOR CeLLS

Neural stem cells (NSCs) are multipotent cells residing mainly 
in the subgranular zone of the dentate gyrus of the hippocampus 
(15), and in the subventricular zone of the brain’s third ventricle 
(16). The NSCs move from the subventricular zone into the 
rostral migratory stream and thence to the olfactory bulb where 
they differentiate into interneurons. Currently, NSCs are a hot 
research area for neurobiologists. Their ability to differentiate 
into different neuronal and glial elements that form the CNS 
make them a promising candidate for restoration of neuronal 
and behavioral damages associated with different CNS disorders 
including stroke.

The first attempt to use NSC for cell-based therapy of 
brain hypoxia was conducted in 1984 when embryonic brain 
cortex tissue was engrafted in a rat hypoxia model. The trans-
planted cells proliferated, established connections with host 
neurons, and improved electrophysiological performance  
(17, 18).

Embryonic NSCs engrafted into ischemic rat brains survived, 
migrated to the ischemic lesion, maturing into neurons (19, 20) 
as well as astrocytes and microglia (21); they restored impaired 
sensorimotor and spatial learning functions (22). In a macaque 
stroke model, engrafted NSCs partially differentiated into neu-
rons, and survived up to 105 days (23).

MeSeNCHYMAL STeM CeLLS

Mesenchymal stem cells can be derived from several tissue 
sources, including bone marrow, placenta, muscle, skin, dental 
pulp, adipose tissue, umbilical cord, and Wharton’s jelly (24, 25).  
The therapeutic potential of bone marrow MSC (BMSC) for 
stroke has been extensively assessed both at the preclinical and 
clinical levels. In an animal stroke model, transplantation of 
BMSC enhanced sensorimotor function (26), promoted synap-
togenesis, stimulated nerve regeneration (27), decreased tissue 
plasminogen activator-induced brain damage (28), and mediated 
immunomodulatory effects (29).

At the clinical level, BMSCs appeared to be an attractive 
alternative that avoided ethical concerns related to the used of 
fetal cells. Several studies have revealed the feasibility and safety 
of BMSCs in clinical practice (30–32).

iNDUCeD PLURiPOTeNT STeM CeLLS

Reprogramming of somatic cells such as fibroblasts and periph-
eral blood mononuclear cells through transduction of defined 
transcriptional factors (Oct3/4, Sox2, Klf4, and c-Myc) is cur-
rently becoming a standardized protocol (33, 34). The therapeutic 
potential of iPSCs in treating various CNS diseases (including 
stroke) has been addressed in previous studies (35). In compari-
son with ESCs, iPSCs have the advantage of sparing the damage 
induced by immune rejection, and avoiding the moral issue 
associated with the use of embryonic tissues (36). Engraftment 
of iPSCs in a cerebral ischemia model reduced infarct volume, 
ameliorated the neurological outcomes, and improved short-term 
sensorimotor recovery (37). Unfortunately, following engraft-
ment, iPSCs formed teratomas in mouse brains (38, 39). The 
high propensity of iPSCs for teratoma formation is attributed to 
the expression of matrix metalloproteinase-9 and phosphorylated  
vascular endothelial growth factor receptor 2 (40).

One of the promising strategy for the use of iPSC to treat stroke 
is their ability to differentiate into NSC. Induced pluripotent stem 
cell-derived neural stem cells (iNSCs) are expected to provide 
multipotent, autologous cells for stroke cellular-based therapy. In 
ischemic pig stroke model, implantation of iPSC-derived iNSC was 
associated with improved recovery. Several mechanisms have been 
reported to play a role in the observed improvement including 
cell replacement, and neuroprotection. Others changes have been 
demonstrated based on the use of longitudinal multiparametric 
magnetic resonance imaging. These include reduction in the 
changes of brain metabolism, cerebral blood infusion, and integrity 
of the white matter. Such tissue recovery in review 8 was primarily 
attributed to alleviation of negative immune response, activation of 
neurogenesis, and enhanced neuronal protection. These observa-
tion strongly support the importance of iNSCs as a promising cel-
lular source to be used for cell-based therapy of human stroke (41).

TUMORegiNiC POTeNTiAL OF 
PLURiPOTeNT CeLLS

One of the major concern for the use of pluripotent stem cells 
(including ESCs and iPSCs) for treatment of ischemic brain 
injury is their potential to develop a tumor following engraft-
ment. Several studies have reported the tumorigenic transforma-
tion of iPSC (38, 40, 42, 43) following their in transplantation. 
The existence of a small number of undifferentiated iPSCs even 
after prolonged differentiation of iPSC in vitro may trigger the 
formation of teratoma in vivo, and pose a great risk against their 
clinical application (44). Other factors might also contribute to 
the tumorigenic potential of iPSC including the transcriptional 
factors and virus vectors used during iPSC induction (45, 46). The 
role of the four Yamanaka reprogramming factors (Klf4, c-Myc, 
Oct4, and Sox2) in induction of teratoma had been suggested by 
some authors, and they were found to be strongly expressed in 
iPSC-derived tumors (38). The four factors have been demon-
strated to be highly expressed in various cancer types (47–49), 
and MYC has been demonstrated to be a well-documented 
oncogene (50, 51). The expression of aforementioned genes has 
been associated with poor prognosis, and tumor progression 
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(52). The role of these transcription factors in the tumorigenic 
potential of iPSC has been indirectly demonstrated where inhi-
bition of the tumor suppressors in the p53 pathway was found 
to increase the reprogramming ability of Oct4, Klf4, and Sox2 
(53). Elimination of the “unsafe” undifferentiated residual cells 
has been suggested to guard against the development of iPSC-
associated teratoma. Toward this aim, several strategies such as 
magnetic-activated cell sorting and fluorescence-activated cell 
sorting (54) have been used. Other strategies to mitigate potential 
tumorigenic potential of engrafted pluripotent cells include the 
use of cytotoxic antibodies such as mAb 84 (55), use of virus-free 
iPSCs, and encapsulation of pluripotent stem cell-derived grafts 
(56) were also effective.

iMMUNOgeNiCiTY OF STeM  
CeLL-BASeD THeRAPY FOR STROKe

The potential of allogeneic stem cells in the treatment of stroke 
has been highlighted before. Savitz et  al. (57) have tested the 
potential of fetal porcine in transplantation in patients with 
basal ganglia infarcts and stable neurological deficits. In a trial to 
suppress the immunorejection of the transplanted cells, patients 
were pretreated with anti-MHC1 antibodies with no immuno-
suppressive drugs. No adverse effects have been observed, while 
the fourth patient exhibited a deterioration in motor functions 
deficits 3  weeks after transplantation. Other side effects that 
might indicate rejection of engrafted cells were shown in the fifth 
patients who have developed seizures 1 week after transplanta-
tion. The study was terminated by the FDA after the inclusion 
of five patients. This study was the first that pointed out to the 
potential use of non-tumor cells in ischemic stroke patients.

MeCHANiSM OF ACTiON OF STeM  
CeLL-BASeD THeRAPY FOR STROKe

The potential mechanism(s) by which different types of engrafted 
stem cells help to restore lost neuronal function after stroke 
are still a matter of dispute. Several mechanisms have been 
demonstrated including cell replacement, trophic influences, 
immunomodulation, and enhancement of endogenous repair 
processes.

The mechanism by which the engrafted BMSCs exerts their 
beneficial actions is still under investigation. Whether or not the 
improvement occurred following transplantation of BMSCs is a 
primary concern, but their ability to replace dead or damaged 
neuronal and glial elements still needs further confirmation.

Release of soluble trophic factors and cytokines is suggested as 
one major mechanism by which NSC bring about improvement 
in post-stroke neurological function (58). A wide array of trophic 
and growth factors has been reported to be released from endog-
enous cells such as astrocytes and endothelial cells (59). These 
include VEGF/Flk1 and Ang-1/Tie2 (60), BDNF, nerve growth 
factor, VEGF, IGF-1, hepatocyte growth factor, and GDNF. These 
factors promote angiogenesis, stabilize vasculature, enhance cell 
survival proliferation and differentiation, promote neurogenesis, 
effect endogenous cell repair, trigger neuroblast proliferation, and 
trigger migration from SVZ and decreased apoptosis (61).

CeLL RePLACeMeNT

Cell replacement involves the ability of engrafted cells to migrate, 
survive, proliferate, and finally differentiate into the various types 
of cells forming nervous tissue histo-architecture. These include 
neurons of different classes, oligodendrocytes (the myelin form-
ing cells), and astrocytes. Following stroke or other neurological 
insults/disorders several neurodegenerative and inflammatory 
pathways are activated creating an inhospitable environment for 
engrafted cells. Astrocytes usually respond by extensive prolifera-
tion and formation of a glial scar (62) which renders the damaged 
area unsuitable for engrafted exogenous cells.

Based on the initial number of cells engrafted and the route 
of administration, the necessary first step in restoring damaged 
cellular elements following stroke is the migration of transplanted 
cells to damaged brain regions. This is usually achieved through 
the ability of engrafted stem/progenitors cells to target damaged 
regions (63) in response to different chemotactic signals of 
specific cytokines, such as the vascular cell adhesion molecule 1,  
stromal-derived factor 1, monocyte chemotactic protein-1, 
chemokine (C–C motif) ligand 2 (21).

CLiNiCAL TRiALS

In a recent meta-analysis of stem cell therapies for patients with 
brain ischemia, Chen et al. (64) concluded that stem cell therapy 
significantly enhanced neurological functions and quality of life, 
but more investigation is required to provide more evidence to 
support clinical application of stem cell transplantation (64, 65).

In a very recent clinical trial, the safety and efficacy of autolo-
gous bone marrow mononuclear cells transplantation in stroke 
patients were assessed. The study suggests that a higher dose of 
BM-MNC (3 × 106 or more) provided a better outcome in stroke 
patients (66).

In another recent clinical trial, improved neurological func-
tion with no tumor formation or adverse events was demon-
strated following engraftment of an immortalized human neural 
stem-cell line (67).

A double-blind randomized placebo-controlled Phase III 
confirmatory clinical trial of intravenous infusion of autologous 
NSC derived from bone marrow of stroke patients resulting from 
cerebral infarction is currently under way (68).

To evaluate the safety and clinical outcomes of surgical 
transplantation of modified bone marrow-derived MSCs, cells 
were engrafted in 18 patients with stable, chronic stroke. This 
therapeutic paradigm was proven to be safe, and was associated 
with improvement in clinical outcome end points after 12 months 
(69). Nagpal et al. (70) investigated the use of autologous stem cell 
therapy for stroke survivors with chronic disability. The primary 
outcomes to be measured are safety and feasibility of intracranial 
administration of autologous human adult DPSC in patients with 
chronic stroke; as well as determination of the maximum toler-
able dose in humans. Secondary outcomes to be assessed include 
estimation of the measures of effectiveness required to design a 
future Phase 2/3 clinical trial (70).

In summary, the conclusions of several preclinical studies 
have encouraged the translation of stem cell-based therapies 
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at the clinical level. Several clinical studies related to the use of 
different types of stem cells for cell-based therapy of stroke have 
been conducted since 2005 using MSCs (30), MNC (32, 71), and 
NSCs (57, 72).

ONgOiNg CLiNiCAL TRiALS

To the best of our knowledge, there are currently more than 53 
clinical trials on the use of stem cell-based therapy for stroke. 
Most of them use MSCs isolated from different body tissues: 
umbilical cord, endometrial polyps, menstrual blood, adipose 
tissue, and bone marrow (73). Although use of autologous MSCs 
is the method of choice to guard against immune rejection, the 
long time frame needed to obtain sufficient numbers of MSCs 
from the patient’s own tissue (i.e., bone marrow), makes the 
use of “off-the-shelf ” allogeneic MSC therapy more convenient. 
Manipulation of MScs to overexpress genes with potentially 
beneficial properties and the ability to rapidly release different 
trophic factors was found to enhance their therapeutic potential 
and effects (74). Administration of multipotent adult progenitor 
cells was safe and well tolerated in patients with acute ischemic 
stroke. Although no significant improvement was observed 
at 90  days in neurological outcomes with multipotent adult 
progenitor cells treatment, further clinical trials evaluating the 
efficacy of the intervention in an earlier time window after stroke 
(<36 h) are planned (75).

Different routes of administration have been used to deliver 
stem cells into the stroke patients, namely intra-arterial, intra-
venous, and intraparenchymal routs. An early subacute delivery 
of cells to reduce acute tissue injury and modify the tissue 
environment in a direction favorable to reparative processes 
(for example, by being anti-inflammatory, anti-apoptotic, and 
encouraging endogenous stem cell mobilization); the other 
exploring later delivery of cells during the recovery phase after 
stroke to modulate the local environment in favor of angio-
genesis and neurogenesis. The former approach has generally 
investigated intravenous or intra-arterial delivery of cells with an 
expected paracrine mode of action and no expected engraftment 
within the brain. The latter has explored direct intracerebral 
implantation adjacent to the infarct. Several relevant trials have 
been conducted, including two controlled trials of intravenously 
delivered bone marrow-derived cells in the early subacute 
stage, and two small single-arm phase 1 trials of intracerebrally 
implanted cells (76).

FUTURe PeRSPeCTiveS AND 
CONCLUSiON

Stem-based therapy for ischemic stroke is still in its infancy. 
Several alternative approaches including the use of ESCs, MSCs, 
NSC, and iPSCs have been tried in hopes of improving the 
drastic neuronal and functional impairment that usually follows 
a stroke insult. The outcomes of various preclinical studies have 
been encouraging, with (in most cases) engrafted stem cells 
succeeding in bringing about neurofunctional improvements. 
The mechanism(s) by which different types of stem cells induce 
improvement are still under investigation. Cell replacement, 
bystander effects, neurotrophic influence, immune and inflam-
matory modulation are all among the suggested mechanisms. At 
the clinical level, most of the clinical trials have used MSCs or 
NSCs (whether wild-type, genetically modified to overexpress 
certain neurotrophic genes, or preconditioned with the intent to 
promote cell survival and differentiation following transplanta-
tion) engrafted into an ischemic brain region. Autologous cells 
(mostly bone marrow-derived MSCs) are used in most of the 
ongoing clinical trials, although there is a current trend that favors 
the use of “off-the-shelf ” allogeneic MSC as a way to overcome the 
long time frame needed to obtain sufficient numbers of cells for 
transplant. Most current clinical trials aim to measure the safety 
and feasibility of intravascular and/or intracranial administration 
of autologous/allogeneic human adult stem cells in patients with 
chronic stroke and to determine the maximum tolerable dose. 
Secondary outcomes include estimation of the measures of effec-
tiveness required to design a future Phase 2/3 clinical trial.
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