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Light exerts a wide range of effects on mammalian physiology and behavior. As well 
as synchronizing circadian rhythms to the external environment, light has been shown 
to modulate autonomic and neuroendocrine responses as well as regulating sleep and 
influencing cognitive processes such as attention, arousal, and performance. The last 
two decades have seen major advances in our understanding of the retinal photore-
ceptors that mediate these non-image forming responses to light, as well as the neural 
pathways and molecular mechanisms by which circadian rhythms are generated and 
entrained to the external light/dark (LD) cycle. By contrast, our understanding of the 
mechanisms by which lighting influences cognitive processes is more equivocal. The 
effects of light on different cognitive processes are complex. As well as the direct effects 
of light on alertness, indirect effects may also occur due to disrupted circadian entrain-
ment. Despite the widespread use of disrupted LD cycles to study the role circadian 
rhythms on cognition, the different experimental protocols used have subtly different 
effects on circadian function which are not always comparable. Moreover, these proto-
cols will also disrupt sleep and alter physiological arousal, both of which are known to 
modulate cognition. Studies have used different assays that are dependent on different 
cognitive and sensory processes, which may also contribute to their variable findings. 
Here, we propose that studies addressing the effects of different lighting conditions on 
cognitive processes must also account for their effects on circadian rhythms, sleep, and 
arousal if we are to fully understand the physiological basis of these responses.

Keywords: learning and memory, alertness, circadian disruption, sleep disruption, melanopsin

iNTRODUCTiON

Light exerts profound effects on physiology and behavior, including entraining circadian rhythms 
as well as having direct effects on body temperature, melatonin, cortisol, and the cortical electroen-
cephalogram (EEG) (1–4). These effects of light are of particular concern in the modern 24/7 society 
as inappropriate light exposure affects an increasing proportion of the populace. This includes not 
only shift work and jet-lag, but exposure to light at night and the effects of light emission from 
mobile devices, such as laptops, tablets, and smartphones (5). Extended periods of abnormal light 
exposure can result in circadian disruption, which has been implicated in changes in metabolism, 
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sleep, and cognition as well as increasing the risk of metabolic 
and cardiovascular disease (6). Many studies of circadian disrup-
tion in animal models have involved exposure to abnormal light/
dark (LD) cycles (7–10). While these studies have been critical 
for understanding how circadian disruption affects different 
systems, the relationship between the direct effects of light and 
the long-term consequences of abnormal light exposure are not 
straightforward. Specifically, abnormal LD cycles may affect 
physiology via the direct effects of light as well as via its effects 
on the circadian system. Changes in circadian function may in 
turn influence sleep, which will subsequently affect additional 
processes. Here, we provide an overview of the mechanisms 
mediating photoentrainment before going on to summarize the 
effects of light on sleep, arousal, and cognitive processes. We then 
summarize the effects of circadian disruption on cognition in the 
context of these different mechanisms, with a particular focus on 
how abnormal light exposure may influence cognitive function.

CiRCADiAN RHYTHMS

Circadian rhythms are approximately 24 h cycles in physiology 
and behavior that enable an organism to predict and adapt to 
periodic changes in its environment. These rhythms provide a 
selective advantage, enabling anticipation and exploitation of pre-
dictable changes (11, 12). Circadian rhythms have been described 
in virtually all organisms, from cyanobacteria to mammals. 
Moreover, they have been shown to coordinate numerous aspects 
of physiology and behavior, influencing everything from loco-
motor and sleep/wake cycles to hormonal rhythms, metabolism 
and cognitive performance (13). Conversely, disrupted circadian 
rhythms impair fitness. Studies on ground squirrels with SCN 
lesions found that they were predated 20% more than sham-
operated control animals (14), and cyanobacteria with differing 
circadian periods showed increased fitness when their period 
matches that of the prevailing LD cycle (15). Due to the role of 
the circadian system in optimizing physiology and behavior in 
anticipation of predictable environmental changes, a mismatch 
between internal circadian time and the external LD cycle 
appears to be a key mechanism by which circadian disruption 
gives rise to negative health consequences (16). In the following 
section, the anatomical and molecular basis of circadian rhythms 
is described, along with the mechanisms by which these rhythms 
are entrained to the external environment.

The Suprachiasmatic Nuclei (SCN)
In mammals, the master circadian pacemaker is located within 
the paired SCN of the anterior hypothalamus. When the SCN 
are lesioned, animals become arrhythmic (17–19). Furthermore, 
if fetal SCN are transplanted into an SCN lesioned animal, 
circadian rhythms are restored (20), with a period determined 
by the donor animal (21). The SCN show circadian variations in 
electrical activity and firing rate over 24 h, with high activity dur-
ing the subjective day and low activity during the subjective night 
(22). Individual SCN neurons oscillate with a period of roughly 
24 h when dissociated from the rest of the SCN tissue, indicating 
that these rhythms are generated at an intracellular level rather 
than occurring as an emergent network property (23). While the 

role of the SCN in driving circadian rhythms in physiology and 
behavior in mammals was established in the 1970s, it was not 
until the late 1990s that the molecular basis of these rhythms was 
established.

The Molecular Circadian Clock
The underlying mechanism generating intracellular circadian 
rhythms is a transcriptional-translational feedback loop (TTFL) 
comprising positive, negative, and accessory limbs (24). The 
positive limb consists of the core clock proteins, CLOCK and 
BMAL1, which both contain a basic helix-loop-helix domain 
and bind together to form heterodimers. These in turn bind to 
E-box enhancer regions of Per1-2 and Cry1-2 genes to promote 
their transcription (Figure 1). The negative limb comprises the 
translated PER and CRY proteins which translocate back into 
the nucleus and directly interact with the CLOCK/BMAL1 
complex to inhibit transcription. In turn, the transcription of 
PER and CRY proteins are reduced, and the proteins are also 
actively broken down, leading to re-activation of transcription 
by CLOCK/BMAL1. In addition to the core loop, an accessory 
loop is also driven by the CLOCK/BMAL1 activation. The 
Rev-erbα gene is transcribed and produces the orphan nuclear 
receptor REV-ERBα, which activates a ROR response element in 
the promoter of Bmal1 to inhibit its transcription. As PER and 
CRY interact with CLOCK/BMAL1 to inhibit transcription, 
Rev-erbα falls as well, disinhibiting Bmal1 transcription, allow-
ing levels to rise again (25). CLOCK/BMAL1 heterodimers also 
drive the transcription of a large number of other genes which 
contain E-box enhancers in their promoter region, termed clock 
controlled genes (CCGs), thus allowing the clock to influence 
a wide range of cellular functions (26). The characterization of 
the molecular basis of circadian rhythms reflects one of the best 
examples of how genetic mechanisms can give rise to complex 
behavior. Indeed, it is remarkable that changes in a single gene 
can give rise to changes in the period of the circadian clock, or 
even arrhythmicity.

Light input to the Circadian Clock
A clock is of no use unless it can be set to the right time. In mam-
mals, the master SCN clock is entrained to the external environ-
ment by time cues (zeitgebers), the most important of which 
is light detected by the eyes. Indeed, loss of the eye abolishes 
entrainment (27, 28). The SCN receives input from the retina via 
the retinohypothalamic tract (RHT), which allows the light to 
adjust the phase of its endogenous rhythms to match that of the 
environment (29). Studies on the photoreceptors mediating cir-
cadian entrainment demonstrated that mice can still phase shift 
their locomotor activity rhythms and suppress pineal melatonin 
in response to light even in the absence of the classical rod and 
cone photoreceptors that mediate vision (30, 31). These findings 
suggested the existence of a novel retinal photoreceptor, in addi-
tion to the well-characterized rods and cones. It was subsequently 
shown that a subset of photosensitive retinal ganglion cells 
(pRGCs) expressing the photopigment melanopsin (OPN4) are 
intrinsically light sensitive and form the primary projection to 
the SCN (Figure 1) (32). However, as pRGCs receive input from 
the outer retina, their output via the RHT depends upon both 
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FigURe 1 | Light is detected by the photoreceptors of the retina, including the rods and cones as well as photosensitive retinal ganglion cells (pRGCs), expressing 
the photopigment melanopsin. Light information is relayed to the suprachiasmatic nuclei (SCN) via the retinohypothalamic tract (RHT), where it entrains an 
intracellular molecular clock mechanism, consisting of positive (BMAL1 and CLOCK) and negative (PER and CRY) elements.

3

Fisk et al. Light and Cognition

Frontiers in Neurology | www.frontiersin.org February 2018 | Volume 9 | Article 56

their intrinsic responses as well as extrinsic signals from rods 
and cones (33, 34). As such, mice lacking melanopsin (Opn4−/−) 
display normal circadian entrainment, but attenuated phase shift-
ing responses to light (35, 36). However, mice in which pRGCs 
are genetically lesioned are unable to entrain to light (37). Since 
the identification of pRGCs, it has become clear that these cells 
mediate more than just circadian entrainment, and are involved 
in a range of non-image forming (NIF) responses to light, includ-
ing the pupillary light response, regulation of sleep–wake timing, 
photophobia, light aversion, and cognitive function, as well as 
influencing image forming responses, such as visual adaption 
(38). Melanopsin-expressing pRGCs project to multiple brain 
targets, including the intergeniculate leaflet, olivary pretectal 
nucleus, medial amygdala, lateral habenula, and superior collicu-
lus, suggesting that different NIF responses may involve different 
neural projections (38, 39).

The primary neurotransmitters of the RHT are glutamate 
and pituitary adenylate cyclase activating polypeptide, which are 
released at synapses in the SCN in response to photic stimuli (40, 
41). This results in increases in calcium concentration and firing 
rates in SCN neurons. Increased calcium concentration activates 
intracellular signaling pathways [e.g., cyclic AMP (cAMP) and 
PKA], converging on the phosphorylation of cAMP response 
element binding protein, which translocates to the nucleus, 
binding to cAMP response elements in the promoters of Per1 and 
Per2, increasing their transcription. This results in the molecular 
clock in SCN being either advanced or delayed. Although this 
link between light input, membrane events, and the TTFL has 

been characterized, the mechanisms by which the TTFL regulates 
membrane potential are poorly understood (3, 42). While great 
progress has been made in understanding the molecular basis of 
photoentrainment, this model is almost certain to be incomplete.

Clock Outputs and Peripheral Clocks
The SCN has widespread projections throughout the brain, 
including to the septum, the anterior paraventricular thala-
mus, and to multiple hypothalamic nuclei including the sub-
paraventricular zone, ventromedial hypothalamus, dorsomedial 
hypothalamus, and pre-optic area (43). The SCN also projects 
to the paraventricular nucleus, whereby it modulates circadian 
rhythms in neuroendocrine and autonomic function (44, 45). 
Furthermore, molecular circadian rhythms are not confined to 
the SCN. Studies in the late 1990s showed that rat fibroblasts, 
which had been cultured for 30 years, were capable of rhythmic 
clock gene expression following a serum shock (46). Furthermore, 
clock gene reporter studies demonstrated that tissues throughout 
the body displayed rhythmic clock gene expression, including 
the liver and adrenal glands (47). These peripheral clocks are 
thought to play a key role in regulating local tissue physiology 
(48), with the SCN coordinating circadian timing throughout 
the body via a combination of neural, paracrine, hormonal, 
and behavioral signals. The identification of peripheral clocks 
throughout the body led to a fundamental change in our under-
standing of circadian rhythms, demonstrating that temporal 
organization is embedded in the physiology of virtually all cells, 
tissues, and organs.
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FigURe 2 | Sleep is regulated by two interacting processes. (A)  
A homeostatic mechanism (Process S) increases the requirement for sleep 
with prolonged waking and dissipates during sleep. (B) A circadian 
mechanism (Process C) provides a drive for wakefulness at specific phases 
of the 24 h cycle (49).
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SLeeP

The sleep/wake cycle is perhaps the most familiar consequence of 
our circadian rhythms. While sleep is modulated by the circadian 
system, it is also critically regulated by a homeostatic drive that 
increases with extended waking. As such, sleep and wakeful-
ness depend upon the interaction between these circadian and 
homeostatic processes (49, 50). Sleep is a complex process involv-
ing multiple brain regions and a network of mutually inhibiting 
arousal and sleep-promoting neurons (51–53). This involves 
wake active nuclei in the brainstem, hypothalamus, and the basal 
forebrain that fire during waking, and become less active during 
both NREM and REM sleep.

Sleep can be defined in both behavioral and physiological 
terms. Behaviorally, it involves a period of extended inactivity, 
with increased arousal threshold, a species-specific body posture 
and a typical sleep site (54). Physiologically, sleep is defined by 
the EEG, which measures electrical activity at the level of the 
cortex. During sleep, well-characterized changes occur in the 
EEG, classified as rapid-eye movement (REM) sleep and non-
rapid-eye movement (NREM) sleep (55). NREM sleep involves 
synchronized rhythmic EEG activity, occurring widely over the 
cortex, reflecting changes in the firing pattern of cortical neurons. 
By contrast, REM sleep is characterized by an EEG similar to the 
awake state, but with atonia and REMs (56). The brain cycles 
through these stages several times through the night in humans 
(in rodents, many more such cycles occur), with higher levels 
of NREM sleep at the start of the night, and higher REM sleep 
occurring later. While the precise function of sleep is not fully 
understood, it is likely it subserves multiple functions, including 
metabolite clearance, memory processing, immune restoration, 
and other functions (57). Deprivation of sleep has many negative 
consequences, including cognitive impairment (58), metabolic 
dysregulation (59), and following extended sleep deprivation, 
eventually death (60).

Homeostatic and Circadian Regulation  
of Sleep
The quantity, quality, and timing of sleep and wakefulness are 
regulated by both a homeostatic and a circadian process (termed 
Process S and C, respectively) (50). These processes interact to 
produce periods of wake and sleep during the day (Figure 2). This 
conceptual model has been useful in interpreting disturbances 
of sleep/wake regulation, and has been validated by quantitative 
predictions (61–63). The homeostatic process gradually accu-
mulates during prior wakefulness, and dissipates during sleep. 
This process is highly correlated with the power of slow wave 
activity (SWA) on the EEG during NREM sleep, characterized by 
frequencies in the 0.5–4 Hz range (64). The mechanisms under-
lying this homeostatic process are unclear. However, a number 
of putative sleep factors build up in the brain during prolonged 
wakefulness and dissipate during sleep and these may mediate 
the homeostatic process (65). Perhaps the best known example 
is adenosine, which increases in the basal forebrain during wake 
and dissipates during sleep, and has been proposed to account 
for the action of adenosinergic drugs, such as caffeine, on sleep 
(66, 67).

The circadian process varies throughout the 24 h day, 
allowing wake and sleep at alternate phases of the cycle (68). 
The primary driver of the circadian process is thought to be 
the SCN, as following SCN lesions endogenous rhythms in 
rest/activity are abolished, but the homeostatic regulation of 
sleep remains intact (69–71). The SCN appears to primarily 
provide a wake-promoting signal during the active period as 
lesions increase the total amount of sleep time (72). Studies 
in which internal desynchrony is induced in rats using 22  h 
days have also shown that rhythms in NREM sleep can be 
dissociated from rhythms in body temperature and REM sleep 
(73). More specifically, the circadian timing of REM sleep has 
been shown to be associated with clock gene expression in the 
dorsomedial SCN (74). The SCN likely mediates process C via 
direct and indirect projections to hypothalamic and brainstem 
nuclei (including locus coeruleus, VLPO, and orexin neurons), 
which control levels of arousal and sleep (75, 76). The ventral 
subparaventricular zone appears to be a key node in this path-
way, as lesions of this nucleus result in profound reduction in 
rhythms of locomotor activity and sleep (77). Together, the 
homeostatic and circadian processes determine the timing 
of sleep and wake, and disturbance of either process has the 
potential to disrupt sleep and influence subsequent waking 
performance.

Direct effects of Light on Sleep
In addition to the role of homeostatic and circadian processes 
in the regulation of sleep, light exposure also directly modulates 
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sleep. While light increases arousal and alertness in diurnal 
species such as humans, it promotes sleep in nocturnal rodents. 
Studies in rats have shown that light exposure suppresses activ-
ity and results in increased sleep, whereas darkness results in 
increased wakefulness (49, 78). One of the many projections 
of melanopsin pRGCs is to the sleep-promoting VLPO (39). 
This observation, coupled with the role of melanopsin pRGCs 
in the regulation of numerous NIF responses to light, led to 
studies of acute sleep induction in mice lacking melanopsin 
(Opn4−/−). Initial studies suggested that melanopsin-deficient 
mice show impaired sleep induction in response to nocturnal 
light exposure, suggesting that melanopsin plays a key role in 
mediating sleep induction and maintenance in response to light 
(79–82). However, these findings were not consistent with data 
showing that nocturnal light exposure in rodents produces a rise 
in plasma corticosterone (83), and that these effects on adrenal 
corticosterone are via the SCN, but independent of effects on the 
clock (84). Recent studies using different wavelengths of light 
have shown that short-wavelength 470 nm (blue) light results in 
delayed sleep onset, coupled with behavioral light aversion and 
elevated plasma corticosterone, and that this arousal response 
is attenuated in melanopsin-deficient mice. By contrast, longer 
wavelength 530 nm (green) light of the same intensity resulted 
in reduced arousal responses and more rapid sleep induction. 
Consistent with previous studies, sleep induction in response 
to green light was attenuated in melanopsin-deficient mice (85). 
These data are consistent with recent data using chemogenetic 
activation of pRGCs that produce behavioral arousal, rather 
than sleep (86). Furthermore, these findings are also consistent 
with the alerting effects of light described in humans (see Direct 
Effects of Light on Cognitive Processes).

The finding that melanopsin may be involved in the regulation 
of the sympathetic nervous system and subsequent arousal is per-
haps not surprising, as pRGCs provide a major input to the SCN 
which is known to regulate sympathetic function. Indeed, this 
is the primary pathway via which pineal melatonin synthesis is 
regulated (87). By contrast, explaining why melanopsin-deficient 
animals show impaired sleep induction in response to light is 
more challenging. One potential explanation is that melanop-
sin has recently been shown to be involved in light adaptation 
(88). If rod/cone signaling normally mediates sleep induction, 
in the absence of melanopsin responses to bright light stimuli 
may quickly saturate leading to impaired responses compared 
to wild-type mice (85). Rather than impaired photic input, an 
alternative explanation is that the impaired sleep induction in 
melanopsin-deficient mice may simply reflect a reduced require-
ment for sleep. Support for this hypothesis comes from data from 
melanopsin knockout mice showing reduced delta power during 
the dark phase as well as reduced accumulation of delta power 
following sleep deprivation. These findings suggest that the need 
for sleep increases at a slower rate in melanopsin-deficient mice 
(82). If this is indeed the case, it would suggest that differences in 
homeostatic sleep could account for impaired sleep induction in 
melanopsin-deficient mice, rather than deficits in light input to 
the VLPO as has previously been suggested.

Additional experimental variables may influence sleep induc-
tion in response to light. The environmental context is almost 

certain to influence acute sleep induction, as light exposure 
in the home cage may produce quite different effects on sleep 
in comparison to a novel environment. For example, in novel 
environments, such as an open field or novel object testing arena, 
sleep induction is not observed in response to light (89, 90). In 
addition, it should also be considered that while c-Fos has been 
used as a marker of VLPO activation during sleep (91), induction 
of Fos in response to light may simply reflect the subsequent sleep/
wake status of the animal rather than providing a marker of light 
input as has been widely used in the SCN (92). While there is a 
limited retinohypothalamic projection from melanopsin pRGCs 
to the VLPO (39, 93, 94), it is quite possible that the direct effects 
of light on sleep may be mediated via other neural pathways.

In summary, as well as circadian and homeostatic processes, 
light can also directly modulate sleep. However, future studies are 
required to understand how circadian and homeostatic processes 
interact to influence acute sleep induction in response to light, as 
well as the detailed neural pathways involved. These direct effects 
of light on sleep, and conversely alertness, are clearly important 
for the effects of light on cognitive processes.

COgNiTiON

Given the widespread influence of the circadian system across 
multiple aspects of physiology and behavior, it is not surprising 
that cognitive processes also display circadian rhythms. While 
learning and memory provide easily testable and translatable 
paradigms in both human and animal models, several other 
processes such as attention, mood, and reaction time also show 
circadian variation (95). As such, the influence of light and cir-
cadian rhythms on cognition are unlikely to be due to effects on 
a single process.

Circadian Regulation of Cognitive 
Processes
In humans, cognitive function shows variation over the 24 h 
day, starting off low in the morning, maintaining high levels 
until habitual bedtime, apart from a dip in the afternoon. This 
pattern is related to both sleep and circadian processes. Forced 
desynchrony, in which subjects are exposed to a light schedule to 
which they are unable to entrain, have been used to investigate 
the role of circadian and homeostatic regulation of cognitive 
processes, such as alertness, vigilance, working memory, sleepi-
ness, and mood. These studies show circadian rhythms in all of 
these different cognitive processes, which also decline with time 
awake (96, 97).

Again, data from animal studies are less conclusive. Some 
studies report increased performance during the subjective night 
in aversive (98) and appetitive tasks (99, 100), whereas others 
found better performance during the subjective day (89, 101, 
102). These contradictory findings may reflect the nature of the 
behavioral tasks employed. Originally, it was shown that rodents 
performed best on behavioral tasks when training and testing 
times were matched, which may reflect state/context dependent 
learning (103, 104). To date, a major limitation of circadian stud-
ies of different cognitive processes is that while circadian time 
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is carefully controlled, the preceding sleep/wake status of the 
animal is rarely considered.

In summary, processes such as learning and memory certainly 
appear to be under circadian control to some extent, and this 
circadian regulation has the potential to influence the effects of 
light on cognition.

Direct effects of Light on Cognitive 
Processes
Human studies have demonstrated an important role of light in 
the regulation of alertness. Imaging studies have also shown that 
light exposure can influence cortical and subcortical networks 
involved in cognitive processes, such as attention, arousal, and 
memory (105–110). In addition, a number of studies have shown 
that short-wavelength light (470 nm or lower) is associated with 
the increased suppression of melatonin, reduction in subjective 
sleepiness, reduced reaction times and changes in EEG power 
in the delta–theta frequency range (111, 112). These findings 
are consistent with recent studies on the effects of light-emitting 
devices on subjective alertness, EEG and sleep latency (113). The 
primary cognitive effects of light on appear to be via increased 
alertness—which is typically measured using subjective rating 
scales as well as tests of sustained attention such as the psycho-
motor vigilance task, a simple reaction time task. Overall, these 
studies suggest an increase in subjective ratings of alertness in 
response to light, though whether these findings always translate 
into increased cognitive performance is less clear (114–116). 
However, in cognitive tasks where sustained attention is neces-
sary, light may be expected to exert greater effects.

Despite the wealth of human studies on the acute effects of light 
on alertness, remarkably few animal studies have investigated the 
effects of light on cognitive performance. Studies on the acoustic 
startle response in rats have shown that this response is enhanced 
by increasing light exposure (117). Subsequent studies investi-
gated the effects of light on tone-cued fear conditioning, finding 
that light enhances freezing responses in wild-type mice (118). 
Short pulses of white light at night in mice have been shown to 
improve consolidation of contextual fear learning and long-term 
potentiation (119). Under other conditions, bright light exposure 
impaired spatial navigation performance on a water maze task 
in BALB/c mice, which was associated with increased anxiety 
and elevated corticosterone levels (120). Most recently, studies 
on spontaneous object recognition show that bright light during 
the test phase impairs recognition performance, regardless of 
the light level during the sample phase [although see Ref. (121)]. 
These effects on recognition memory are abolished in both 
mice lacking rods/cones as well as in mice lacking melanopsin, 
suggesting that integrated responses from both systems mediate 
the effects of light on performance (90, 118). Light may also 
influence emotional processes such as mood, and recent studies 
using aberrant LD cycles have shown that these may give rise to 
depression-like behaviors (122) (see T-Cycles). These data add 
a further complexity to the effects of light, which may involve 
circadian and non-circadian effects (9, 123).

In summary, data from humans show clear effects of light 
on alertness, and in some cases, also on performance in tests of 

sustained attention. However, despite a number of rodent studies 
exploring the effects of light on different cognitive processes, no 
consistent effects have emerged. Light may certainly affect the 
outcome of laboratory tests of learning and memory in rodents. 
However, the direction and amplitude of any effect may depend 
on the nature of the test and the different cognitive processes 
involved. The difficulty of characterizing mechanisms in human 
studies, combined with the lack of consistent effects in animal 
models, has led to a lack of any detailed understanding of the 
photoreceptor contributions and underlying neural pathways 
involved in such responses.

Sleep and Cognitive Processes
Given the key role of the circadian system in the regulation of 
sleep, any disruption of the circadian system is likely to influence 
subsequent sleep/wake timing. Sleep has been suggested to play 
a role in cognitive performance (124), and sleep disruption is 
known to impair multiple aspects of cognition, including arousal, 
attention, and working memory (125). As such, the effects of 
sleep disruption must also be taken into account when consider-
ing the effects of light on cognitive processes, particularly where 
circadian function is affected.

In rodents, sleep deprivation influences several aspects of 
memory, which have been assessed using a variety of behavioral 
tests. Total sleep deprivation in the first 5 h after training has been 
reported to reduce contextual fear memory, despite otherwise 
adequate sleep (126–129), but produce no effect on tone-cued 
fear memories (126). Using the platform-over-water REM sleep 
deprivation method, contextual fear memory has been suggested 
to be impaired, again with no effect on tone-cued fear memories 
(130–133).

Spontaneous object recognition is a highly tractable test of 
learning and memory in rodents (134, 135) that has also been 
widely used to study the role of sleep in learning and memory. 
Studies have shown that both object-recognition and object-
location memories are impaired by 5–6  h of sleep deprivation 
after training (136–139), with an apparently crucial window at 
3–4 h (140). Another test that has been used to study the effects 
of sleep deprivation is the Morris watermaze, which relies on 
aversive immersion in water to motivate animals to find a hidden 
platform. While this requires spatial learning and is sensitive 
to hippocampal damage, other brain regions and strategies are 
also important (141). 4  h of selective REM sleep deprivation 
immediately following training has been suggested to impair 
performance (142). However, this finding is equivocal with some 
studies agreeing (143–145) and others disagreeing with the results 
(146). This may be due to differences between protocols favoring 
different search strategies and/or brain areas. Spontaneous spatial 
recognition in the Y-maze has also been studied following sleep 
deprivation. Similar to other behavioral paradigms, performance 
is impaired by 12 h total sleep deprivation prior to training (147).

In addition to sleep duration, sleep architecture is also impor-
tant for memory. Humans sleep in a consolidated bout once a 
day and progress through many cycles of REM and NREM 
sleep during the night. If this is fragmented, daytime function 
is impaired and increased sleepiness occurs (148). By contrast, 
rodents sleep in multiple short bouts, consisting of both REM 
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FigURe 3 | The relationship between arousal and cognitive performance. 
The effects of circadian time on performance may depend upon different 
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arousal.
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and NREM sleep, throughout the day and night, with a greater 
amount of sleep during the light phase, primarily due to increased 
length of sleep bouts during the day (149). Disturbing sleep 
architecture with regular waking prevents normal completion 
of sleep bouts, resulting in increased sleep pressure despite no 
change to the total sleep duration (150). Sleep fragmentation also 
impacts cognitive processes. Mice subjected to sleep fragmenta-
tion for 15 days, induced by being disturbed by a bar across the 
cage every 2 min, have poor learning and retention in the Morris 
watermaze (151). Similarly, optogenetic activation of hypocretin 
neurons fragments sleep without altering total sleep time, and 
when fragmented in the first 4 h following training, causes deficits 
in object-recognition memory (152). Importantly these studies 
suggest that even when sleep timing and total sleep duration may 
remain comparable, fragmented sleep can give rise to impaired 
performance in specific cognitive processes.

Together the data described above suggest that sleep disruption 
impairs specific aspects of learning and memory. However, these 
effects are not straightforward, with sleep deprivation, selective 
REM deprivation and sleep fragmentation having subtly different 
effects on different behavioral tests. Some of the cognitive deficits 
that occur as a result of sleep loss may arise as a result in specific 
changes in synaptic function, particularly relating to glutamater-
gic signaling and synaptic plasticity. One example of this is the 
role of the GluA1 AMPA receptor subunit, encoded by the Gria1 
gene. The GluA1 subunit is important in both AMPA receptor 
trafficking and synaptic plasticity (153–155). Critically, GluA1 
levels in synaptoneurosomes in both the cortex and hippocampus 
have been shown to be elevated following prolonged wakeful-
ness (156). This supports the synaptic homeostasis hypothesis, 
whereby wakefulness is associated with a net increase in synaptic 
strength, which is subsequently renormalized during sleep (157). 
Data from mice lacking GluA1 may provide some insight into 
the consequences of these changes in synaptic plasticity that 
occurs during sleep. GluA1-deficient mice show unimpaired 
performance on associative, long-term memory tasks, such as 
the Morris watermaze. By contrast, these animals show selective 
deficits in short-term habituation to recently experienced stimuli 
(158, 159). These findings suggest that during waking synaptic 
GluA1 levels increase, reflecting an ongoing habituation and 
reduction in attention. This hypothesis suggests that sleep may 
be important for the restoration of attentional performance (160).

In conclusion, while the disruption of sleep undoubtedly influ-
ences cognitive function, the specific cognitive processes affected 
and the underlying mechanisms involved are not straightforward. 
However, when considering the effects of light—either directly 
or via its effects on the circadian system—researchers should 
always be aware that effects on cognition could arise due to a 
concomitant disruption of sleep.

effects of Arousal on Cognitive Processes
Arousal is another key factor that may influence the outcome of 
studies on cognition. In this context, rather than simply being 
awake, arousal refers to a state of physiological alertness resulting 
in increased attention and cortical activity, along with changes 
in motivation and emotional state. Again, light may modulate 
arousal either directly, or indirectly via the circadian modulation 

of arousal. Arousal responses are thought to be mediated via pro-
jections from the SCN to the dorsomedial hypothalamus which 
are then relayed to the ascending arousal system, including the 
noradrenergic locus coeruleus, cholinergic laterodorsal tegmental 
nuclei, dopaminergic ventral tegmental area and serotoninergic 
raphe nuclei (75). In addition, the widespread projections of the 
melanopsin pRGCs may also be important in the effects of light 
on arousal, including the lateral habenula, medial amygdala, and 
subparaventricular zone (9, 39). In addition to the regulation of 
the ascending arousal system, physiological arousal may also be 
accompanied by increased activity of the sympathetic branch of 
the autonomic nervous system, resulting in widespread changes 
in physiology, particularly relating to cardiovascular and adrenal 
function. Whether these effects of light on arousal are independ-
ent or interrelated remains unclear.

The relationship between arousal and cognitive performance 
is complicated. Yerkes and Dodson (161) reported that with 
simple learning tasks there was a positive linear relationship 
between arousal and performance (i.e., the higher the level of 
arousal, the better the task performance). However, as the difficult 
of the task increased, an inverted-U shaped relationship between 
arousal and cognitive performance was observed, with optimal 
performance requiring an optimal level of arousal (161). As such, 
rhythms in arousal will influence where an individual sits on 
the arousal-performance curve, and are likely to contribute to 
the rhythms seen in behavioral performance in animal studies. 
As a result of the differences in baseline arousal, the response to 
stressors such as handling, restraint, and environmental noise will 
differ (162, 163). When baseline arousal is low, increased arousal 
may be expected to result in improved performance, but when 
baseline arousal is high, increasing arousal further may impair 
performance (Figure 3).

The circadian control of adrenal glucocorticoids via the 
classical hypothalamic–pituitary–adrenal (HPA) axis is well 
known (164, 165). As well as the circadian regulation of adrenal 
glucocorticoids, light has also been shown to directly modulate 
glucocorticoid release (83), and may also exert different effects on 
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arousal depending upon wavelength (85). This acute response to 
light does not involve the classic HPA axis, instead relying upon 
modulation of the sympathetic nervous system (83). While tran-
sient increases in glucocorticoids in response to stressors—such 
as light exposure—are a normal physiological response (termed 
“allostasis”), long-term exposure to such stimuli can result in 
fundamentally different responses (“negative allostasis”) (166). 
Such chronic stress increases baseline glucocorticoid levels and 
attenuates the amplitude of glucocorticoid rhythms, both at an 
ultradian and circadian level (164, 167). Elevated glucocorticoid 
levels are known to affect cognitive processes, such as learning 
and memory (168). As well as changes in plasma glucocorticoid 
levels, cardiovascular markers such as heart rate may provide 
useful markers of arousal. Furthermore, it has recently been sug-
gested that spontaneous fluctuations in locomotor activity may 
provide a useful marker of generalized arousal (169, 170), which 
may be beneficial for future studies in this field.

Given the role of the circadian clock in regulating the ascend-
ing arousal system as well as the autonomic nervous system, as 
well as the direct effects of light on these systems, changes in 
arousal state should also be considered when investigating the 
effects of light on cognitive processes.

CiRCADiAN DiSRUPTiON

The circadian system has evolved to enable organisms to antici-
pate and exploit predictable changes in the external environment, 
optimizing physiology and behavior to specific times of day. 
However, our modern 24/7 society produces numerous examples 
where lifestyle is in conflict with our internal biological clocks, 
including shift work and jet-lag. Moreover, artificial light results 
in light exposure at inappropriate times of day, including light 
at night as well as exposure to light from mobile devices, such 
as phones, tablet, and computers. As a result, there is growing 
concern regarding the consequences of circadian disruption and 
aberrant light exposure on human health, including effects on 
metabolism, cardiovascular function, mental health, and even 
cancer risk (6, 16, 171). Those routinely exposed to such condi-
tions may develop problems with poor performance, insomnia, 
emotional disturbances, and gastrointestinal complaints. Such 
symptoms are thought to affect 5–10% of those involved in shift 
work. Treatments seek to realign the internal clock with the exter-
nal environment, using scheduled light exposure (or avoidance), 
short naps, or use of pharmacological interventions, such as 
melatonin, caffeine, or even prescription drugs (172, 173). With 
our increasing exposure to artificial light sources, such problems 
look likely to rise in the future.

To investigate the mechanisms underlying the adverse health 
outcomes of circadian disruption, an increasing number of stud-
ies have investigated the effects of aberrant light exposure on 
cognitive function, using rodents housed under abnormal LD 
cycles. However, such abnormal LD cycles may exert their effects 
via different mechanisms. Some result in light exposure during 
the normal subjective night, whereas others result in a mismatch 
between internal circadian time and external environmental time, 
requiring a constant phase adjustment. It has been suggested that 
this mismatch may be the basis of the negative consequences of 
circadian disruption (16). Evidence for this comes from studies 

in which animals show impaired health under non-24 h environ-
mental conditions (16). Perhaps the best evidence comes from 
studies on longevity, where wild-type mice show reduced lifespan 
under non-24 h LD cycles (174), and tau mutant hamsters show 
impaired longevity under 24  h conditions, but normal longev-
ity in constant darkness (175, 176). These studies indicate that 
a circadian clock is only beneficial if its period matches to that 
of the environment. An alternative hypothesis for the adverse 
effects of circadian disruption is that such conditions result in 
internal desynchrony—where circadian clocks in different tissues 
(or even different brain regions) may become misaligned or even 
arrhythmic, resulting in impaired performance (96). Internal 
desynchrony has been described as a result of scheduled feeding 
in mice, resulting in desynchrony between clocks in the SCN 
and hippocampus and impaired learning and memory [(177); 
eLife], as well as within neuronal subpopulations of the SCN 
in rats housed under 22 h T cycles, resulting in depression-like 
behavior (178). The mismatch between internal and external time 
and internal desynchrony are not mutually exclusive hypotheses, 
and may both contribute to the negative effects of circadian 
disruption.

Abnormal LD cycle protocols used to study circadian disrup-
tion include constant light (LL), jet-lag, T cycles, dim light at night 
and disruptive phase shifts (DPSs). The effects of these protocols 
are summarized in Table 1 and described in detail below with 
regard to their known effects on circadian physiology, sleep, 
arousal, and cognitive processes.

Constant Light
Constant conditions are frequently used in circadian research to 
study free-running circadian rhythms. While constant darkness 
allows animals to organize their behavior exclusively according 
to their internal circadian clock, constant light has been used 
to study light input as well as a means of producing circadian 
disruption.

Circadian
Constant light results in an intensity-dependent lengthening 
of the period of nocturnal animals, and can cause complete 
arrhythmia (179, 180). Both the molecular and electrophysiologi-
cal timekeeping of the SCN is altered. Long-term constant light 
exposure leads to constitutively higher levels of mPER2 (181), 
and clock gene rhythms become gradually desynchronized (182). 
At an electrophysiological level, as well as period lengthening, the 
amplitude of SCN firing is reduced and firing rate is more vari-
able (183). Peripheral clocks have also been shown to be affected, 
resulting in dampened amplitude and broadened peak phases 
(184), comparable with SCN lesions (185).

Sleep
Since constant light alters circadian activity, it will also affect sleep 
distribution. However, we are aware of no detailed characteriza-
tion of the effects of constant light on the amount, distribution, 
and architecture of sleep.

Arousal
Constant light may influence the HPA axis and alter circulating 
glucocorticoid levels. However, the results of these studies are 
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TABLe 1 | Effects of different abnormal light–dark cycles on circadian rhythm, sleep, arousal, and performance.

Conditions Circadian Sleep Arousal Cognitive

Constant light ↑ Internal period length (nocturnal)
↑ mPER2 expression in suprachiasmatic nuclei (SCN)
↓ SCN neuronal firing
↓ Amplitude in peripheral tissues
Behavioral arrhythmia

? ↑ Or ↓ glucocorticoid 
(e.g., CORT) levels

↓ Spatial performance
↓ Contextual fear conditioning
↓ Passive avoidance
↓ Appetitive response timing

Jet lag ↓ Locomotor/exploratory activity
Alter phase relationships between SCN 
and peripheral tissues

↓ Total sleep
↑ Rapid-eye movement (REM) 
sleep
Fragmented sleep

↑ CORT response to 
aversive stimuli

↓ Spatial performance
↓ Appetitive response timing
↓ Conditioned place preference

Non-24 h 
T-cyclesa

↑ Internal period length (nocturnal) Desynchronize core body 
temperature and REM sleep
↑ Slow-wave activity (sleep)
Alter θ and γ power (wake)

↑ CORT level ↓ Passive avoidance
↓ Spatial performance
↓ Object-recognition performance

Dim light at night ↓ Locomotor/exploratory activity
↓ Amplitude of activity rhythm
↓ Amplitude of mPER1/2 rhythms

↓ Amplitude in REM and non-
rapid-eye movement rhythms

↓ CORT rhythm ↓ Spatial performance
↑ Anxiety-related behavior
↑ Depression-related behavior

Disruptive Phase 
Shiftb

↓ Clock gene expression in SCN
Arrhythmia (activity, core body temperature, melatonin)

↑ Daytime sleep ? ↓ Object-recognition performance
↓ Spatial alternation performance

aT7, T20, or T22 cycles.
bHamsters only.
↑ = Increase, ↓ = Decrease; ? = No published studies available. See text for details and references.
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equivocal, with some studies finding reduced plasma corticoster-
one (183, 186, 187), some finding increased levels (188–190) and 
others finding no effect (191). One potential explanation for these 
conflicting results is the ultradian pulsatility in glucocorticoid 
secretion. This plays a key role in glucocorticoid signaling, but is 
only detectable using high-resolution sampling (192).

Cognitive Effects
Constant light has been suggested to impair spatial memory 
in the Morris watermaze, as well as in contextual fear memory 
and passive avoidance (193–197). However, longer durations 
(5–7 weeks) of constant light produce no change in a plus-maze 
discriminative avoidance task (198). Interval timing has also 
been reported to be disrupted by constant light (199). Recent 
studies using repeated constant light on different aspects of 
recognition memory have shown a dampening of SCN clock 
gene rhythms, resulting in desynchrony between clocks in 
the SCN, hippocampus, and olfactory bulb (89). As described 
above, constant light may cause period lengthening and in some 
cases arrhythmia. However, to date, no studies have related the 
effects of constant light on cognition to these different circadian 
effects.

In summary, constant light leads to a lengthening of circadian 
period or even arrhythmicity, with potential effects on the cou-
pling of central and peripheral clocks. Such conditions have been 
shown to influence arousal and cognitive processes, though these 
effects are not consistent between studies.

Jet Lag
Shifting the LD cycle under which animals are housed has been 
used to mimic the sudden shift in time-zones produced by jet-lag. 
Acute jet-lag protocols typically involve a single advance or delay 
in the LD cycle. In addition, chronic jet-lag—involving repeated 

shifts of the LD cycle—has also been used as a model of circadian 
disruption.

Circadian
In response to acute jet-lag, rodents typically shift their activity 
over several days to re-entrain to the new LD cycle. Usually this 
involves an advance of the LD cycle so that activity onset can 
be easily determined. Delaying the LD cycle results in suppres-
sion of activity by light (negative masking), making the activity 
onset more difficult to determine. In response to a 6 h advance 
of the LD cycle, mice shift their activity by ~1 h per day, typically 
taking 5–6 days to re-entrain. However, patterns of gene expres-
sion in the SCN may change more rapidly (200). Peripheral 
clocks shift at different rates, potentially leading to a differing 
phase relationship with the SCN while they re-align (200, 201). 
Chronic jet-lag protocols result in the animal having to repeat-
edly re-entrain to the shifting environment LD cycle, and may 
alter the relationship between the SCN and other peripheral 
circadian oscillators.

Sleep
Acute jet-lag has been reported to result in no change in total 
sleep time, but mild changes to the distribution of sleep (202). 
However, under chronic jet-lag, sleep is both fragmented and 
reduced by ~10% per week compared with baseline conditions. 
While no increase in SWA was reported following chronic jet-
lag, an increase in REM sleep and brief arousals was described 
(203, 204).

Arousal
The stress axis is markedly affected by acute jet-lag, enhancing 
the magnitude of the stress-evoked corticosterone response 
(202). With chronic jet-lag, baseline corticosterone as well as 
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anxiety and depression-like behaviors have been reported to be 
unaffected (204).

Cognitive
Acute jet-lag impairs spatial memory, whether performed before 
or after initial training (10, 194, 202, 205, 206), with deficits per-
sisting after re-entrainment (202, 206). Interval timing has been 
reported to be less accurate after the shift but returns to normal 
with full behavioral re-entrainment (199). Other tasks, such as a 
sustained attention task (100) and social memory (207), are unaf-
fected by acute jetlag. Several behavioral tasks show impairment 
after chronic jet-lag, including conditioned place preference (208, 
209), a 8-arm radial arm task (210), and the Morris watermaze 
(210, 211). Access to a running wheel has been suggested to 
mitigate some of these effects (210). Finally, fear memory to both 
tone and context are unimpaired after chronic jet-lag (202, 211).

Together, these data suggest that circadian disruption induced 
using both acute and chronic jet-lag protocols result in specific 
changes in cognitive processes. However, given the influence of 
these protocols on both sleep fragmentation as well as arousal, 
it is difficult to ascertain the mechanisms by which cognitive 
processes are affected.

T-Cycles
As the circadian clock is not exactly 24 h, it is adjusted on a daily 
basis by the prevailing LD cycle. This entrainment process can 
be challenged using LD cycles whose length differs from 24 h – 
termed “T cycles”. A range of different T cycles have been used, 
where T refers to the day length. For example, an 11 h light, 11 h 
dark LD cycle is referred to as T22.

Circadian
The process of entrainment is limited and can only occur over a 
relatively narrow range—typically 23–25 h in mammals. Under 
short T cycles, the animal has to constantly accelerate its internal 
clock; whereas under long T cycles, the internal clock must be 
decelerated. As a result, the phasing of activity relative to the LD 
cycle may also change. Outside the range of entrainment animals 
will show a non-entrained period ~24  h despite the prevailing 
LD cycle. A second period corresponding to the period of the LD 
cycles may also occur. Rhythms in different aspects of physiology 
and behavior may correspond to the period of the LD cycle or the 
~24 h period (212). T cycles have been used to study the negative 
consequences of circadian disruption on healthy physiology in 
humans, including effects on cognitive performance (97, 213). 
However, it should be noted that the T cycle studies performed 
in nocturnal rodents often differ from the classical forced desyn-
chrony protocols used in human subjects. As animal studies often 
use higher light levels, animals are periodically exposed to rela-
tively bright stimuli. This results in repeated phase shifting, and 
as the phase response curve of nocturnal rodents largely results 
in delays, this produces a non-entrained period which is slightly 
longer than the normal free-running period (214, 215).

Sleep
Studies on rats under 22 h days result in desynchrony with ani-
mals showing both 22 and >24 h rhythms in activity, sleep/wake, 

and NREM sleep. However, rhythms of core body temperature 
and REM sleep were desynchronized and predominantly cycled 
with a period >24 h (73). Studies using extreme T7 cycles report 
that total sleep levels and sleep distribution were unaffected (122). 
However, recent studies using spectral analysis of EEG signals 
from mice under 20- to 22 h T cycles show that these conditions 
result in higher SWA during sleep, as well as changes in the power 
of theta and gamma frequencies during waking (216).

Arousal
Plasma corticosterone has been reported to be rhythmic but 
elevated under T7 cycles (122).

Cognitive
22 h T cycles have been reported to impair passive avoidance 
memory but exert no effect on recognition memory (217). Other 
studies have found that 20 h T cycles impair reversal learning 
but result in no effects on Morris watermaze performance (8). 
Finally, T7 cycles have been reported to affect both watermaze 
and recognition memory (122).

As the above summary shows, T cycles can produce complex 
effects on physiology. As different aspects of physiology and 
behavior may devolve to the period of the LD cycle or the period 
of the circadian clock, this can give rise to internal desynchrony. 
Moreover, T cycles can result in a dynamically changing relation-
ship between internal biological time and the external LD cycle. 
When out of phase, physiology and behavior may be dramatically 
affected, whereas when re-aligned they may appear relatively 
normal. As shown by recent data on sleep, the disruption of sleep/
wake timing that results from housing under long-term T cycles 
can result in increased homeostatic sleep pressure and conse-
quences for subsequent waking behavior (216). In conclusion, 
while T cycles provide valuable experimental tools for studying 
the relationships between biological clocks and the light environ-
ment, effects on sleep and arousal must also be considered when 
subsequently studying cognitive processes.

Dim Light at Night
Due to the widespread adoption of artificial light, nocturnal light 
exposure is increasingly common. To study the physiological 
consequences of light exposure during the dark phase, protocols 
have been used in which animals are exposed to light during their 
normal dark (active) phase.

Circadian
Dim light at night has been shown to reduce locomotor activity 
levels, with no change in daytime activity (218, 219). Periodogram 
power was found to be reduced, and rhythms of PER1 and PER2 
immunoreactivity in the SCN were found to be blunted (218).

Sleep
Data suggest that dim light at night does not affect sleep in mice, 
with no changes in either sleep timing or SWA (220). However, 
studies in rats report a decreased amplitude of daily rhythms of 
REM and NREM sleep as well as specific changes in the NREM 
EEG spectra around 16–19 Hz (221).
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Arousal
Rhythms of corticosterone were found to be blunted under dim 
light at night conditions (218).

Cognitive
Initial studies of light at night often involved exposure to constant 
light (LL), but with the provision of an opaque tube to provide 
an escape to minimize any effects related to stress/arousal. 
Under such conditions, mice show increased anxiety (elevated 
plus maze and open field tests) and increased depression-like 
behaviors (forced swim test and sucrose anhedonia) (187). In 
hamsters, similar depression-like behaviors were also observed 
under light/dim light cycles, in which animals were housed under 
150  lux during the day but 5  lux during the night (rather than 
complete darkness). By contrast, anxiety responses were reduced 
in hamsters housed under these conditions (222). The effects of 
dim light at night have been reported to be wavelength depend-
ent, with blue-enriched dim light at night having greater effects 
than red-enriched light (219). Studies in a diurnal rodent, the 
Nile grass rat, showed similar depression-like effects of dim light 
at night, coupled with impaired learning and memory, assessed 
using the Barnes maze (223). Depression-like responses were 
increased in mice under dim light at night conditions, though 
the previously described effects on learning and memory were 
not detected (224).

In summary, dim light at night protocols provide another 
alternative approach to studying the effects of circadian disrup-
tion, producing effects on anxiety and depression-like behavior, 
with more subtle effects on sleep. However, the effects of these 
protocols on cognitive processes are more limited, and effects 
on learning and memory are not observed in mice, suggesting 
species differences may exist. Differences in the physiological 
and behavioral effects of dim light at night compared to other 
circadian disruption protocols may provide insight into the dif-
ferent pathways by which aberrant lighting influences physiology 
and behavior. For example, the effects of dim light at night on 
anxiety and depression-like behaviors with blunted corticoster-
one rhythms appear qualitatively different from the effects on 
learning and memory with disrupted sleep and elevated arousal 
that accompany jet-lag and T cycle conditions.

Disruptive Phase Shift
A final protocol that has been used to study circadian disruption 
in Siberian hamsters (Phodopus sungorus) is the use of DPSs.

Circadian
Hamsters show phase shifting responses similar to other noctur-
nal rodents, with light exposure during the early subjective night 
giving rise to phase delays in activity and light exposure during 
the late subjective night producing phase advances. However, 
when Siberian hamsters were housed under 16:8 LD cycles then 
exposed to a combination of two 15-min light pulses, the first 
advancing and a second delaying light pulse the following day, 
this led to a compression of activity and long-term arrhythmicity 
in the majority of animals. Rhythms in activity, body temperature, 
and melatonin were all affected, and hamsters remained arrhyth-
mic even when subsequently exposed to normal LD cycles (225). 

Studies using a 2 h advancing light pulse followed by a 3 h phase 
delay in the LD cycle produced similar irreversible arrhythmia 
within a few days, and these effects were associated with reduc-
tions in clock gene expression in the SCN (226).

Sleep
Sleep has been studied in DPS hamsters to investigate sleep 
homeostasis in the absence of circadian input. In arrhythmic 
hamsters, the usual difference between sleep during the light and 
dark was no longer apparent, with high levels of daytime sleep. 
Arrhythmic animals also show an increase of around 1.5  h of 
sleep per day compared with rhythmic controls. No differences 
in sleep homeostasis were detected (227).

Arousal
While we were unable to find any studies on adrenal glucocorti-
coids under these conditions, given the effects of DPS protocols 
on other aspects of circadian and neuroendocrine function, it is 
expected that normal rhythmic glucocorticoid rhythms will be 
abolished.

Cognitive
Novel object recognition in hamsters shows a circadian rhythm, 
with increased performance during the subjective night. 
However, these rhythms were found to be impaired in arrhythmic 
hamsters (228). Subsequent studies showed that DPS-induced 
arrhythmicity resulted in impaired novel object recognition and 
spontaneous alternation. By contrast, SCN lesioned animals 
showed no impairments in these tasks. Surprisingly, if DPS-
treated hamsters were SCN lesioned, their impaired performance 
was reversed, despite the animals remaining arrhythmic. These 
findings suggest that the SCN may influence memory via inhibi-
tory output, which impairs performance when SCN function is 
compromised (229).

Disruptive phase shift protocols have provided a valuable con-
tribution to the understanding of the role of circadian rhythms in 
the regulation of learning and memory. Although these effects are 
species specific, they provide an important alternative arrhyth-
mic model to SCN lesioning or clock gene knockouts that are 
commonly studied in mice. Due to its profound effects, the DPS 
hamster model provides a better model of arrhythmia rather than 
circadian disruption due to aberrant light exposure.

FUTURe PeRSPeCTiveS

Advances in our understanding of the photoreceptors mediating 
the effects of light on physiology and behavior have provided 
a greater appreciation of how different systems may interact 
to regulate complex downstream processes, such as cognition. 
However, this highlights the need for multiple physiological 
systems, including circadian rhythms, sleep, and arousal, all to 
be considered when interpreting the effects of any intervention 
on such complex behavioral outcomes. Despite the number of 
studies of circadian rhythms in learning and memory, the effects 
of preceding sleep at different circadian times is typically not 
considered. In turn, when sleep is studied, circadian processes 
are often overlooked. Coupled to these issues, arousal state is 
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FigURe 4 | Framework to describe the interactions between circadian 
rhythms, sleep, and cognition. Light exerts direct effects on the circadian 
clock in the suprachiasmatic nuclei (SCN), which in turn modulates other 
rhythmic processes throughout the body, including independent oscillators 
found in other brain regions. The SCN clock also modulates sleep, and 
regulates arousal via output to hypothalamic-pituitary-adrenal axis and 
sympathetic nervous system. Light may also directly regulate sleep as well as 
arousal (dashed arrows). Reciprocal interactions between sleep and arousal 
also occur (gray arrows).
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rarely considered, and this can have profound effects on cogni-
tive outcomes—resulting in either improved or impaired perfor-
mance—and making findings difficult to interpret. As a result, 
our understanding of the mechanisms by which light modulates 
cognitive processes, and how abnormal light exposure disrupts 
these processes, is often limited.

The development of methods for simultaneously monitor-
ing circadian activity and sleep in the home cage provides one 
approach to account for circadian rhythms and sleep through-
out behavioral studies (230). While this allows the timing and 
duration of sleep to be assessed over multiple cycles, it does 
not, however, provide detailed spectral information. Inclusion 
of markers such as adrenal glucocorticoids provides one way 
of assessing arousal, though measurements of other parameters 
such as markers of cardiovascular function also be informative. 
Markers of generalized arousal, such as spontaneous fluctuations 
in locomotor activity may also be of value in this regard (169, 
170). While improved biomarkers of arousal are certainly needed, 
it should also be considered that arousal may not be a unitary 
process. More work in this area is clearly required.

While a range of different protocols have been used to pro-
duce experimental circadian disruption in rodents, these cannot 
be assumed to be directly comparable. Even where the same 
protocols are used, these may differ in the light levels, spectral 
composition and photoperiods used to induce circadian disrup-
tion. Some protocols are only effective in specific species (or even 
strains), making generalization difficult. Coupled to these issues, 
different behavioral tests have been used to measure learning 
and memory as well as other behavioral responses to circadian 
disruption, which may involve different cognitive processes.

Another major issue facing the field is adopting standard met-
rics to define sleep and circadian rhythm disruption. Circadian 
biologists have traditionally focused on the measurement of 
circadian period, whereas sleep researchers analyze the frequency 
and power of EEG spectra. Both fields have developed refined 
analytical tools to measure these processes of interest. However, 
a common feature of circadian disruption—particularly that 
observed in disease—is the fragmentation of normal physiologi-
cal and behavioral rhythms. In the circadian field, light phase 
activity, phase angle of entrainment and periodogram amplitude 
have been variously used as markers of circadian disruption. In 
both sleep and circadian research, the number or duration of 
bouts is also measured. Other measures of disruption include 
inter-daily stability and intra-daily variability, which assess day-
to-day reproducibility of rhythms and the frequency of transitions 
between rest and activity, respectively (231). Standard approaches 
to the measurement of circadian disruption are clearly required. 
The increasing requirement of journals and funders to deposit 
raw data may facilitate the development of new analytical tools in 
this area, as well as better enabling comparison between studies.

While the overall consensus is that circadian disruption 
resulting from different LD protocols can give rise to cognitive 
impairment, the results depend upon the specific protocol used. 
We propose a framework to help conceptualize how light may 
influence circadian rhythms, sleep, and arousal to modulate 
cognitive processes (Figure  4). Light exerts direct effects on 
the circadian clock in the SCN, which in turn modulates other 

rhythmic processes throughout the body, including independent 
oscillators found in multiple different brain regions. The SCN 
clock also modulates sleep, and regulates arousal via output to 
the HPA axis and sympathetic nervous system. Light may also 
directly regulate sleep as well as arousal. Sleep and arousal are also 
reciprocally linked. Finally, acute and chronic changes in lighting 
conditions may exert different effects.

It is unlikely that any single mechanism mediates the effects 
of light on cognitive processes, and instead light may exert its 
effects on a network of interacting processes. This includes the 
direct effects of light on physiology and behavior as well as the 
modulation of circadian rhythms. Despite the widespread use of 
different abnormal light exposure protocols to study the effects 
of circadian disruption on cognition, such protocols have very 
different effects on circadian rhythms, sleep, and arousal, with 
subtly different consequences for different aspects of cognition. 
As a result, we propose that any studies addressing the effects 
of light on different cognitive processes should account for their 
effects on circadian rhythms, sleep, and arousal if we are to prop-
erly understand the physiological basis of these effects.
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