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Transient ischemic attack (TIA) and minor stroke have high risks of recurrence and 
deterioration into severe ischemic strokes. Risk stratification of TIA and minor stroke 
is essential for early effective treatment. Traditional tools have only moderate predictive 
value, likely due to their inclusion of the limited number of stroke risk factors. Our review 
follows Hans Selye’s fundamental work on stress theory and the progressive shift of the 
autonomic nervous system (ANS) from adaptation to disease when stress becomes 
chronic. We will first show that traditional risk factors and acute triggers of ischemic 
stroke are chronic and acute stress factors or “stressors,” respectively. Our first review 
shows solid evidence of the relationship between chronic stress and stroke occurrence. 
The stress response is tightly regulated by the ANS whose function can be assessed 
with heart rate variability (HRV). Our second review demonstrates that stress-related 
risk factors of ischemic stroke are correlated with ANS dysfunction and impaired HRV. 
Our conclusions support the idea that HRV parameters may represent the combined 
effects of all body stressors that are risk factors for ischemic stroke and, thus, may be of 
important predictive value for the risk of subsequent ischemic events after TIA or minor 
stroke.

Keywords: autonomic nervous system, stress, heart rate variability, ischemic stroke, transient ischemic attack, 
prediction

introdUCtion

Transient ischemic attack (TIA) and minor ischemic stroke are two types of cerebrovascular 
ischemic events with mild or transient symptoms and non-disabling consequences (1, 2). However, 
they are markers of reduced cerebral blood flow and “warning signals” for the possible occurrence 
of severe ischemic strokes (2). TIA and minor stroke do, therefore, offer a unique opportunity 
to forestall the onset of permanent brain injury by initiating early treatment (3, 4). Guidelines 
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taBLe 1 | Identified risk factors for ischemic stroke.

Chronic risk factors acute risk factors/
triggers

Modifiable non-modifiable

Hypertension
Diabetes
Dyslipidemia
Obesity
Atrial fibrillation
Cardiovascular diseases
Other cardiac events
Asymptomatic carotid stenosis
Sickle-cell disease
Metabolic syndrome
Sleep apnea
Migraine
Hyperhomocysteinemia
Hypercoagulability
Elevated lipoprotein
Postmenopausal hormone 

therapy
Cigarette smoking
Heavy alcohol abuse
Drug abuse
Diet and nutrition
Physical inactivity

Age
Gender
Low birth weight
Race/ethnicity
Genetic factors

Infections
Psychological/mental 

stress
Negative emotions
Sudden changes in 

posture
Winter season
Diurnal fluctuations
Air pollution
Surgery
Medications
Cervical accident and 

manipulation
Pregnancy and 

postpartum states
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recommend urgent treatment to TIA and minor stroke, which 
may reduce the volume of brain damaged by ischemia, promote 
recanalization of blocked vessels, and decrease the risk of severe 
ischemic stroke (5, 6). However, these treatments may gener-
ate safety concerns related to minor bleedings (7) and/or fatal 
intracranial hemorrhage (7, 8). Therefore, an urgent and precise 
risk stratification for TIA or minor stroke is of the utmost impor-
tance for medical caregivers to identify high-risk patients and 
provide personalized treatment. Current risk stratification tools 
include scoring systems and imaging techniques, all of which 
have their own individual limitations that inevitably reduce their 
clinical utility. Accordingly, currently, it remains a challenge 
to precisely and easily identify the risk of secondary ischemic 
events after TIA or minor stroke.

People who live with chronic stroke risk factors and suffer an 
acute TIA or minor stroke episode are at high risk of developing 
secondary ischemic events (9, 10). Each identified chronic risk 
factor and acute trigger of ischemic stroke is considered a source 
of stress for the body. Given the critical role of the autonomic 
nervous system (ANS) in regulating stress responses (11), it 
seems possible to determine the comprehensive effect of different 
stressors by assessing the status of their ANS function. This article 
is intended to address this issue by reviewing the existing knowl-
edge and evidence and providing an evidence-based deduction 
on the association between ischemic stroke risk factors, stress, 
and ANS function in patients with TIA or minor stroke.

We first provide a description of ischemic stroke and TIA with 
focus on their risk factors and current risk stratification tools. We 
then present concepts related to stress and the stress response 
regulatory system, in particular the ANS, whose function can 
be assessed through the analyses of heart rate variability (HRV). 
We demonstrate the progressive shift from “stress adaptation” to 
“stress-related diseases,” with emphasis on the changes to the ANS 
response throughout this process. Finally, we review evidence 
in favor of an association between stroke risk factors and ANS 
dysfunction indexed by impaired HRV parameters.

risK stratiFiCation oF tia  
and Minor stroKe

Beyond all chronic risk factors, TIAs and minor stroke episodes 
provide additional risk information for secondary ischemic 
events. Johnston et al. determined that 90 days after emergency 
diagnosis of TIA, 428 of 1,707 patients (25.1%) developed adverse 
events including stroke, recurrent TIAs, cardiovascular hospitali-
zation, and death (10). Moreover, Rothwell and Warlow showed 
that around 17% of ischemic strokes were preceded by a warning 
TIA; in 43% of cases, this warning TIA occurred within 1 week 
of the subsequent stroke (12). Although the stroke rate in the 
first 90 days after an initial event has dropped to 7–13% in recent 
randomized control trials (13), this overwhelming risk of severe 
ischemic events after initial TIA or minor stroke underscores 
the ongoing need for urgent evaluation and treatment of at-risk 
patients.

The development of secondary ischemic events is generally 
predicted by assessing the combination of several risk factors 
(6, 14). AHA/ASA guidelines (6, 14) propose a list of recognized 

chronic risk factors for ischemic stroke and TIA that are summa-
rized in Table 1. Apart from the traditional chronic risk factors 
that predispose to the occurrence of ischemic stroke, some acute 
triggers may precipitate this process (15, 16) (Table 1). Several 
scoring systems have been widely used in clinical practice to 
evaluate the risk of early occurrence of severe ischemic stroke 
after TIA or minor stroke, including ABCD2 (A for age, B for 
blood pressure, C for clinical feature, D for duration of the symp-
toms, and another D for diabetes), ABCD3 (the presence of ≥2 
TIA symptoms within 7 days added to the ABCD2 score), and 
ABCD3-I (the presence of abnormal findings on neuroimaging 
further added to the ABCD3 score). The predictive ability of 
ABCD2 score is only moderate with an area under the curve 
(AUC) between 0.55 and 0.7 (17, 18). This may be attributed to 
the difficulty to qualify the effect of risk factors on an individual 
basis due to intrapersonal heterogeneity. For instance, “diabetes” 
has different degrees of severity; and individuals have different 
ways of coping with the consequences of chronic metabolic 
stress. Furthermore, other important risk factors, such as smok-
ing, obesity, sedentary life, and psychological stress, as well as 
other factors not yet identified, are not considered in the classic 
clinical assessment. Incorporation of the imaging assessment 
(ABCD3-I) improves the predictive power for future ischemic 
stroke after TIA or minor stroke, with AUC  >  0.8 (19, 20). 
However, emergency imaging is costly and technology depend-
ent, therefore affecting the universal use with subsequent delays 
to the scoring process and associated risk assessment. The 
limitation of current tools for personal risk prediction calls for 
the development of new valid, precise, and convenient tools to 
determine the risk of a secondary ischemic event after initial 
TIA or minor stroke and to direct appropriate medical care for 
affected patients.
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One approach that seems promising is to consider that 
most stroke risk factors listed in Table 1 are also body stress-
ors and therefore affect the ANS response. It may then be 
possible to determine the overall effect of all life stressors on 
the body in patients after TIA or minor stroke, by assessing 
their ANS function. The next section will present evidence of 
this association, using HRV parameters as markers of ANS 
function.

stress, ans, and HeaLtH

In the central construct of Selye’s stress theory (11, 21), the gener-
alized definition of “stress” describes a state of threatened homeo-
stasis (refers to the stability of physiological systems that maintain 
life) caused by any form of internal or external disturbing forces, 
or “stressors.” The person’s life experiences (i.e., the accumulation 
of stress experiences) contributes to building an idiosyncratic 
“stress profile” of the individual. This “stress profile,” measured 
at one specific time, includes both previous and current stress 
experiences: physical, physiological, psychological, and environ-
mental (11, 22). The “stress response” or “adaptive response” is a 
counteracting force initiated to neutralize the effects of stressors 
and re-establish homeostasis. The stress response is a succession 
of processes that occur in response to the perception of stress by 
the brain (23, 24). One main stress regulatory system is the ANS, 
which plays a particularly critical role in modulating the stress 
response (25, 26).

The ANS is a part of the peripheral nervous system and 
regulates physiological processes without conscious control. The 
two major divisions of ANS comprise the sympathetic nervous 
system (SNS) and the parasympathetic nervous system (PNS). 
The ANS innervates most organs and controls important physi-
ological and behavioral processes (27). In many physiological 
situations, the stress response is regulated by the complementary 
interaction of SNS and PNS. Activation of either SNS or PNS 
outflow is accompanied by the relative inhibition of the other, 
suggesting the concept of “sympathovagal balance” (27). The ANS 
dynamically controls the body response to a range of external and 
internal stimuli/stressors, providing physiological stability to the 
body (28). Typically, when the source of stress is acute [i.e., lasting 
for a period of minutes to hours (22)], the ANS, via sympathetic 
and parasympathetic branches, provides an instantaneous physi-
ological/adaptive response that provokes immediate physiological 
state alterations through neural innervation of the target organs 
(24, 28). A typical example of stress response is the physiological 
inflammatory response (29). The anti-inflammatory response is 
mostly controlled by PNS, with synergistic input from the SNS (25).  
As illustrated by Tracey (25, 30), the cholinergic anti-inflammatory 
pathway represents the affe rent branch of the neuronal reflex that 
modulates local inflammatory responses (25, 30). The efferent 
branch of the vagus nerve produces acetylcholine that effectively 
reduces the production of pro-inflammatory cytokines. In addi-
tion, both SNS and the humoral anti-inflammatory pathway 
are triggered, releasing stress hormones that include cortisol 
and catecholamines to elicit anti-inflammatory effects (25, 30).  
In this situation, the PNS and SNS act synergistically to control 
the stress response.

This short-term, tightly controlled regulatory response serves 
to preserve homeostasis. However, when the source of stress 
persists for days to months, it is considered to be a chronic stress 
(22). Chronic stressful conditions represent situations in which 
environmental demand exceeds the natural regulatory capacity 
of the body (31). Long-term exposure to these chronic stressors 
leads to a progressive dysfunctional ANS response to stress, 
and in particular, to a constrained PNS capacity to control the 
stress response (21, 32), which may lead to an anticipatory stress 
response (unpredictable) and a reduced control of the neuroen-
docrine reaction (uncontrollable) (29, 31). This progressive 
deterioration of the stress response provides a neuromodulation 
basis to understand the progression from “stress adaptation” to 
“stress-related disorders” (32, 33).

The established traditional risk factors of ischemic stroke, such 
as aging, diet, cigarette smoking, excessive alcohol consumption, 
and psychological stress, are typically chronic stressors that con-
tinuously and cumulatively affect the stress systems (ANS and 
hypothalamic–pituitary–adrenocortical (HPA) axis) (28). The 
affected neural stress systems will then produce excessive stress 
hormones such as catecholamines and cortisol, which affect 
the target tissues and cause various metabolic disorders, such 
as hypertension, hyperglycemia, and dyslipidemia (28). These 
metabolic disorders, acting as “secondary” stressors, may further 
impair the ANS function, creating new pathological cascades, 
which ultimately leads to cardiovascular and cerebrovascular 
complications (28). Such disease progression is illustrated in 
Figure  1. In other words, inappropriate responses to initial 
stress becomes the source of new stress, leading to a sustained 
negative cycle of mutual reinforcement toward the development 
of chronic conditions (28, 33). In this deregulated cascade, it is 
difficult to distinguish between causes and consequences. The 
stress system is to a large extent “nonspecific” and meant to inter-
act with internal or external perturbations in a similar manner.

In this chronic stress situation, an additional acute event may 
extend the overall stress level beyond the range of the physiologi-
cal and adaptive ANS response. In stroke research, the dynamic 
nature of stroke development follows such a pattern, in which the 
acute triggers for ischemic stroke (such as recent infections and 
TIA episodes) are seen as sources of acute stress to the body that 
superimpose their effects on the original chronic stress context; 
and this may increase the overall stress level to a new threshold 
that precipitates the occurrence of cerebrovascular ischemic 
events (15, 16, 34).

This framework supports the association between stress, ANS, 
and development of ischemic stroke as portrayed in Figure  2. 
Through the negative spiral described in Figure  2, progressive 
disease development leads to an accumulation of stress that affects 
the entire body, with ischemic stroke as the “final endpoint” of the 
overall effects of multiple stressors.

ans MeasUreMent: HrV

The ANS dynamically controls the response of the body to 
a range of external and internal stimuli/stressors, providing 
physiological stability in an individual (28). Because most of 
ANS actions are not accessible to direct and easy physiological 
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FiGUre 2 | Possible link between stress, autonomic nervous system (ANS) and progression of ischemic stroke. This process illustrates that the initial stress (as risk 
factors) affects ANS function and causes a dysfunctional ANS response to stress, which combined with the initial stressors causes the development of stress-
related disorders. Acting as secondary stressors, these stress-related disorders may further impair ANS function and predispose to transient ischemic attack (TIA) or 
minor stroke. Finally, the initial and secondary stressors, along with dysfunctional ANS responses, contribute to the development of secondary ischemic events. 
Acute stressors precipitate the development of both initial TIA and minor stroke events and subsequent ischemic events. This vicious cycle leads to an accumulation 
of stress that affects the entire body, which potentially promotes the development of initial TIAs and the secondary ischemic events.

FiGUre 1 | Chronic stress, the nervous system, and development of the stress-related disorders. Chronic stressors, such as aging, diet, cigarette smoking, alcohol 
consumption, and psychological stress, continuously and cumulatively affect the stress systems [autonomic nervous system (ANS) and hypothalamic–pituitary–
adrenocortical (HPA) axis], which lead to excessive production of stress hormones such as catecholamines and cortisol. These stress hormones affect the target 
tissues and cause various metabolic disorders, such as hypertension, diabetes, and dyslipidemia, which act as “secondary” stressors, and may progressively impair 
ANS function and ultimately lead to cardiovascular and cerebrovascular diseases.
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testing, in clinical settings the most widely used techniques 
entail the assessment of an end-organ response to an ANS 
physiological provocation (35). Some clinical tests for measur-
ing ANS function (35–38) are summarized in Table 2. Among 

these tests, HRV assessment is a recognized, non-invasive, 
convenient, and reliable method to measure the ANS function, 
which will be mainly described in this article. HRV is defined 
as the fluctuations in the intervals between normal heartbeats 
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taBLe 2 | Clinical tests of ANS function.

type of testing strength Limitation

testing of cardiovascular modulation
HRV Non-invasive, convenient, practical, valid,  

and reliable (described in the following text)
Only application to sinus rhythm – 
cannot be applied with excessive ectopy 
or atrial fibrillation

Heart rate and blood pressure assessment at rest 
or in response to the Valsalva maneuver test, deep 
breathing, isometric handgrip test, cold pressure 
test, orthostatic test, head-up tilt test, and baroreflex 
sensitivity test

Short test duration Only assessing ANS response  
to a rapid change of stressAssessing both SNS and PNS on cardiovascular modulation

testing of neurotransmitter levels
Catecholamines and acetylcholine assessment More direct Invasive

Not precise

testing of sudomotor function
QSART, thermoregulatory sweat test Precisely assessing ANS modulation on sweat gland Not assessing cardiovascular modulation

Requiring precautions for electrical safety

Microneurography
Muscle or skin sympathetic nerve activity Precisely assessing SNS Invasive

Not assessing PNS
Not assessing cardiovascular modulation

AF, atrial fibrillation; ANS, autonomic nervous system; HRV, heart rate variability; QSART, quantitative sudomotor axon reflex test.
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(39), and it is mainly based on three analytic methods: frequency 
domain method, time domain method, and non-linear method 
(39). The time and frequency domain analyses of HRV are well-
developed methods that are recognized as valid and reliable 
procedures for assessing autonomic function in both clinical and 
experimental settings (40, 41). Within each analysis, different 
parameters reflect different aspects of ANS function (Table 3). 
HRV is generated and analyzed from the ECG waves, which can 
be recorded from specific devices/software or using 24-h Holter 
(or other long-term cardiac telemetry) (39).

Due to the dynamic nature of ANS activity, HRV is 
constantly changing. A single HRV assessment reflects the 
instantaneous ANS activity at a specific time. According to the 
uncoupling theory (42), decreased HRV signifies diminished 
ANS responses; and this process is correlated with disease 
severity. Conversely, organ recoupling indexed by increased 
HRV would represent the return of ANS modulation (42). 
Therefore, assessing the change in HRV between periods can 
reflect the dynamic/trend of ANS activity over time when stress 
is changing (40, 43). Accordingly, HRV may serve as a proxy 
for the neurological mechanisms that guide flexible control of 
physiology and behavior in the context of stress (44). Through 
several decades’ progress in HRV research, today HRV meas-
urement is not only an established tool in cardiology research 
(45) but also increasingly being used in a wide range of clinical 
and psychophysiological research (46, 47), including informing 
cardiovascular risk stratification and ischemic stroke prediction 
(48, 49). Therefore, the critical idea is that HRV may be more 
than just an index of cardiac function; it may act as an indicator 
of central modulation of global stress responses. Accordingly, 
HRV may serve as an easy measurement of the stress regula-
tory neural network and may provide useful information on 
the capacity of the body to effectively respond in a stressful 
situation.

ans dysFUnCtion, iMpaired HrV, and 
risK FaCtors oF isCHeMiC stroKe

The relationship between ANS dysfunction and ischemic 
stroke is complex and bidirectional. ANS dysfunction (a sign  
of chronic stress) may predict the occurrence of ischemic stroke 
and, on the other hand, ischemic stroke as a source of new stress 
affects ANS (50). Ischemic stroke is a source of huge stress 
characterized by sympathetic predominance, and the associated 
catecho lamine surge may cause cardiac autonomic derangement 
(51, 52), myocardial damage, and thus possible cardiac dysfunc-
tion with increased mortality after ischemic stroke (46, 53).  
Impaired autonomic function is likely to be a common feature 
in all ischemic stroke patients (52, 53). Earlier findings showed 
that: (i) lower HF and/or total power was correlated with a higher 
risk of incident stroke in adults (49); (ii) other HRV parameters 
such as dichotomized coefficient of variance of NN intervals 
(CV%) and power law slope (SLOPE) may also stratify high-risk 
patients to develop stroke, with 0.68 c-statistic for combined 
high CV% and high SLOPE (54); (iii) patients with ischemic 
stroke irrespective of the side of the ischemia in the brain had 
dysfunctional ANS and decreased HRV [HF, LF and total power 
(TP)] compared to healthy controls (50, 55); (iv) certain locations 
of stroke, such as right insular stroke, right middle cerebral artery 
stroke, and parietal or frontal lobe stroke, were correlated with 
higher risks of cardiac dysfunction (56), atrial fibrillation (AF) 
(52, 56), and myocardial injury (57), compared to other sites; (v) 
acute large strokes, because of the huge stress and catecholamine 
release, were more likely to cause cardiac dysfunction compared 
to lacunar strokes; and (vi) poststroke decreased HRV was associ-
ated with stroke severity, incidence of early and late complica-
tions, and mortality (47, 58). The potential therapeutic effects of 
parasympathetic activation on ischemic stroke have also been 
documented (59, 60).
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taBLe 3 | Main measures of HRV in frequency and time domains.

Variable definition ans modulation and implication

Frequency 
domain

Total power (ms2) The variance of NN intervals over the temporal segment  
or 24 h (≤0.4 Hz)

Reflecting overall ANS activity

ULF (ms2) Power in the ultra low-frequency range (≤0.003 Hz) Only available in 24-h long-term HRV recording. Representing  
the influences of many uncontrolled factors

VLF (ms2) Power in the very low-frequency range (0.003–0.04 Hz) Representing the influences of the peripheral vasomotor and  
renin–angiotensin systems, temperature regulation, and other  
uncontrolled factors

LF (ms2) Power in the low-frequency range (0.04–0.15 Hz) Being mediated by a complex mixture of SNS and PNS modulation

LF norm (n.u.) LF power in normalized units: LF/(LF + HF) × 100% Representing the relative value of LF in proportion to the sum  
of HF and LF and emphasizing the controlled and balanced  
behavior of the two branches of the ANS

HF (ms2) Power in the high-frequency range (0.15–0.4 Hz) Being solely regulated by the PNS, with high HF power representing 
increased PNS activity

HF norm (n.u.) HF power in normalized units: HF/(LF + HF) × 100% Representing the relative value of HF in proportion to the sum of HF  
and LF and emphasizing the controlled and balanced behavior of  
the two branches of the ANS

LF/HF Ratio of LF to HF power Reflecting the balance of SNS and PNS functions

HF + LF (ms2) Power in the high- and low-frequency ranges (0.04–0.4 Hz) May represent a more precise indicator of the overall ANS activity.  
A higher HF + LF value represents increased overall ANS activity,  
while a lower HF + LF value indicates decreased ANS activity

Time domain SDNN (ms) SD of all NN intervals Corresponding to total power

SDANN (ms) SD of the average of NN intervals in all 5-min segments  
of the entire recording

Corresponding to ULF

RMSSD (ms) The square root of the mean of sum of the squares  
of differences between adjacent NN intervals

Corresponding to HF

SDNN index (ms) Mean of the SD of all NN intervals for all 5-min segments  
of the entire recording

Corresponding to mean of 5-min total power

SDSD (ms) SD of difference between adjacent NN intervals Corresponding to HF

NN50 count Number of pairs of adjacent NN intervals differing by more 
than 50 ms in the entire recording

Corresponding to HF

pNN50 (%) NN50 count divided by total number of all NN intervals Corresponding to HF

ANS, autonomic nervous system; HRV, heart rate variability; NN, normal – normal interval.
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From the perspective of chronic stress leading to disease 
development (from stress adaptation to stress-related disor-
ders), most risk factors of ischemic stroke can be considered as 
body stressors (some of them are also consequences of multiple 
other stressors), with the possible stress cascade as described in 
previous text. ANS dysfunction assessed by HRV parameters 
may then reflect the overall effects of different stressors/risk 
factors (both chronic and acute), including the initial TIA or 
minor stroke episode. A number of studies (Table  4) report 
the relationship between autonomic dysfunction measured 
by impaired HRV and main risk factors of ischemic stroke 
described in Table 1.

Metabolic disorders and ans dysfunction
Metabolic disorders including hypertension, hyperglycemia, and 
dyslipidemia are sources of chronic stress to the body and well-
documented modifiable risk factors for both first and recurrent 
ischemic stroke (6).

It has been confirmed for several decades that SNS hyper-
activity and PNS underactivity are central components in 

the etiology of early and borderline hypertension, as well as 
sustained essential hypertension (61, 62). A “neuro-adrenergic” 
overdrive (i.e., hyperactivity of the SNS) was found in both 
hypertensive males and females, in young and elderly people 
with hypertension (63). Therefore, beta-blockers that are com-
petitive antagonists of the beta-adrenergic receptor are widely 
used to control hypertension (64). Numerous early studies 
have demonstrated the association between hypertension and 
autonomic dysfunction measured by lower values of both time 
(SDNN, SDANN, and RMSSD) and frequency (HF, LF, VLF, and 
TP) domain HRV parameters (65–68).

Similarly, abundant evidence has demonstrated that an altered 
balance of PNS and SNS, mainly explained by attenuated para-
sympathetic activity and a relative elevated sympathetic activity, 
are causative factors that trigger a cascade of inflammatory/
stress responses in the development and progression of diabetes 
(69, 70). The effect of stress and catecholamines on impairing 
glycemic control supports the involvement of SNS in the patho-
physiology of diabetes (71, 72). A number of studies have shown 
that an attenuated PNS activity contributes to the development of 
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taBLe 4 | Summary of main studies assessing the relationship between stroke risk factors and HRV.

stroke risk 
factors

studies no. of 
patients

Main HrV 
measures

Main results Conclusions

Hypertension Huikuri  
et al. (68)

356 HF, LF, VLF,  
LF/HF, SDNN

 – Hypertensives had significantly lower HRV than  
normotensives: SDNN: 52 ± 19 vs. 59 ± 20 ms,  
VLF: 103 ± 78 vs. 132 ± 95 ms2, and LF:  
45 ± 39 vs. 57 ± 43 ms2; p < 0.01 for all

 – Normotensives had significant changes in  
normalized LF and HF (p < 0.001) in response  
to an upright posture, while hypertensives did not

Hypertension results in reduced 
overall ANS and blunted autonomic 
responses to a change in body 
posture

Liao  
et al. (65)

2,601 HF, LF, LF/HF,  
SDNN

 – Hypertensives had significantly lower HF, LF,  
and SDNN than normotensives, p < 0.05 for all

 – People with the lowest quartile of HF had 2.44  
(95% CI, 1.15–5.20) fold risk of hypertension  
than those with the highest quartile of HF

Cardiac autonomic function is 
associated with hypertension, and 
reduced vagal function is associated 
with the risk of developing 
hypertension

Singh  
et al. (67)

2,042 HF, LF, VLF, TP, 
LF/HF, SDNN

 – All HRV measures, except LF/HF, were  
significantly reduced in hypertensives compared  
with normotensives, p < 0.01 for all

 – LF was associated with incident hypertension  
in men (OR, 1.38; 95% CI, 1.04–1.83)

ANS dysregulation is present from 
the early stage to the established 
hypertension

Diabetes Carnethon 
et al. (71)

8,185 HF, LF, SDNN Participants with the lowest quartile LF had 1.2  
(95% CI, 1.0–1.4, p < 0.05) times risk of developing  
diabetes, compared to those with the highest quartile

ANS dysfunction may be associated 
with the development of diabetes in 
healthy adults

Kudat  
et al. (73)

62 Most time 
and frequency 
domain 
parameters

 – Diabetic patients had lower values in both time  
and frequency domain parameters than healthy  
controls, p < 0.001.

 – Diabetic patients with chronic complications had  
significantly lower values in most HRV parameters  
than those without complications, p < 0.01

Diabetes is a cause of ANS 
dysfunction, especially in those  
with microvascular complications

Tarvainen  
et al. (72)

472 Most time 
and frequency 
domain

 – Diabetic patients had significantly lower values in  
most HRV parameters than healthy controls (p < 0.001)

 – BGL, HbA1c and duration of diabetes were negatively  
associated with most HRV parameters (p < 0.027)

Elevated BGLs cause ANS 
dysfunction, and this effect is 
pronounced in long-term T2DM 
patients

Dyslipidemia Liao  
et al. (65)

2,359 HF, LF, SDNN HF, LF, and SDNN were significantly lower in subjects with  
one, two, or three multiple metabolic disorders (hypertension,  
diabetes, dyslipidemia), compared to controls without any  
metabolic disorder, p < 0.05 for all

Metabolic disorders adversely affect 
cardiac autonomic control

Christensen  
et al. (75)

85 SDNN, SDNNi, 
RMSSD

Plasma total cholesterol and LDL were inversely correlated  
with all 24-h HRV parameters in both subjects with previous  
MI or left ventricular dysfunction, and healthy adults

Hypercholesterolemia is associated 
with ANS dysfunction

Kimura  
et al. (77)

175 HF, LF, TP Triglycerides (124.5 ± 8.6 vs. 97.9 ± 5.9 mg/dl), total  
cholesterol (224.5 ± 4.3 vs. 210.7 ± 3.6 mg/dl), and LDL  
cholesterol (127.8 ± 4.6 vs. 115.0 ± 3.5 mg/dl) were  
significantly higher in low TP group, p < 0.05 for all

Reduced overall ANS activity 
is associated with higher 
postmenopausal body fat content 
and blood lipid concentrations

Atherosclerosis Huikuri  
et al. (93)

265 HF, LF, VLF, 
ULF, SDNN, 
SDANN

The progression of discrete coronary stenosis (change in  
minimal luminal diameter of negative vessels) was related to  
all HRV time and frequency domain parameters (p < 0.05 for all)

Progression of focal coronary 
atherosclerosis is correlated with 
ANS dysfunction

Manfrini  
et al. (94)

42 HF, LF, LF/HF  – HF was negatively correlated with plaque burden  
(assessed by plaque plus media cross-sectional area);  
while LF/HF was positively correlated with the plaque area

 – Patients with positive remodeling had significantly lower HF  
(0.07 ± 0.06 vs. 0.14 ± 0.09 nu, p < 0.01) and higher LF/HF  
(2.1 ± 1.1 vs. 1.4 ± 1.1, p < 0.05) than those with negative  
remodeling

Increasing plaque size and 
expansive arterial remodeling is 
associated with vagal dysfunction

Cardiovascular 
diseases

Kleiger  
et al. (98)

808 SDNN RR of mortality was 5.3 times higher in patients with  
SDNN less than 50 ms than those the with SDNN  
more than 100 ms

Decreased HRV with increased 
SNS or decreased PNS may predict 
cardiac mortality

Bigger  
et al. (99)

715 HF, LF, VLF,  
ULF, TP, LF/HF

ULF and VLF power were strong, and LF and HF  
power were moderately associated with all cause,  
cardiac and arrhythmic mortality

HRV could be a good predictor  
of mortality after MI
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7

Guan et al. ANS and Stress for Stroke Prediction

Frontiers in Neurology | www.frontiersin.org March 2018 | Volume 9 | Article 90

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


stroke risk 
factors

studies no. of 
patients

Main HrV 
measures

Main results Conclusions

Huikuri  
et al. (100)

312 HF, LF, VLF, 
SDNN

Reduced VLF, LF, HF, and SDNN were significantly  
correlated with higher risks of cardiac arrhythmia events  
and death 6 weeks after MI, p < 0.05 for all

Decreased HRV and ANS 
dysfunction have prognostic 
significance after MI

Jokinen  
et al. (101)

800 HF, LF, VLF,  
LF/HF, SDNN

 – Low HRV were associated with higher risks of all-cause  
mortality and cardiac death in univariate analysis

 – All frequency domain parameters and SDNN improved  
at 12 months after MI, p < 0.05 for all

Changes of HRV parameters have 
prognostic significance for MI

AF Perkiömäki  
et al. (109)

784 HF, LF, VLF, TP  – Patients with AF had significantly lower values of HF, LF,  
VLF, and TP than those without AF, p < 0.05 for all

 – Hazard ratios for all HRV parameters were significant  
(p < 0.05) in univariate analysis. LF remained significant  
in the multiple analysis

Patients with AF had ANS 
dysfunction. Impaired LF may be  
the best predictor of new-onset AF

Jons  
et al. (110)

271 HF, LF, VLF, 
ULV, SDNN

Reduced LF was correlated with the onset of AF  
(adjusted HR = 1.6, p = 0.034)

Abnormal ANS is independently 
associated with increased risk of 
new-onset AF

Bettoni and 
Zimmermann  
(111)

77 Most time 
and frequency 
domain 
parameters

Both HF and LF values increased during the 24 h before  
the onset of AF; LF/HF progressively increased during the  
preceding 24 h but had a sharp decrease at 5 min before  
the onset of PAF

A primary increase in SNS followed 
by short-term vagal predominance 
occur prior to the onset of PAF

Aging Antelmi  
et al. (124)

653 Most time 
and frequency 
domain 
parameters

All time and frequency domain HRV parameters decreased  
with age, p < 0.001. LF/HF ratio increased from the second  
to the fifth decade

ANS function declines with 
increasing age

Stein  
et al. (125)

585 HF, LF, LF nu, 
VLF, ULF, LF/HF

All frequency domain HRV parameters decrease from  
65 to 75 (p < 0.05) and levels off at age >75

ANS function declines with 
increasing age, independent of  
CVD risk factors

Smoking Harte and  
Meston (126)

62 HF, LF, HF/
HF, SDNN, 
RMSSD, 
pNN50

HF, LF, SDNN, RMSSD, and pNN50 were significantly  
higher among successful quitters compared to  
unsuccessful quitters, p < 0.05 for all

Smoking cessation significantly 
enhances ANS function

Yuksel  
et al. (127)

42 Most time 
and frequency 
domain 
parameters

All HRV parameters were significantly decreased in  
cigarette, and cigarette and alcohol addicts, compared  
with controls, p < 0.05 for all

SNS activation and PNS inhibition 
are present in smoking and alcohol 
addicts

Alcohol 
consumption

Irwin  
et al. (130)

28 HF, LF, LF/HF HF was significantly lower in alcohol-dependent subjects  
than in controls when awake before sleep and during  
all sleep stages

Alcohol dependence impairs vagal 
modulation during sleep

Thayer et al. 
(129)

542 RMSSD RMSSD was significantly lower in high alcohol use  
group compared to low alcohol use group

Parasympathetic dysfunction is 
correlated with heavy alcohol use

Sedentary 
lifestyle

Sloan  
et al. (131)

149 HF, LF, SDNN  – Aerobic activity led to a significant increase in HF  
(lnHF = 0.25, 95% CI = 0.09–0.41, p < 0.05) compared  
to baseline

 – Men had increased SDNN (lnSDNN = 0.12,  
95% CI = 0.04–0.20, p < 0.05) after aerobic activity  
compared to baseline

Aerobic activity enhances ANS 
function

Earnest  
et al. (132)

365 HF, LF, VLF, TP, 
SDNN, rMSSD

Both HF and rMSSD improved significantly in the  
8 and 12 weeks exercise for all age groups (p < 0.05 for all)

Long-term exercise improves  
PNS activity

Psychological 
stress

Hall  
et al. (138)

59 HF, LF/HF HF was significantly lower in the stress group than  
in controls during the entire sleep period (p < 0.02).  
LF/HF was higher in the stress group during NREM  
sleep (p < 0.05)

Acute stress was associated with 
decreases in parasympathetic 
modulation during entire sleep 
periods and increases in 
sympathovagal balance during 
NREM sleep

Miu  
et al. (137)

63 HF, LF, LF/HF HF was significantly different between subjects  
with high and low trait anxiety (33.15 ± 9.45 vs.  
38.31 ± 10.76 ms2), and between stress and  
relaxation (31.81 ± 12.6 vs. 37.93 ± 15.21 ms2),  
p < 0.05 for both

Psychological stress is associated 
with autonomic dysfunction

taBLe 4 | Continued
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Infections Toweill  
et al. (140)

30 HF, LF, LF/HF  – HF and LF were significantly lower in patients  
with septic shock compared to those with sepsis  
(LF: 2.68 ± 0.24 vs. 3.37 ± 0.17 bpm2; p < 0.03  
and HF: 2.18 ± 0.14 vs. 2.79 ± 0.23 bpm2; p < 0.04)

 – HF and LF were improved during recovery phase,  
p < 0.001 for both

The degree of autonomic 
dysfunction may help differentiate 
sepsis, septic shock, and recovery 
states

Schmidt  
et al. (142)

236 HF, LF, VLF, TP, 
LF/HF, RMSSD, 
SDNNi

Changes in HRV (VLF, TP) after subarachnoid  
hemorrhage reflect both infectious and delayed ischemic events 
and complications

HRV may have prognostic values on 
infection and ischemic events after 
subarachnoid hemorrhage

AF, atrial fibrillation; ANS, autonomic nervous system; BGL, blood glucose level; HRV, heart rate variability; LDL, low-density lipoprotein; PAF, paroxysmal atrial fibrillation; T2DM, type 
2 diabetes; HbA1c, glycated hemoglobin; HF, high frequency; LF, low frequency; VLF, very low frequency; TP, total power.
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insulin resistance and diabetes with significantly reduced values 
of all HRV parameters (HF, LF, TP, SDNN, RMSSN, and pNN50) 
in diabetic patients, compared to healthy controls (71–73).

Finally, dyslipidemia has also been shown to correlate with 
SNS activation and PNS suppression (74). High levels of low-
density lipoprotein (LDL) and total cholesterol are associated 
with low HRV values (HF, LF, TP, SDNN, and RMSSD), suggest-
ing an impaired ANS function in individuals with dyslipidemia 
(75–77).

arterial stiffness, atherosclerosis,  
and ans dysfunction
Arterial stiffness is associated with a degenerative process 
affecting mainly the extracellular matrix of elastic arteries 
with aging and other risk factors, such as high blood pressure  
(78, 79). On the other hand, arterial stiffening may result in 
changes to vessel walls and activate a number of complex mecha-
nisms involved in the process of atherosclerosis with associated 
development of cardiovascular events (80–82). Both arterial 
stiffness and atherosclerosis are sources of chronic stress to the 
body and independent risk factors for ischemic stroke (83–85). 
Atherosclerosis is responsible for the thrombosis and occlusion 
of large brain arteries (large-artery atherosclerosis subtype), 
associated with an increased risk of small-vessel stroke (lacunar 
subtype), and partially contributing to embolism (cardioembolic 
subtype) (83).

Arterial stiffness is associated with sympathovagal imbalance, 
particularly increased sympathetic activity (86, 87). In a normal 
state, the ANS and the endothelium work together to maintain 
the vascular tone. There is a tonic balance between the release of 
vasodilating factors from the endothelium and vasoconstricting 
factors from sympathetic nerve terminals (88). This balance acts 
on the vascular smooth muscle cells to maintain the appropri-
ate vessel tone (89). Impaired ANS regulation contributes to 
abnormal changes in endothelial cells, resulting in endothelial 
dysfunction. Some mechanisms may be that the high SNS 
activity and increased catecholamines influence the inflamma-
tory process, increase the uptake of LDLs, activate beta- and/or 
alpha-adrenergic receptors, and finally cause endothelial damage 
(88). Reduced total power and HF values, as well as higher LF/
HF ratio, have been shown to be correlated with reduce arte-
rial distensibility in patients with hypertension (90). Moreover, 

exercise with dietary restriction improves cardiac autonomic 
activity reflected by increased SDNN, RMSSD, TP LF, and HF 
and decreased LF/HF; and this enhanced cardiac autonomic 
modulation (assessed with decreased LF/HF) was associated 
with decreased arterial stiffness (91).

According to the prevailing theory proposed by Ross (92), 
atherosclerosis development is predominantly a cascade of 
inflammation/stress response-mediated events, from initiation 
through progression, rupture, and ultimately to the thrombotic 
and embolic complications. During the process, ANS dysfunc-
tion is characterized by the stimulation of SNS and downregula-
tion of PNS, with subsequent impairment of the tight control of 
inflammatory responses (25). Decreased parasympathetic func-
tion (decreased HF, normalized HF, and increased LF/HF) and 
increased sympathetic function have been reported to correlate 
with the progression of coronary artery atherosclerosis (93) and 
coronary artery remodeling (94). In addition, the ANS also plays 
a crucial role in thrombogenesis (95).

Cardiovascular diseases and ans 
dysfunction
The contribution of autonomic dysfunction to the development 
of cardiovascular diseases has been well illustrated (32, 48). 
Increased SNS promotes vasoconstriction, increases platelet 
aggregation and pulse and blood pressure, and decreases fibrinol-
ysis, while decreased PNS leads to reduced arterial pressure and 
cardiac output. These pathophysiological changes increase the 
risk of thrombosis due to sluggish flow and arterial wall collapse, 
and the risk of consequent cardiovascular disorders (96, 97). 
From the 1980s to recent times, numerous studies have clearly 
demonstrated that reductions in both time and frequency domain 
parameters of HRV (SDNN, ULF, VLF, LF, and HF) were present 
in MI survivors and were correlated with poor prognosis (such as 
mortality and arrhythmia events) after acute MI (98–100). These 
HRV indexes are depressed at the early phase of acute MI with 
substantial improvement during recovery (101, 102).

atrial Fibrillation (aF) and ans dysfunction
Atrial fibrillation is one of the high-risk cardiac sources for cardi-
oembolic ischemic stroke (14, 103). All types of AF, including par-
oxysmal, persistent, and permanent, are associated with around 
fivefold increased risk of ischemic stroke (104, 105). Histological 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


10

Guan et al. ANS and Stress for Stroke Prediction

Frontiers in Neurology | www.frontiersin.org March 2018 | Volume 9 | Article 90

studies have shown that the pulmonary veins where the AF 
impulses originate are richly innervated by both sympathetic and 
parasympathetic nerves (106). As early as 1978, Coumel et  al. 
reported that cardiac autonomic dysfunction might predispose 
patients to develop paroxysmal atrial fibrillation (PAF) (107). 
Later studies on HRV and AF have further determined the crucial 
role of the ANS, with relative increased SNS and decreased PNS, 
contributing to the development, progression, and maintenance 
of AF (108). Patients with AF are reported to have significantly 
lower values of HF, LF, VLF, and TP and increased LF/HF, 
compared to those without AF (109, 110). Interestingly, another 
study showed that LF/HF increased during the preceding 24 h 
but decreased sharply at 5 min before the onset of PAF, which 
may suggest a primary increase in SNS followed by short-term 
PNS predominance prior to the onset of PAF (111). In addition, 
the classic treatment for all types of AF is the administration of 
beta-blockers to inhibit the SNS (112, 113).

Cardiac surgery and ans dysfunction
Cerebrovascular complications including ischemic stroke and 
TIA are common after cardiac surgery, especially heart trans-
plantation (114). The incidence of stroke increases with the 
number of preoperative stroke risk factors, such as a history of 
hypertension, diabetes, smoking, stroke, and vascular diseases 
(115). Heart transplantation interrupts the parasympathetic vagal 
neurons and the intrinsic postganglionic sympathetic nerve fib-
ers traveling from the stellate ganglia to the myocardium, which 
may cause axonal Wallerian degeneration and thus cardiac 
denervation (116). The cardiac denervation will cause the lack 
of parasympathetic connections and abnormal cardiopulmonary 
baroreflexes, which alters autonomic regulation on cardiovas-
cular function, resulting in lower HRV, cardiac index, abnormal 
catecholamine levels, and higher heart rate (117–119). Moreover, 
cardiac surgical procedures often cause AF. As described in the 
last section, this is associated with an increased risk of embolic 
strokes, and the use of beta-blockers aims at preventing such 
strokes (120, 121).

aging and ans dysfunction
Aging, as a marker of stress experience, can be seen as a chronic 
body stressor, which leads to ANS alteration (122, 123). Auto-
nomic dysfunction in seniors is also attributed to several main 
features associated with aging, such as loss of neurons, loss of 
axon branches, alterations in neurotransmitters, and degenera-
tive changes in effector organs innervated by autonomic nerves 
(122, 123). Many clinical symptoms associated with aging, such 
as increased blood pressure and decreased baroreflex function, 
are associated with relatively elevated SNS and diminished PNS 
activities that elicit inadequate autonomic responses to physi-
ological stressors (122, 123). Previous studies have shown that 
elderly people have significantly lower values of HF, LF, and TP 
powers than young people (124, 125).

Unhealthy Lifestyle and ans dysfunction
Unhealthy lifestyles including cigarette smoking, heavy alcohol 
use, sedentary lifestyle, and others are all correlated with auto-
nomic dysfunction. Lower HRV values (HF, normalized HF 

power, LF, TP, and SDNN) and higher LF/HF ratio are found in 
smokers than in non-smokers in both early and recent studies 
(126–128). Similarly, people suffering from heavy alcohol abuse 
had decreased RMSSD and HF and increased LF/HF ratio, 
compared to controls (129, 130), indicating an impaired vagal 
function in alcoholics. Further, sedentary lifestyle is also related 
to autonomic imbalance, primarily suppressed PNS activity 
(decreases in HF, pNN50, and RMSSD), while exercise may 
improve autonomic function with increases in HRV parameters 
(131, 132).

psychological stress and ans dysfunction
Psychological stress, caused by occupational, familial, or life 
events, is recognized as a potential contributor to an individual’s 
perceptions of stress (133) and possibly interacts with the abil-
ity to cope with specific stressors (134). Various components of 
psychological stress, including self-perceived stress, stressful life 
events, and poor coping ability, are associated with an increased 
risk of ischemic stroke (135). High levels of chronic psychologi-
cal stress lead to continuous activation of the stress system, with 
prolonged secretion of stress mediators such as catecholamines 
and cortisol (24, 133), which eventually promotes SNS activity 
and suppresses PNS activity (28). Studies have shown decreased 
HF and normalized HF as well as increased LF/HF in perceived 
psychological stressful situations (136–138). These findings 
indicate a lower cardiac vagal activity in people who perceive a 
higher level of psychological stress.

recent infections and ans dysfunction
Infection possibly contributes to atherosclero tic plaque pathol-
ogy via inflammation, by activating inflammatory cytokines 
that acce lerate the maturation of plaques and promote plaque 
instability and rupture (139). Previous studies have shown that 
patients with infections have decreased HF, LF, and TP, as well 
as increased LF/HF ratio, compared to both their recovery 
states (140), and healthy controls (141). Changes to markers of  
HRV have also been identified in association with the stage and 
deterioration of infection, which supports the use of HRV as 
an indicator of illness severity (140, 141). In addition, a recent 
study shows that changes in HRV parameters could predict 
the onset of infection and ischemic events after subarachnoid 
hemorrhage (142).

HrV-Based CoMpreHensiVe stress 
ModeL

According to the stress theory, and association between stroke 
risk factors, stress, and ANS/HRV, it is possible to establish a 
“comprehensive stress model” using HRV as a marker of ANS 
activity and adaptation to stress. This model would represent the 
overall effects of stroke risk factors and could be used to identify 
personalized risk of experiencing a secondary ischemic event 
after TIA and minor stroke.

The HRV-based comprehensive stress model refers to a model 
that comprises HRV parameters and multiple dimensions of 
stress variables, including chronic and acute, physiological, and 
psychological. The assessment of HRV measures the objective 
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physiological response to stress factors. For an individual, HRV 
values may represent the comprehensive effect of “multiple stress-
ors” at a given point in time. The HRV-based theoretical model is 
presented in Figure 3.

identification and selection of HrV 
predictors in the HrV-Based Model
Early studies have shown the 24-h rhythm of HRV in both healthy 
individuals and those with disease (for example, diabetes, chronic 
stable angina, or coronary artery disease) (143–145). In general, 
the absolute values of all HRV parameters (HF, LF, VLF, and TP) in 
healthy individuals are consistently higher than those in diseased 
people during the entire 24 h (143, 145). In normal conditions, 
ANS activity has a circadian rhythm with PNS increasing during 
nighttime and SNS activating during daytime. This circadian 
rhythm leads to a 24-h HRV rhythm. However, in patients with 
chronic disease, HRV parameters fail to show normal diurnal 
changes (143, 145). Among these HRV parameters, HF provides 
the highest discriminative ability between patients with chronic 
disease and healthy individuals; more specifically, people with 
diabetes, chronic stable angina, or coronary artery disease show 
lower HF values, less day–night rhythm and less daytime rhythm 
in HF, compared to healthy individuals (144, 145).

Based on the expected values and changes in HRV during a 
24-h period, two-dimensional HRV measurement, including 

HRV absolute values at a given time (as indicators of static ANS 
activity) and HRV changes over time (as indicators of dynamic 
ANS activity), can be considered for inclusion in HRV-based 
predictive models. Several further hypotheses regarding the iden-
tification and selection of HRV predictors are made to establish 
the HRV-based comprehensive stress model to predict secondary 
ischemic events after TIA or minor stroke.

• Regarding types of HRV parameters: HF may be the primary 
HRV parameter to select because it is a precise indicator of 
PNS activity and should be lower in patients under stress. 
Normalized HF that represents the balanced PNS and the 
proportion of PNS to ANS may also be selected. TP as 
a marker of overall ANS activity may be included in the 
assessment. HF + LF, although not a traditional parameter, 
may be considered as the fraction of HRV that can be totally 
explained by ANS modulation based on the physiology of 
HF and LF and thus may represent a more precise indicator 
of the overall ANS activity. Absolute values of HRV param-
eters are indicators of people’s health condition; therefore, 
a lower HRV value may be associated with worse health 
conditions and a higher level of stress, and thus, a higher 
risk of developing secondary ischemic events after TIA or 
minor stroke.

• Regarding time periods: In healthy situations, HF power 
that presents the PNS activity is increased during the night 
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and relaxation period, such as napping. The morning time, 
especially the few hours after waking up is the period of SNS 
activation, which leads to the decrease of both absolute and 
normalized values of HF (6:00  a.m.–9:00  a.m.). HF recovers 
after 9:00  a.m. and remains comparatively stable with small 
fluctuations during daytime and early evening (around 
9:00 a.m.–9:00 p.m.) (143, 145). Therefore, 9:00 a.m.–12:00 p.m. 
may be used to represent “morning time” to avoid the sharp 
decrease in PNS and increase in SNS immediately after waking 
up (144). 3:00 p.m.–6:00 p.m. may represent afternoon time to 
avoid the effect of the midday napping. 12:00 a.m. to 3:00 a.m. 
is to represent the night time because it is most likely period 
that people are sleeping.

• Use of HRV changes between day and night: HRV demonstrates 
greater day vs. night discrepancies among healthy populations 
than among people with diseases. It is therefore reasonable to 
postulate that decreased amplitude of HRV changes between 
day and night may suggest less restoration of ANS activity 
and less control of stress and thus a higher risk of secondary 
ischemic events.

• Use of HRV changes during daytime: If people are under stable 
conditions, HRV remains stable during daytime, i.e., from late 
morning (after 9:00 a.m.) to afternoon (around 6:00 p.m.) (144, 
145), which support the uncoupling and recoupling theories 
explained in previous text. Accordingly, decreases in HRV 
parameters during daytime may indicate less rebound capacity 
of the body or deterioration of health condition (excessive 
stress) and, therefore, may be associated with a higher risk of 
development of new ischemic events.

some issues with regard to the 
implication of HrV-Based Model for 
ischemic event prediction
• For patients with acute TIA: Because the risk of secondary 

ischemic events after TIA is high in the first several hours and 
days (146, 147), the optimal design is to start ECG recording 
just after the occurrence of the TIA episode. Ideally, it would 
be best to recruit patients within 24 or 48 h of the TIA event 
and start recording ECG as soon as possible. The use of HRV 
can be compared with the traditional predictive ABCD2 score 
(or other tools such as ABCD3 and ABCD3-I), with regard to 
their predictive values on ischemic events after initial TIA or 
minor stroke.

• Cutoffs of HRV for risk stratification: Previous studies showed 
different cutoffs of HRV parameters, such as SDNN less 
than 50, or 70 or 100 ms, or HF less than 10 ms2, for the risk 
stratification of cardiovascular diseases (98, 148). Our view 
is that an attempt to find HRV cutoffs should be sought only 
in the context of a specific outcome and study population. 
Moreover, different HRV parameters may have different 
predictive values, which include both the absolute values and 
changes during a specific time period of each time domain, 
frequency domain, and non-linear parameter. Finally, the 

cutoffs depend on the sensitivity and specificity that clinicians/
investigators select. Therefore, there may be no consensus on 
the ideal cutoffs for different HRV measures with regard to 
ischemic events occurrence. To define optimal cutoffs for dif-
ferent parameters or the best type of HRV parameter deserves 
further investigation.

sUMMary

It is critical to estimate the risk of stroke occurrence or recur-
rence after initial TIA and to clearly identify those at a higher 
risk of developing secondary ischemic events among people 
with a burden of chronic risk factors/stressors. However, this 
remains challenging using current criteria, partly because the 
specific contributions of these risk factors are difficult to quan-
tify given individual heterogeneity and also many other risk 
factors (unaddressed and unidentified) are not assessed when 
determining an individual’s risk profile. We have shown that 
both chronic risk factors and acute triggers of ischemic stroke 
are sources of stress to the body and are closely associated with 
ANS dysfunction that supports the neurogenic hypothesis of 
ischemic stroke development. The usual compensatory stress 
response of ANS may fail in the context of chronicity, which 
makes it challenged to face new acute stressors. The improper 
stress responses render these normally short-term responses 
prolonged and maladaptive, which relentlessly disrupts nor-
mal physiological pathways and progressively contributes to 
the development of stress-related diseases, such as TIA and 
ischemic stroke. Accordingly, we advocate that HRV assess-
ment, as a measurement of ANS function, may represent the 
comprehensive effect of “multiple stressors” and may reflect the 
overall health condition at a given point in time. This review 
provides evidence for the use of HRV data to predict the occur-
rence of secondary ischemic events after initial TIA or minor 
stroke, as illustrated in Figure  3. This theoretical HRV-based 
comprehensive stress model and further hypotheses on iden-
tification of HRV predictors will initiate studies on identifying 
an innovative way to stratify the risk of TIA or minor stroke 
through assessing the effect of ANS and stress.
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