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Purpose: Accurate prediction of delayed cerebral ischemia (DCI) after subarachnoid 
hemorrhage (SAH) can be critical for planning interventions to prevent poor neurological 
outcome. This paper presents a model using convolution dictionary learning to extract 
features from physiological data available from bedside monitors. We develop and 
validate a prediction model for DCI after SAH, demonstrating improved precision over 
standard methods alone.

Methods: 488 consecutive SAH admissions from 2006 to 2014 to a tertiary care hospi-
tal were included. Models were trained on 80%, while 20% were set aside for validation 
testing. Modified Fisher Scale was considered the standard grading scale in clinical use; 
baseline features also analyzed included age, sex, Hunt–Hess, and Glasgow Coma 
Scales. An unsupervised approach using convolution dictionary learning was used to 
extract features from physiological time series (systolic blood pressure and diastolic 
blood pressure, heart rate, respiratory rate, and oxygen saturation). Classifiers (partial 
least squares and linear and kernel support vector machines) were trained on feature 
subsets of the derivation dataset. Models were applied to the validation dataset.

results: The performances of the best classifiers on the validation dataset are reported 
by feature subset. Standard grading scale (mFS): AUC 0.54. Combined demographics 
and grading scales (baseline features): AUC 0.63. Kernel derived physiologic features: 
AUC 0.66. Combined baseline and physiologic features with redundant feature reduc-
tion: AUC 0.71 on derivation dataset and 0.78 on validation dataset.

conclusion: Current DCI prediction tools rely on admission imaging and are advanta-
geously simple to employ. However, using an agnostic and computationally inexpensive 
learning approach for high-frequency physiologic time series data, we demonstrated that 
we could incorporate individual physiologic data to achieve higher classification accuracy.
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inTrODUcTiOn

Subarachnoid hemorrhage (SAH) is a major public health burden, 
affecting 14.5 per 100,000 persons in the United States alone (1, 
2). Much of the resulting functional and cognitive disability is due 
to delayed cerebral ischemia (DCI) from vasospasm (VSP) (3–7). 
VSP refers to the narrowing of cerebral blood vessels triggered 
by the unusual presence of blood surrounding the vessel after a 
ruptured aneurysm, which can result in stroke. It occurs in 30% 
of SAH patients (8, 9) [54% of SAH patients in coma (10)]. DCI is 
a consensus definition with significance for normalizing research 
efforts in this disease and is defined as the development of new 
focal neurological signs or decrease of >2 points on the Glasgow 
Coma Scale (GCS), lasting for more than 1 h, or the appearance 
of new infarctions on CT or MRI (11, 12), excluding causes other 
than VSP.

As in other causes of stroke and secondary brain injury in the 
neurologic intensive care unit (NICU), time is of the essence to 
detect and intervene. Our interest is in predicting DCI and VSP 
with greater precision than standard of care scales that rely on 
admission assessments of blood patterns on computed tomog-
raphy scans (13–16). For the higher risk SAH patients, the first 
10–14 days are occupied by efforts to detect subtle examination 
changes that suggest VSP (17), and arrange urgent imaging to 
confirm VSP. For a syndrome with subtle symptoms and time 
sensitivity, it would be helpful to be more accurate in prediction 
so clinicians can focus resources, appropriately increase moni-
toring intensity, and justify diagnostic interventions to prevent 
permanent injury. On the converse, discharging patients from the 
ICU at low risk for DCI can result in significant cost savings (18).

Existing predictive models of DCI and VSP after spontaneous 
SAH are non-dynamic and while they help risk-stratify patients, 
they can lack accuracy and precision when applied to individuals 
(13–16). Efforts to improve this early prediction without addi-
tional monitoring have met moderate results, by combining risk 
scores (19), incorporating baseline features such as clinical condi-
tion and age (20), or assessment of autoregulation (21).

There is an abundance of physiologic and clinical data that 
are created and collected in the NICU. Few efforts have explored 
physiological data for the early prediction of DCI. In Ref. (22), 
a Naïve Bayes classifier using electronic medical record (EMR) 
data (cerebrospinal fluid drainage volume, sodium and glucose) 
and physiologic data [mean arterial blood pressure, heart rate 
(HR), and intracranial pressure] was able to classify patients for 
angiographic VSP with a moderately favorable AUC of 0.71. The 
raw data used in that study was low frequency (hourly at best) and 
extracted features summarized over 24 or 48 h. Despite the small 
sample size in that study, the result was encouraging that EMR 
and physiologic data could improve risk stratification for future 
events. The question remains whether increased precision can 
be achieved with use of higher frequency data. In this work, we 
applied machine-learning techniques, to extract features from the 
high-frequency data, to predict DCI. There is an extensive litera-
ture regarding robust feature extraction from physiological time 
series data for outcome prediction. Approaches can be broadly 
classified as either hypothesis driven or data driven. Hypothesis 
driven approaches have focused primarily on temporal data 

abstraction that relies on knowledge-based symbolic represen-
tations of clinical states, either by a  priori threshold setting or 
interval changes (23, 24), summary statistics (22, 25–28), or 
template matching (29). Hypothesis driven feature extraction 
can be effective in prediction but requires domain expertise in 
designing meta-features and may introduce a bias (25).

Data driven or learning approaches such as used in this study 
extract meaningful features directly from the labeled data without 
a priori hypothesis (26, 27, 30–37). Sparse coding and dictionary 
learning methods (38–42) have shown promise in the field of 
image processing (38–40, 43–45) and have recently been applied 
to temporal data (46). Bahadori et al. (36) have used sparse clus-
tering to extract the latent subspace for mortality prediction in 
the publicly available physionet ICU dataset. Lasko et al. (47) have 
extracted the temporal dynamics using auto encoders to identify 
the unlabeled phenotypes expressed in the sequences of serum 
uric acid signatures of gout vs acute leukemia. This work focuses 
on sparsity based data-driven techniques to extract the features 
to remain agnostic about scales, trends or patterns that might be 
available in the data as opposed to the hypothesis driven which 
summarizes the temporal data to extract features. In particular, 
we learned multiscale dictionaries from high-frequency temporal 
physiologic data that extract informative kernels that maximally 
classified for DCI.

MaTerials anD MeThODs

The proposed method is based on recent advances in convolution 
dictionary learning methods (38–40, 48). Convolution dictionary 
learning extract translation invariant kernels directly from the 
data, thus capturing the temporal characteristics of physiological 
variables. We extracted features using dictionaries learned from 
patients’ time series data acquired from bedside monitors. We 
learned multiscale dictionaries using convolution dictionary 
learning, by down sampling the data at increasing intervals (1, 5, 
10, 20, 60, 120, and 240 min). This was intended to capture the 
temporal dynamics at different resolutions that might be available 
in the time-series data without a priori hypothesis. We learned 
the dictionaries for different physiological data variables using 
convolution dictionary learning as explained in the following 
sections.

Data analysis and model building were performed using 
custom software developed in Matlab 2016a (Mathworks, Natick, 
MA, USA) and Python (www.python.org). All computations 
were performed using an Intel Xeon CPU 2.2 GHz processor.

study Population
Consecutive patients with SAH admitted to the NICU between 
August 1996 and December 2014 were prospectively enrolled in 
an observational cohort study of SAH patients designed to iden-
tify novel risk factors for secondary injury and poor outcome. The 
study was approved by the Columbia University Medical Center 
Institutional Review Board. In all cases, written informed consent 
was obtained from the patient or a surrogate. SAH secondary to 
perimesencephalic bleeds, trauma, arteriovenous malformation, 
and patients <18 years old were not enrolled in the study. Starting 
in 2006, physiologic data was acquired using a high-resolution 
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acquisition system (BedmasterEX; Excel Medical Electronics 
Inc., Jupiter, FL, USA) from General Electric Solar 8000i moni-
tors (Port Washington, NY, USA; 2006–2013) or Philips Intellivue 
MP70 monitors (Amsterdam, The Netherlands; 2013–2014) at 
0.2 Hz.

Exclusion criteria for this project were the following: (1) 
absence of physiologic monitoring data (before 2006), (2) VSP 
or DCI before post bleed day (PBD) 3, and (3) patients missing 
all candidate features. The targeted classification outcome was 
DCI, defined as development of new focal neurologic signs or 
deterioration of consciousness for >1  h or appearance of new 
infarctions on imaging due to VSP (12).

Baseline candidate Features
The following baseline characteristics and grading scales were 
prospectively recorded at admission: age, sex, worst Hunt–Hess 
grade in first 24 h (HH), mFS, and admission GCS. HH grade was 
dichotomized into low grade (1–3) and high grade (4–5). MFS 
was dichotomized into low grade (0–2) and high grade (3–4). 
Baseline features were compared for patients with DCI vs no 
DCI. Baseline features were also compared for the derivation vs 
validation dataset.

Frequency comparisons for categorical variables were 
performed by Fisher exact test. Two-group comparisons of 
continuous variables were performed with the Mann–Whitney 
U test. All statistical tests were two-tailed, and a p-value <0.05 
was considered statistically significant.

Physiological Data extraction
Physiologic data was limited to the first 4 days after aneurysm 
rupture to limit the influence of clinical treatment in response 
to suspected VSP or DCI (17). While 0.2 Hz physiological data 
was available, we remained agnostic about the optimal scale or 
sampling rate for DCI classification. Five universally available 
ICU variables [HR, respiratory rate (RR), systolic blood pressure 
(SBP), diastolic blood pressure (DBP), and oxygen saturation 
(SPO2)] were downsampled (ds) from 0.2 Hz to 1, 5, 10, 20, 60, 
120, and 240 min. Downsampling was computed as means, which 
also deals with erroneous or missing data (49). These variables 
were then used to learn the distinct temporal dynamics to derive 
features.

Feature extraction Using convolution 
Dictionary learning
Given a time series X  ∈  R1×t, our method learns the distinct 
temporal dynamics by a dictionary based model for each of 
the five ICU variables. The term “dictionary” refers to the set of 
basis vectors that can be combined linearly to represent X. These 
basis vectors are learned directly from the data, and the size of 
the kernel must be big enough to capture the hidden patterns. In 
our work, we selected the kernels sizes 2, 5, 10, and 20 to learn 
multiscale dictionary as explained below.

Dictionary Learning Algorithm
Let X ∈ R1×t be the time series data. For a traditional dictionary 
learning algorithm, the time series data are then represented by 

set of patches {xi}i=1,…,N, where xi ∈ R1×r, which may be overlapping 
patches of size r. Given a set of patches, we learn an over-complete 
dictionary, denoted by D  =  {d1,  …,  dk}  ∈  Rr×K where K is the 
number of basis elements in dictionary D, usually referred to 
as “atoms” or “kernels.” The patch data are then approximated 
by DГ, where Г = {γ1, …, γN} is a matrix of sparse vectors. The 
traditional dictionary learning algorithm then solves the follow-
ing optimization:
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The reconstruction error is minimized subjected to L1 sparsity 
constraint on sparse vector γi, where λ controls the sparsity. 
However, using a patch based dictionary results in redundant 
elements (12). Therefore, we chose to learn the convolution dic-
tionary, which offers two main advantages, (i) the direct support 
for multiscale dictionaries and (ii) the patch size can be arbitrarily 
increased at negligible computation cost. The convolution dic-
tionary algorithm learns kernels from the entire time series data 
instead of patches, thus resulting in fewer atoms. The convolution 
dictionary solves the following optimization:
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where Γk is the sparse activation map over the entire time series 
data and “*” denotes the convolution operation. By learning the 
convolution dictionary, we remove many redundant atoms that 
were simply shifted and clipped versions of the patches (38–40, 
50).

To deal with missing/lost data beyond the scale of downsam-
pling, we used mask decoupling (38–40) which introduces a 
masking operator to zero out missing data while minimizing the 
error. This requires solving the following optimization:
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where W is a mask operator that zeros out any region with the 
missing data. The above optimization problem is solved using 
alternating direction method multipliers as described in Boyd 
et al. (51). Any other convolution dictionary learning method can 
be used to learn the atoms (52, 53). The dictionaries D, learned 
at different down sampling rates, are then used for deriving the 
features for DCI classification.

Feature Computation
Given a time series X ∈ R1×t, dictionary atom γ ∈ R1×k, where k ≤ t, 
the feature fi for series X and filter γ is given by max(X*γ), where 
* denotes the valid convolution. Valid convolution means that γ 
is applied only at each position of X such that γ lies within X. In 
other words, we performed convolutions only when the contigu-
ous data length was twice the length of kernel. The number of 
kernels that we extracted from the data was discovered through 
an optimization step to find maximal model performance. We 
therefore extracted 20 kernels for each varying kernel length (KL; 
2, 5, 8, 10, 20, and 40) and for each downsampling period (ds; 1, 5, 
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10, 20, 60, 120, and 240 min), and for each of five variables (var; 
HR, RR, SBP, DBP, and SPO2). This resulted in 4,200 candidate 
kernel derived physiological features.

Feature Selection and Model Building
We used the above features to develop models using three differ-
ent classifiers (partial least square, SVM linear, and SVM kernel). 
Minimal redundancy maximal relevance (mRMR) (54) was 
applied to identify the most relevant features for classification. 
mRMR selects the features that maximize the mutual informa-
tion between features and target class, and minimizes mutual 
information among the features. The features are ranked based 
on the greedy search that maximizes the Mutual Information 
Difference Criterion or Mutual Information Quotient Criterion. 
Let S ∈ (x1, …, xn) be the set of features and h be the target class 
(in our case DCI vs non-DCI), then the features are ranked as 
follows:
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where, I(xi, h) is the information gain between the feature xi and 
target class h. The first “k” ranked features are then used to learn 
the classifier. This simplifies the model, reduces training times, 
and enhances the generalizability of the classification model.

We used mRMR in combination with linear and kernel based 
support vector machines (SVM-L and SMV-K) classifiers (55, 
56), as well as partial least squares (PLS) regression (57) for 
combined feature selection and classification. PLS regression 
performs a principal component analysis on all feature vectors 
first and then applies a least squares regression using those com-
ponents that explain the most variance. Weighted SVM (58) was 
utilized to account for the imbalance in classification categories 
(i.e., fewer DCI vs non-DCI in any consecutive SAH dataset). We 
created models using baseline features, physiological features and 
combined baseline and physiological features, along with feature 
selection to test the discriminative ability of different features. We 
compared the performance of the physiological features learned 
from our model with the baseline and grading scale features.

internal Validation and Validation strategy
The cohort was randomly split 80/20%, while maintaining pro-
portional targeted outcome (DCI). 80% were used to learn the 
dictionary and train/test models, and considered the primary 
derivation dataset. For internal validation of our models, we 
performed cross-validation of the derivation data with a 12.5% 
hold-out set; the hold-out set was proportional to the training 
data set for percentage of targeted outcome. Discriminative 
performance is described by an area under the receiver operating 
characteristic curve (AUC), and AUCs were statistically com-
pared (59). The median value of AUC is reported, over 100 runs. 

20% of the cohort were not involved in model training, and used 
exclusively for testing the classification accuracy of our models. 
Classification accuracy of our models on the validation test set 
is reported as AUC, with 95% confidence intervals (CI). An 
overview of the analytical approach is illustrated in Figure 1. To 
summarize, physiological variables were downsampled to extract 
temporal patterns at varying scales using dictionary learning. We 
extracted 20 kernels for each varying KL (2, 5, 8, 10, 20, and 40) 
and for each downsampling period (ds; 1, 5, 10, 20, 60, 120, and 
240 min), and for each of five variables (var; HR, RR, SBP, DBP, 
and SPO2). The resulting kernels were convolved with time series 
at different scales to extract the maximal value resulting in 4,200 
features; the dimensions of these features were reduced by mRMR 
to classify DCI using PLS, SVM-L, and SVM-K.

resUlTs

From May 2006 to December 2014, 562 SAH patients with physi-
ologic data were enrolled. 8 had VSP or DCI identified before 
PBD 3, 66 were missing all candidate features leaving a total 
of 488 subjects included in the study. The median AUC of 100 
runs of cross-validation (with 12.5% hold-out set) is presented 
in Table 1.

Baseline Feature Model Performance
Among demographical information, sex (AUC 0.59) performed 
slightly better than age (AUC 0.58, PLS). GCS (AUC 0.63, SVM-
K) achieved slightly better accuracy than HH (AUC 0.60, PLS) 
and MFS (AUC 0.57, SVM-L). By combining demographics and 
grading scales (age, sex, HH, mFS, and GCS), a PLS classifier 
performed better than the individual features with an AUC of 
0.63 in predicting DCI.

The classification accuracy on the validation set was found 
to be similar to the derivation set. A model based on current 
standard grading scale (MFS) achieved an AUC of 0.56 (SVM-L, 
95% CI, 0.44–0.67). Combining all the demographics and grad-
ing scales improved the AUC to 0.64 (PLS, 95% CI, 0.52–0.76).

Physiological Feature Model Performance
Features extracted from individual physiological time-series 
variables did not perform significantly better than the baseline 
features. SBP (AUC 0.58, PLS) achieved slightly better AUC than 
the other variables. However, adding all the features derived from 
physiological data achieved an AUC of 0.66. Adding demograph-
ics and grading scales along with the feature reduction performed 
better than individual features by achieving an AUC of 0.71, 
which was statistically significantly higher than the performance 
of MFS (AUC of 0.57, p = 0.0025).

The performance on the validation set was found to be 
similar to that of the derivation set. Feature reduction (to reduce 
redundancy and maximal relevance) when applied to combined 
demographics, grading scales, and physiological data produced 
the best classification performance with an AUC of 0.78 (PLS, 
95% CI, 0.63–0.92).

In the case of the PLS classifier, the weights indicate the dis-
criminative power of the features in separating the two classes. 
Figure 2 shows the PLS weights of the 80 features. Figure 3 shows 
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FigUre 1 | Feature extraction from physiologic time series data. Time-series variables were downsampled, and the dictionary was learned to extract different 
temporal patterns presented at different down sampling rates. The dictionary kernels presented here capture the temporal dynamics (extracted features) for 
classification of delayed cerebral ischemia.

TaBle 1 | Model performance in derivation and validation datasets for, partial least squares (PLS), support vector machines linear and kernel (SVM-L and SVM-K).

Features Derivation dataset (median aUc  
of 100 runs)

Validation dataset [aUc (95% confidence intervals)]

classifiers classifiers

Pls sVM-l sVM-K Pls sVM-l sVM-K

Age 0.58 0.54 0.53 0.58 (0.46–0.7) 0.6 (0.48–0.71) 0.64 (0.53–0.76)
Sex 0.59 0.59 0.59 0.62 (0.5–0.74) 0.62 (0.5–0.74) 0.62 (0.5–0.74)
Hunt Hess Scale 0.60 0.55 0.58 0.49 (0.37–0.61) 0.46 (0.34–0.58) 0.5 (0.38–0.62)
Modified Fisher Scale 0.54 0.57 0.50 0.47 (0.35–0.59) 0.53 (0.41–0.65) 0.53 (0.41–0.65)
Glasgow Coma Scale 0.59 0.57 0.63 0.43 (0.31–0.55) 0.44 (0.32–0.56) 0.56 (0.44–0.68)
Baseline (age, sex, and scales) 0.63 0.58 0.54 0.64 (0.53–0.76) 0.59 (0.48–0.71) 0.61 (0.49–0.72)
Diastolic blood pressure 0.52 0.48 0.56 0.44 (0.26–0.61) 0.42 (0.25–0.59) 0.56 (0.19–0.53)
Systolic blood pressure 0.58 0.54 0.49 0.65 (0.49–0.82) 0.43 (0.26–0.6) 0.36 (0.19–0.53)
Heart rate 0.55 0.51 0.50 0.46 (0.28–0.63) 0.5 (0.33–0.68) 0.45 (0.28–0.62)
Oxygen saturation 0.56 0.53 0.50 0.62 (0.45–0.79) 0.48 (0.31–0.65) 0.5 (0.33–0.67)
Respiratory rate 0.49 0.50 0.50 0.57 (0.4–0.74) 0.54 (0.36–0.71) 0.5 (0.33–0.67)
Combined physiological 0.66 0.56 0.50 0.47 (0.3–0.64) 0.51 (0.34–0.68) 0.5 (0.33–0.67)
Baseline and physiological 0.63 0.56 0.50 0.5 (0.33–0.67) 0.5 (0.33–0.67) 0.5 (0.33–0.67)
MRMR (baseline and physiological) 0.71 0.60 0.50 0.78 (0.64–0.92) 0.64 (0.47–0.8) 0.5 (0.33–0.67)

The SVM-L classifier with maximal relevance and minimal redundancy (MRMR) feature reduction performed the best.
Values highlighted in bold indicates the performance of the classifier that performed the best.
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the kernels corresponding to a demonstrative selection of the 
top 10 features relevant for classification. The kernel displays the 
time varying characteristics for different variables and highlights 
the need for capturing high-frequency data at different scales 
(downsampling rate).

DiscUssiOn

Recognizing trends and patterns, and minutely analyzing com-
plex data requires the layered knowledge of clinical experts, but 
defies rule-based systems. It has previously been shown that a 
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FigUre 2 | Partial least squares (PLS) classifier weights of 80 features.
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Naïve Bayes classifier using summary statistics of 24  h (low 
frequency) data can classify for angiographic VSP better than 
clinician-dependent Dopplers and exams (22). Here, we show 
that features extracted from higher frequency temporal data 
(ranging from 1 min to 4 h) is superior to gold standard grad-
ing scales in classification of DCI after SAH. In our approach, 
we extracted high-level features from existing physiologic data, 
without an a  priori hypothesis of what patterns might emerge. 
There are two parts to our algorithm; first is extracting kernels 
from the data using convolution dictionary learning, which is 
computationally expensive but can be performed offline and 
once (kernel generation for five variables for six KLs and for seven 
downsampling rates took 1 day). Second is the model building, 
this is relatively faster and is on the order of minutes; this, too, can 
be performed offline and once. Once the model is built, it can be 
applied for each patient in a clinical setting on day 4 of SAH, with 
a computational time on the order of seconds. Our approach is 
more accurate than a gold standard grading scale and viable in a 
clinical setting.

To enable validation efforts and generalizability to other 
datasets and institutions, we focused on universal physiologic 
ICU variables and typical baseline grading scales pertinent to 
SAH used in the NICU. In this translational work, we used a 
dictionary learning method to extract frequency selective and 
translation invariant characteristics of time series data. To 
the best of our knowledge, this is the first study that shows 
the efficacy of dictionary learning for DCI classification using 
time series. The novel application to time series data required 

FigUre 3 | Feature extraction from physiological time-series data. Top 10 
representative kernels are demonstrated for varying kernel length (KL), down 
sampling rate (DS) highlighting the need for 20 kernels were extracted for 
maximal convolution, for each varying (KL; 2, 5, 10, and 20) and for each 
downsampling period (ds; 1, 5, 10, 20, 60, 120, and 240 min), and for each 
of respiratory rate (RR), top 10 kernels.
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some choices bound by characteristics of the dataset (KLs) and 
domain (downsampling rates). We tested our method for its 
discriminative ability for DCI and found that dictionary kernel 
derived physiological features outperformed a gold standard 
static grading scale. When combined with grading scales and 
demographics, our dictionary learning based method predicted 
DCI with an AUC (0.71, PLS) approaching clinical reliability 
[threshold of 0.8 (60)]. A model with MFS alone had an AUC 
of 0.57. While a comparison of AUCs is frequently used in 
biostatistics and computer science to demonstrate trends of 
improvement between tools, it is not sensitive enough to accu-
rately capture improvements in predictive discrimination (61). 
We therefore compared the AUCs using Hanley’s method of 
comparing ROCs of specific tools in the same population, which 
showed the statistical significance of the difference between the 
two models’ ROCs (59).

An effort to show robustness of the model was with an internal 
validation strategy, testing on a separate dataset excluded from 
model building entirely. Generalizability of a machine-learning 
algorithm, however, assumes that the training dataset is large and 
diverse enough to be representative. A limitation of our study is 
the possibility of causality leakage (62). We attempted to limit 
effects of causality leakage, i.e., the influence of cerebral perfu-
sion efforts on our data, by censoring beyond day 4, which is the 
highest risk of onset of DCI. Another limitation to this study is 
the single center approach; there is no publicly available dataset 
for SAH with similar granularity of physiologic data. Future 
efforts will include developing complementary SAH cohorts and 
validating these algorithms on other centers’ data.

cOnclUsiOn

A data-driven dictionary based featurization and learning approach 
to physiological time series data prior to peak DCI period shows 
promise to improve prediction precision. This is a computationally 

inexpensive and agnostic feature extraction approach for physi-
ologic time series parameters in the ICU (HR, RR, SBP, DBP, and 
SPO2). There is a vast pool of candidate features within the EMR 
with a biological basis for classification ability (i.e., drawn from 
frequentist statistical studies showing relationship with VSP 
and DCI in specific SAH cohorts). Future efforts will also draw 
from this feature pool to further improve the precision of DCI 
prediction, favoring those candidate features that are obtained for 
standard clinical care and thus potentially automatable.

eThics sTaTeMenT

Consecutive patients with aneurysmal SAH admitted to the 
NICU between August 1996 and December 2014 were prospec-
tively enrolled in an observational cohort study of SAH patients 
designed to identify novel risk factors for secondary injury 
and poor outcome. The study was approved by the Columbia 
University Medical Center Institutional Review Board. In all 
cases, written informed consent was obtained from the patient 
or a surrogate.
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