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Background: Prognostication following hypoxic ischemic encephalopathy (brain injury) 
is important for clinical management. The aim of this exploratory study is to use a deci-
sion tree model to find clinical and MRI associates of severe disability and death in this 
condition. We evaluate clinical model and then the added value of MRI data.

Method: The inclusion criteria were as follows: age ≥17 years, cardio-respiratory arrest, 
and coma on admission (2003–2011). Decision tree analysis was used to find clinical 
[Glasgow Coma Score (GCS), features about cardiac arrest, therapeutic hypothermia, 
age, and sex] and MRI (infarct volume) associates of severe disability and death. We 
used the area under the ROC (auROC) to determine accuracy of model. There were 
41 (63.7% males) patients having MRI imaging with the average age 51.5 ± 18.9 years 
old. The decision trees showed that infarct volume and age were important factors for 
discrimination between mild to moderate disability and severe disability and death at day 
0 and day 2. The auROC for this model was 0.94 (95% CI 0.82–1.00). At day 7, GCS 
value was the only predictor; the auROC was 0.96 (95% CI 0.86–1.00).

conclusion: Our findings provide proof of concept for further exploration of the role of 
MR imaging and decision tree analysis in the early prognostication of hypoxic ischemic 
brain injury.

Keywords: cardiac arrest, hypoxic ischemic encephalopathy, decision tree analysis, classification, prediction

inTrODUcTiOn

Hypoxic coma carries the highest mortality rate among the different causes of coma with only 
around 30% of patients admitted to ICU ever regaining awareness (1). There is increasing interest 
in this condition given the changing landscape of hypoxic ischemic brain injury in the context of 
therapeutic hypothermia (2–4). Many patients require ongoing life support after resuscitation, and 
the decision to continue treatment is heavily influenced by the likely prognosis. The ability to accu-
rately predict long-term outcome is therefore important for a balanced approach to decision making 
and aid allocation of health-care resources to optimize individual outcomes. A recent meta-analysis 
from our group reported that the clinical examination at day 2 was the best predictor of outcome 
following coma above that provided by sensory evoked potential and electroencephalography (5). 
That analysis did not include imaging data. There are very few publications in the literature that 
address the role of MR imaging in the prediction of coma outcome (6, 7).
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Most models predicting outcome of hypoxic ischemic coma 
have been developed using regression methodology. We are 
aware of one model (incorporating electrophysiological vari-
ables rather than MR imaging) developed using classification 
and regression tree analysis (CART) (8). Decision tree methods 
generate a logical flow chart diagram which resembles a tree 
(9). This tree like diagram, with repeated partitioning of the 
original data into smaller groups (nodes) on a yes or no basis, 
mimics clinical pathway reasoning. In this exploratory analysis, 
we evaluated the potential of MR imaging to improve outcome 
prediction in the era of therapeutic hypothermia in cardiac 
arrest patients, using the framework of decision tree analysis.

MaTerials anD MeThODs

The data here have been discussed in our previous study, which 
compared methodologies for comparison of topographic imag-
ing findings, rather than outcome prediction (10).

Patient selection
Patients who presented to Monash Health between December 
2003 and January 2011 with cardiac arrest were included. The 
inclusion criteria were: age ≥17 years, a clinical diagnosis of coma 
on ICU admission, and no contraindications to MR Imaging. 
We extracted demographic data (age and sex) and data related 
to coma such as Glasgow Coma Score (GCS), whether the event 
was witnessed and the down time. The down time was defined 
as the time that the person became unconscious with no cardiac 
output to the time at which the cardiac output returned. In this 
study, disability was defined according to the modified Rankin 
Scale (mRS). Mild disability was defined as mRS at 90  days of 
0–2, moderate as mRS 3–4, and severe disability and death as 
mRS 5–6. This project was approved by the Monash Health Ethics 
committee.

imaging Techniques
MRI scans were performed on 1.5 T superconducting imaging 
systems (General Electric Medical Systems, Milwaukee, WI, USA 
and Siemens Medical Solutions, Malvern, PA, USA) with echo-
planar imaging capabilities. Fluid attenuated inversion recovery 
(FLAIR) (TR =  8,802 ms, TE =  130 ms, TI =  2,200 ms, voxel 
size 0.50  mm  ×  0.50  mm  ×  5  mm). Diffusion-weighted imag-
ing (DWI) was performed using EPI techniques with 6/1.7 mm 
thickness, matrix 128 ×  256, field of view 230 mm, and TR/TE  
10,000/102 ms. Diffusion gradient values (b values) of 0 and 
1,000 s/mm2 were applied in three directions. The images with 
the 1,000 s/mm2 diffusion gradient are referred to here as DWI 
images. Apparent diffusion coefficient (ADC) maps were calcu-
lated using the Stesjkal and Tanner equation on a voxel by voxel 
basis.

segmentation and registration
The imaging method was described in a previous paper from our 
group (10). In brief, infarct tissue was manually segmented on T2-
weighted and B1000 images of the DWI sequence. On the ADC 
map, voxels were empirically defined as abnormal if the ADC 
values were ≤800 × 10−6 mm/s2. This empirical definition would 

result in more voxels being classified as infarcted compared with 
a value lower than 800  ×  10−6  mm/s2. The infarct volume was 
calculated by finding the union of infarct tissue (total infarct 
volume) on the FLAIR, B1000 image, and ADC images.

statistical analysis
In this study, we used decision tree analysis to develop models for 
discriminating between mild disability and severe disability or 
death. The tree construction was performed using a free version 
of CART known as rpart (available from R Foundation, http://
cran.r-project.org/web/packages/rpart/rpart.pdf). The classifica-
tion can be viewed as a set of rules that are applied sequentially 
with each rule partitioning an attribute (predictor variable) into 
a binary response. The method uses a splitting rule built around 
the notion of “purity.” A node in the tree is defined as pure when 
all the elements belong to one class. When there is impurity in 
the node, a split occurs to maximize reduction in “impurity.” In 
some case, the split may be biased toward attributes that contain 
many different ordinal levels or scales (11). Thus the selection of 
an attribute as the root node may vary according to the splitting 
rule and the scaling of the attribute (11). We refer to this type of 
analysis as a binary decision tree to indicate partitioning of the 
data into two groups. One major advantage of rpart is the presen-
tation of the classification rules in the easily interpretable form 
of a tree. The hierarchical nature of the decision tree is similar to 
many decision processes. The data were partitioned into training 
(4/5) and validation (1/5). The accuracy of the model was assessed 
using the area under the ROC (auROC) and interpreted using the 
guidelines set by Hosmer and Lemeshow (12). An auROC of 0.5 is 
classified as no better than by chance; 0.6–0.69 provides poor dis-
crimination; 0.7–0.79 provides acceptable (fair) discrimination; 
0.8–0.89 provides good (excellent) discrimination, and 0.9–1.0 
provides outstanding discrimination (12).

Model 1a: Imaging Data at Day 0
The decision tree was grown using the following predictors: 
infarct volume, GCS at day 0, witnessed cardiac arrest, estimated 
duration of downtime to cardiopulmonary resuscitation, cooling, 
age, and sex. For the purpose of these exploratory analyses, we 
make the assumption that the infarct volume remains constant 
from day 0 to day 7.

Model 1b: No Imaging Group at Day 0
The decision tree was grown using the following predictors: GCS 
at day 0, witnessed cardiac arrest, estimated duration of downtime 
to cardiopulmonary resuscitation, cooling, age, and sex.

Model 2a: Imaging Data at Day 2
The decision tree was grown using the following predictors: 
infarct volume, GCS at day 2, witnessed cardiac arrest, estimated 
duration of downtime to cardiopulmonary resuscitation, cooling, 
age, and sex.

Model 2b: No Imaging Group at Day 2
The decision tree was grown using the following predictors: GCS 
at day 2, witnessed cardiac arrest, estimated duration of downtime 
to cardiopulmonary resuscitation, cooling, age, and sex.
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AUC=0.94 (95% CI 0.82 -1.00)

FigUre 1 | The decision tree model incorporating infarct volume at day 0 and day 2. The poor outcomes are labeled in orange boxes, and the good outcomes  
are labeled as green boxes. Age is important when the infarct volume is less than 6 ml. The area under receiver operating curve for training data was 0.94  
(95% CI 0.82–1.00).
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Model 3a: Imaging Data at Day 7
The decision tree was grown using the following predictors: 
infarct volume, GCS at day 7, witnessed cardiac arrest, estimated 
duration of downtime to cardiopulmonary resuscitation, cooling, 
age, and sex.

Model 3b: No Imaging Data at Day 7
The decision tree was grown using the following predictors: GCS 
at day 7, witnessed cardiac arrest, estimated duration of downtime 
to cardiopulmonary resuscitation, cooling, age, and sex.

resUlTs

general characteristics
A total of 309 patients with cardiac arrest presented to Monash 
Medical Centre between December 2003 and January 2011. 
Forty-one (13.3%) patients met the inclusion criteria (coma fol-
lowing cardiac arrest, ICU admission, and MR imaging) and were 
included in our study. The mean age ± SD was 51.5 ± 18.9 years. 
Fifty-nine percent of the studied patients received cooling therapy. 
The mean down time was 24.3 ± 14.0 min. The median time to MR 
imaging among the group with mRS 6 was 4.5 days (interquartile 
range 3.3 and 13.0 days). The median time to MR imaging for 
the remainder (mRS 0–5) was 10.0 days (interquartile range 6.3 
and 13.0 days). The median time from MR imaging to death was 
6 days (interquartile range 3.3 and 15 days). Approximately 27.8% 
of patients died 3 days after MR imaging.

Decision Tree Models
At day 0, model 1a (Figure 1) showed that age is important when 
the infarct volume is less than 6 ml. Patients with larger infarct 
volume (>6 ml) did poorly regardless of their age. By contrast, 

younger patients (<68  years old) with small infarct volume 
(<6 ml) had mild to moderate disability outcome. The training 
data consists of four-fifths of 41 patients or 33 patients. The auROC 
for training data was 0.94 (95% CI 0.82–1.00). The validation data 
consist the remaining one-fifth of 41 patients or 8 patients. The 
auROC for validation data was 0.85 (95% CI 0.45–1.00).

At day 0, model 1b (Figure 2) showed that age was the main 
determinant of poor outcome followed by female patients 
(imaging data not used here). Among the male patients, those of 
younger age (<65 years) were less likely to have severe disability. 
The auROC for training data was 0.75 (95% CI 0.53–0.98). The 
auROC for validation data was 0.85 (95% CI 0.45–1.00).

At day 2, model 2a was identical to model 1a in that age and 
infarct volume were important predictors for poor outcome 
prediction at day 2.

At day 2, model 2b (Figure 3) showed that a low GCS pre-
dicted poor outcome (imaging data not used here). The prognosis 
of those patients with higher GCS (≥5.5) can be further defined 
by their age. The auROC for training data was 0.89 (95% CI 
0.72–1.00). The auROC for validation data was 0.85 (0.45–1.00).

At day 7, models 3a and 3b were identical. Patients with 
low GCS (<11) were likely to have severe disability (Figure 4). 
The auROC for training data was 0.96 (95% CI 0.86–1.00). The 
auROC for validation data was 0.95 (95% CI 0.65–1.00).

DiscUssiOn

In this study, we used binary decision trees to explore associations 
between clinical variables and severe disability following hypoxic 
ischemic brain injury. The models were developed to explore their 
potential application by clinicians at different stages of illness. 
For this reason, we have developed the models with and without 
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AUC=0.89 (95%CI 0.72-1.00)

FigUre 3 | The decision tree model without MRI at day 2. The poor outcomes are labeled in orange boxes, and the good outcomes are labeled as green boxes. 
Patients with low Glasgow Coma Score (GCS) (<5.5) had poor outcome while older patients do poorly even if their GCS was higher. The area under receiver 
operating curve for training data was 0.89 (95% CI 0.72–1.00).

AUC=0.75 (95%CI 0.53-0.98)

FigUre 2 | The decision tree model for patients without MRI at day 0. The poor outcomes are labeled in orange boxes, and the good outcomes are labeled as 
green boxes. Age was the main determinant of poor outcome. The area under receiver operating curve for training data was 0.75 (95% CI 0.53–0.98).
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incorporation of infarct volume. These approaches have resulted in 
decision tree models with outstanding discrimination for clinical 
outcome, even in the early stage of the intensive care management. 
However, there are caveats—these models were created from data 
of small sample size, and there were strong assumptions about 
the lack of changes in ischemic volume on MR scans. As such, we 
caution the readers not to use the findings for clinical purpose and 
to consider the findings here as proof of concept.

Our choice of decision tree analysis was based on its similarity 
to clinical pathway and ease of understanding by clinicians. The 
decision tree package rpart does tolerate certain degree of miss-
ing number because the data are split using the available data for 
that attribute to calculate the Gini index (rather than the entire 
cohort).

By contrast, models developed from regression methods are less 
easily understood. The beta coefficients from regression analysis 

http://www.frontiersin.org/Neurology/
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AUC=0.96 (95%CI 0.86-1.00)

FigUre 4 | The decision tree model at day 7 shows that Glasgow Coma 
Score (GCS) discriminate disability outcome. The poor outcomes are 
labeled in orange boxes, and the good outcomes are labeled as green 
boxes. Infarct volume did not help to classify good from poor outcome at 
this stage. The area under receiver operating curve for training data was 
0.96 (95% CI 0.86–1.00).
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are converted to an equation for formulation of clinical prediction 
rule. However, these clinical prediction rules assume that all of 
these beta coefficients are required at once to formulate a clinical 
decision rule. Due to the sequential nature of clinical reasoning and 
patient variables, some beta coefficients will be used, and some will 
be left out. This would make some of the elements of the clinical 
prediction rule from regression analysis redundant. By contrast, 
decision tree method generates a logical flowchart diagram that 
resembles a tree (9). This tree-like diagram with repeated partition-
ing of the original data into smaller groups (nodes) on a yes or 
no basis mimics clinical pathway reasoning. Furthermore, there 
is no requirement for clinicians to remember the individual score 
attributed to the variables. A potential disadvantage of the split-
ting rule used here is that it may be biased toward attributes that 
contain many different levels or scales. This may explain the choice 
of infarct volume, age, and GCS as the root node (at the first split).

The idea behind prediction is that the outcome can be “fore-
told” early. In this exploratory analysis, we have used the phrase 
“early associates of outcome” because of the use of MRI scans 
done at different time periods. In line with previous description, 
there was a steady improvement in prediction of coma outcome 
using clinical data only (5). Due to the life and death nature of this 
decision, the auROC should be above 0.90 and corresponded to 
outstanding discrimination (12) before being accepted. Observe 
that the GCS was not a helpful predictor at day 0 because these 
patients were intubated and admitted to intensive care. This meant 
that the GCS would be low. The usefulness of the GCS at day 2 
indicated that if the patients have not regained consciousness it 
portends a poor outcome. This prediction reached a maximum at 
day 7 with auROC classified as outstanding. However, 7 days may 
be too long for the family to wait. This finding is consistent our 
earlier meta-analysis of the importance of clinical examination in 
the prognostication of anoxic coma outcome (5).

The finding from our exploratory analysis on the role of MR 
imaging is encouraging. We demonstrated that between day 0 
and day 2, MR imaging measurement of infarct volume provided 
additional information for prognostication. This finding is 
consistent with the other observations on the use of MR imaging 
(13). We should acknowledge that our analyses were performed 
with the major assumption that the MR imaging findings do not 
significantly change between day 0 and day 7. There is a logistic 
difficulty of arranging multiple medical and nursing staff to 
ensure patient safety during MR scanning and as such we would 
not be able to perform MR imaging three times within 7 days. 
MR imaging data from neuroprotection trials in ischemic stroke 
showed a small increase between 12 h after onset and at 24 h (14). 
In this study, infarct expansion declined in the subacute period 
(14). With regards to the effect of the timing of MR imaging on the 
outcome, investigators have described a small decrease in infarct 
volume at 3 months when compared with the same infarct that 
was scanned within 7 days of stroke (15). However, these changes 
are less likely to affect the small infarct volume of 6 ml in our study.

Our approach of using the combined infarct volume in the 
prediction of outcome is different from other published studies on 
MR imaging (7, 13). In that study, the investigators had used dif-
ferent thresholds of ADC values to separate the outcomes among 
three different groups (13). Importantly the group who were alive 
in that study had infarct volume (ADC < 650 × 10−6 mm2/s) of 
less than 10% of total brain voxels. Other groups have found dif-
ferences in regional ADC values across the whole brain between 
those with good and poor outcome (7, 16). However, the use 
of whole brain median ADC values to predict poor outcome is 
less easy to perform at the bedside compared with estimation of 
volume of 6 ml (7).

limitations
The limitations of this study have been described in a related 
paper on topography of hypoxic ischemic injury (10). These 
limitations include retrospective nature, small sample size (only 
13% of the comatosed patient had MR scans), and potential for 
underestimation of white matter ischemic injury when using 
conventional imaging. Specific to this analysis, the small sample 
size limited our ability to perform a validation study using the 
method of partitioning the cohort into training and valida-
tion cohorts. The median time to MR imaging was 7  days in 
our study, and this raised the issue of infarct underestimation 
on the DWI images from the effect of pseudonormalization, 
which could have affected the appearance of ischemic injury in 
patients scanned between around day 4 and 10 (17, 18). This 
phenomenon affects the DWI sequences but not the FLAIR 
images and hence our choice to define the final ischemic injury 
by the union of the lesions on ADC, DWI and FLAIR images. 
Our paper may be criticized in the use of delayed scans to predict 
outcome at 1–2 days. As stated in the development of the model 
in Section “Materials and Methods,” we had assumed that the 
ischemic volume would remain constant (taking into account 
the DWI, ADC, and FLAIR ischemic volume). There are strong 
assumptions made in this study about the lack of changes in MR 
imaging findings as time elapsed from the initial ischemic event. 
These assumptions would require validation in prospective 
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study. Although the median time to death after MR imaging 
was 6 days, there was the possibility of a self-fulfilling prophecy. 
The self-fulfilling prophecy as it relates to this retrospective 
study, opens up the possibility that the MRI findings may have 
influenced the treating physicians in the decision to continue or 
withdraw ongoing supportive treatment. Therefore, it is possible 
that supportive care could have been terminated in patients 
with large infarct volumes leading to death and strengthening 
the association.

conclusion
Our findings provide proof of concept for further exploration of 
the role of MR imaging in the early prognostication of hypoxic 
ischemic brain injury outcome. Decision tree analysis may be 
used to help with developing pathway for classifying coma 
outcome.
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