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Background and objective: Promoter status of O6-methylguanine-DNA methyltrans-
ferase (MGMT) has been widely established as a clinically relevant factor in glioblastoma 
(GBM) patients. However, in addition to varied therapy schedule, the prognosis of GBM 
patients is also affected by variations of age, race, primary or recurrent tumor. This study 
comprehensively investigated the association between MGMT promoter status and 
prognosis in overall GBM patients and in different GBM subtype including new diag-
nosed patients, recurrent patients and elderly patients.

methods: A comprehensive search was performed using PubMed, EMBASE, Cochrane 
databases to identify literatures (published from January 1, 2005 to April 1, 2017) that evalu-
ated the associations between MGMT promoter methylation and prognosis of GBM patients.

Results: Totally, 66 studies including 7,886 patients met the inclusion criteria. Overall GBM 
patients with a methylated status of MGMT receiving temozolomide (TMZ)-containing 
treatment had better overall survival (OS) and progression-free survival (PFS) [OS: hazard 
ratio (HR) = 0.46, 95% confidence interval (CI): 0.41–0.52, p < 0.001, Bon = 0.017; PFS: 
HR = 0.48, 95% CI 0.40–0.57, p < 0.001, Bon = 0.014], but no significant advantage 
on OS or PFS in GBM patients with TMZ-free treatment was observed (OS: HR = 0.97, 
95% CI 0.91–1.03, p = 0.08, Bon = 1; PFS: HR = 0.76, 95% CI 0.57–1.02, p = 0.068, 
Bon = 0.748). These different impacts of MGMT status on OS were similar in newly diag-
nosed GBM patients, elderly GBM patients and recurrent GBM. Among patients receiving 
TMZ-free treatment, survival benefit in Asian patients was not observed anymore after 
Bonferroni correction (Asian OS: HR = 0.78, 95% CI 0.64–0.95, p = 0.02, Bon = 0.24, 
I2 = 0%; PFS: HR = 0.69, 95% CI 0.50–0.94, p = 0.02, Bon = 0.24). No benefit was 
observed in Caucasian receiving TMZ-free therapy regardless of Bonferroni adjustment.

conclusion: The meta-analysis highlights the universal predictive value of MGMT 
methylation in newly diagnosed GBM patients, elderly GBM patients and recurrent GBM 
patients. For elderly methylated GBM patients, TMZ alone therapy might be a more 
suitable option than radiotherapy alone therapy. Future clinical trials should be designed 
in order to optimize therapeutics in different GBM subpopulation.
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iNtRODUctiON

Glioblastoma (GBM) is the most frequent primary malignant 
brain tumor with poor prognosis. From 2005, radiotherapy com­
bined with concomitant and adjuvant temozolomide (TMZ) after 
surgical maximal safe resection, namely STUPP treatment, has 
been widely used for newly diagnosed GBM patients less than 
65 years old (1, 2). A phase III trial showed that tumor treatment 
fields, a novel cancer treatment modality, had similar efficacy as 
chemotherapy regimens in recurrent GBM (3). However, limited 
improvement of the overall survival (OS) has been achieved in 
patients with GBM (4, 5). Therefore, identification of biomarkers 
determining tumor response to treatment may help in developing 
targeted therapy or optimize patients’ management.

O­6­methylguanine­DNA methyltransferase (MGMT) is a ubi­
quitously expressed DNA repair enzyme. MGMT protein removes 
alkyl adducts at the O6 position of guanine, thereby neutralizing 
the cytotoxic effects of alkylating agents such as TMZ (6, 7). High 
MGMT expression in glioma cells is the predominant mechanism 
underlying tumor resistance to alkylating agents (8–10). Meanwhile, 
status of MGMT promoter methylation is associated with tumor 
response to TMZ therapy (11, 12). MGMT promoter methylation, 
resulting in transcriptional silencing, correlates well with improved 
survival in GBM patients exposed to alkylating agents’ treatment 
(13–15). Results of European Organization for Research and 
Treatment of Cancer and National Cancer Institute of Canada trial 
indicated that MGMT promoter methylation was the strongest 
predictor for outcome and benefit from TMZ (2, 16). Accordingly, 
this biomarker is currently used for clinical decision­making and 
stratifying or selecting GBM patients for clinical trials (17).

Although MGMT promoter methylation has a strong influ­
ence on response to TMZ and clinical outcome in GBM patients, 
its prognostic value on GBM patients remains ambiguous. Some 
studies indicated that it was associated with better outcome in 
methylated patients receiving TMZ­containing therapy (18, 19). 
But some studies also showed that it conferred survival benefit 
in methylated patients receiving TMZ­free therapy (21, 22). So it 
is necessary to review whether the survival benefit from MGMT 
methylation is therapy dependent or independent, which will 
define MGMT promoter methylation as a predictive or prog­
nostic biomarker. In addition to varied therapy schedules, the 
outcome and survival of GBM patients may be affected by other 
prognostic variables, including primary or recurrent tumor, age 
and race. Thus, we conducted a comprehensive and exact analysis 
on the association between MGMT promoter methylation and 
prognosis in overall GBM patients as well as in different GBM 
subpopulation, including newly diagnosed patients, recurrent 
patients, elderly patients and patients with different races. This 
meta­analysis will provide an updated and precise review on the 
clinical value of MGMT promoter methylation on progression­
free survival (PFS) and OS in GBM patients.

metHODS

Search Strategy
We performed a systematic review to identify all related articles 
from PubMed, EMBASE and the Cochrane Library covering 

the association of MGMT methylation with prognosis and data 
of hazard ratios (HRs) and 95% confidence intervals (CIs). The 
articles enrolled in analysis were published between January 1, 
2005 and April 1, 2017. The following subject terms were used: 
(1) “Glioblastoma,” “GBM,” “High­Grade Glioma,” “Astrocytoma, 
Grade IV,” “Astrocytomas, Grade IV,” “Glioblastoma Multiform,” 
or “Glioblastomas”; (2) “MGMT” or “O­6­methylguanine­DNA 
methyltransferase.” The eligible studies were restricted to human 
beings.

inclusion and exclusion criteria
We evaluated the eligible studies only if all the following con­
ditions were met: (1) studies investigated the relation between 
MGMT promoter methylation and survival in GBM patients;  
(2) treatment schedules and testing methods were all included; 
(3) HR and 95% CI for OS and PFS were available directly or cal­
culated using the Kaplan–Meier survival curves; and (4) specific 
drugs for chemotherapy were introduced.

Study Selection and Data extraction
Study selection was independently performed by two authors and 
disagreements were resolved through discussion. The following 
data were extracted: the author’s name, country, publication year, 
number of patients, treatment detail, outcomes (including HRs 
and 95% CIs), the Cox regression model, and study design feature.

Quality assessment
The bias risk in each study was independently assessed by two 
authors using a modified domain­based Newcastle­Ottawa Scale 
(NOS) for non­randomized studies. The assessment included 
selection bias, performance bias, detection bias, attrition bias 
and reporting bias. Important prognostic variables, including age, 
neurologic status, extent of resection, tumor location, primary 
or recurrent GBM and MGMT promoter status, were added into 
NOS according to the Reporting Recommendations for Tumor 
Marker Prognostic Studies (REMARK) checklist for a tumor 
prognostic study (23, 24). The judgment criteria for the modified 
evaluation were explicitly described in Table S1 in Supplementary 
Material.

Statistical analysis
The statistical analysis was performed by STATA 12.0 software. 
HR and 95% CI were directly extracted or calculated using 
the Kaplan–Meier survival curves or the methods reported by 
Tierney et al. (25). To evaluate the association of MGMT pro­
moter methylation with OS and PFS, pooled HRs of methylated 
GBM patients were compared to those of unmethylated patients. 
Subgroup analysis was performed to evaluate whether methyl­
ated patients benefit from different therapies (TMZ­containing, 
TMZ­free alkylating agents, or radiotherapy alone). The statisti­
cal heterogeneity among studies was assessed by Q­test and I 2 
statistics (26). If there was no obvious heterogeneity, fixed­effect 
model was used to estimate the pooled HR (27); otherwise, 
random­effect model was used (28). Bonferroni method was 
used for multiple comparison adjustments. Publication bias was 
assessed by funnel plots and Egger’s test (29), and a trim and 
fill method was applied to estimate asymmetry in funnel plots 
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FiGURe 1 | Flow diagram of study selection.
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(30). Sensitivity analysis by deleting each enrolled study in turn 
was conducted to assess overall robustness of the meta­analysis 
results.

ReSULtS

characteristics of Studies
The flow chart of literature selection was presented in Figure 1. 
Totally, 3,181 articles were screened. Finally, a total of 7,886 
patients in 66 studies (four articles comprising two individual 
trials were extracted as eight individual studies) were identi­
fied, including 7 randomized trials, 59 non­randomized trials. 
Of these 66 studies, 54 studies were related to TMZ­containing 
chemotherapy and 12 studies were related to TMZ­free treat­
ment (4 studies of radiotherapy alone and 12 studies of TMZ­
free alkylating agents chemotherapy). The characteristics of all 
studies are summarized in Table 1. Quality assessment showed 
no apparent variations among the studies in most domains of 
bias except for selection bias (see Table S1 in Supplementary 
Material).

association between MGMT Promoter 
methylation and Survival in Overall GBm 
Patients
Sixty­four and 25 studies were included to describe the cor­
relation of MGMT methylation status with OS and PFS in 
GBM patients, respectively. GBM patients with MGMT 
promoter methylation had significantly better OS and PFS 
than those with unmethylated status (OS: HR  =  0.52, 95% 
CI 0.46–0.59, p < 0.001, I2 = 86.2%; PFS: HR = 0.51, 95% CI 
0.43–0.59, p < 0.001, I2 = 70.2%; see Figure S1 in Supplementary 
Material), indicating the association between methylation and 
survival benefit in GBM patients. Next, subgroup analysis was 

conducted to evaluate whether methylated GBM patients could 
benefit from different therapies. The results of subgroup analysis 
were summarized in Table 2. Our analysis showed that, among 
patients exposed to TMZ­containing treatment, methylated 
patients had longer OS and PFS than unmethylated patients 
(OS: HR  =  0.46, 95% CI 0.41–0.52, p  <  0.001, Bon  =  0.017, 
I2  =  70.9%, Figure  2; PFS: HR  =  0.48, 95% CI 0.40–0.57, 
p  <  0.001, Bon  =  0.014, I2  =  67.4%, Figure  3). However, no 
significant OS benefit from TMZ­free treatment was observed 
in methylated patients by analysis of 12 studies (21, 35, 44, 58, 
69, 70, 77, 84, 85) (HR  =  0.97, 95% CI 0.91–1.03, p  =  0.32, 
I2 = 2.9%, Figure 2). Further analysis showed that methylated 
patients derived no OS benefit from TMZ­free alkylating agents 
chemotherapy (HR = 0.97, 95% CI 0.93–1.03, p = 0.41, Bon = 1, 
I2  =  9.1%). Similarly, PFS was not significantly prolonged in 
methylated patients with TMZ­free alkylating agents chemo­
therapy (HR = 0.76, 95% CI 0.57–1.02, p = 0.40, Bon = 0.748, 
I2  =  40.8%, Figure  3). These results indicate that MGMT 
methylation is predictive for better response to TMZ therapy 
in GBM patients.

association between mGmt Promoter 
methylation and Survival in Newly 
Diagnosed GBm Subpopulation
There were 54 and 17 studies recruited to assess the impact of 
MGMT promoter methylation on OS and PFS in newly diagnosed 
GBM patients, respectively. MGMT promoter methylation in newly 
diagnosed GBM patients was also associated with improved OS 
and PFS (OS: HR = 0.49, 95% CI 0.43–0.57, p < 0.001, I2 = 87.7%; 
PFS: HR = 0.50, 95% CI 0.41–0.61, p < 0.001, I2 = 73.8%, Figure 
S2 in Supplementary Material). Subgroup analysis showed that 
methylated patients receiving TMZ­containing treatment had 
better OS and PFS than unmethylated patients (OS: HR = 0.45, 
95% CI 0.40–0.52, p < 0.001, Bon = 0.017, I2 = 69.8%, Figure 4; 
PFS: HR  =  0.47, 95% CI 0.39–0.57, p  <  0.001, Bon  =  0.014, 
I2 = 66.1%, Figure 5). No significant advantage on OS and PFS 
was observed in methylated patients receiving TMZ­free treat­
ment (OS: HR  =  0.97, 95% CI 0.90–1.04, p  =  0.37, Bon  =  1, 
I2 = 5.6%, Figure 4; PFS: HR = 0.93, 95% CI 0.70–1.24, p = 0.62, 
Bon  =  1, Figure  5). These observations were similar to those 
in overall GBM patients, indicating that the beneficial effect of 
methylation on OS in newly diagnosed patients was also TMZ 
therapy­dependent.

association between MGMT Promoter 
methylation and Survival in elderly GBm 
Subpopulation
Overall survival in elderly GBM patients was assessed on the 
basis of 11 studies comprising 1,321 patients. Among these stud­
ies, elderly was defined as 60 years or older (58), over 65 years old 
(32, 41, 55, 61, 70, 84), or 70 years or older (39, 62). A significant 
correlation between MGMT promoter methylation and better 
OS was observed in elderly GBM patients (HR = 0.58, 95% CI 
0.40–0.82, p =  0.002, I2 =  83.4%, Figure S3 in Supplementary 
Material). A significant improvement on OS was also found in 
methylated elderly patients with TMZ­containing treatment 
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taBLe 1 | Characteristics of included studies.

author country Study type cox Patients (N) OS HR (95% ci) type of cancer treatment after resection Race methylation assay 
method

Arita et al. (31) Japan Retrospective Multivariate 453 0.43 (0.33, 0.56) GBM RT + TMZ Asian Pyrosequencing
Arvold et al. (32) America Non-RCT Univariate 55 0.47 (0.27, 0.81) GBM RT + TMZ Mixed race NA
Azoulay et al. (33) Canada Non-RCT Multivariate 276 0.46 (0.33, 0.64) GBM RT + TMZ Caucasian NA
Brandes et al. (34) Italy Non-RCT Multivariate 119 0.66 (0.47, 0.94) GBM RT + TMZ Caucasian MSP
Brandes et al. (22) Italy Non-RCT Univariate 25 0.19 (0.04, 0.99) Recurrent GBM RT + FTM Caucasian MSP
Chen et al. (35) China Non-RCT Multivariate 128 0.65 (0.41, 1.01) GBM RT Asian NA
Clarke et al. (36) America RCT Univariate 85 0.42 (0.13, 1.39) GBM RT + TMZ Mixed race MSP
Cominelli et al. (37) Italy Non-RCT Univariate 70 0.12 (0.01, 0.98) GBM RT + TMZ Caucasian MSP
Etcheverry et al. (38) Spain Non-RCT Multivariate 399 0.33 (0.24, 0.46) GBM RT + TMZ Caucasian MSP and 

Pyrosequencing
Gallego Perez-Larraya et al. (39) France Non-RCT Multivariate 31 0.43 (0.20, 0.93) GBM TMZ Caucasian MSP
Gilbert et al. (40) America RCT Univariate 760 0.58 (0.48, 0.69) GBM RT + TMZ Mixed race MSP
Giordano et al. (41) Germany Non-RCT Univariate 65 1.31 (0.75, 2.28) GBM RT + TMZ + Celecoxid Caucasian NA
Glas et al. (42) Switzerland Non-RCT Univariate 23 0.43 (0.22, 0.76) GBM RT + TMZ + CCNU Caucasian MSP
Grossman et al. (43) America Non-RCT Multivariate 122 0.85 (0.56, 1.31) GBM RT + TMZ + BCNU Mixed race MSP
Gutenberg et al. (44) Germany Non-RCT Univariate 17 0.62 (0.43, 0.90) Recurrent GBM BCNU + TMZ Caucasian MSP
Gutenberg et al. (44) Germany Non-RCT Univariate 13 0.99 (0.94, 1.04) GBM BCNU Caucasian MSP
Han et al. (45) China Non-RCT Multivariate 152 0.66 (0.44, 0.98) GBM RT + TMZ Asian MSP
Jungk et al. (46) Germany Non-RCT Multivariate 63 0.89 (0.51, 1.53) Recurrent GBM RT + BCNU Caucasian MSP
Kerkhof et al. (47) France Non-RCT Multivariate 47 1.04 (0.84, 1.29) GBM RT + TMZ Caucasian NA
Kim et al. (48) Korea Non-RCT Multivariate 70 0.30 (0.14, 0.65) GBM RT + TMZ Asian NA
Kim et al. (49) Korea Non-RCT Multivariate 78 0.56 (0.40, 0.83) GBM RT + TMZ Asian MSP
Kreth et al. (50) Germany Non-RCT Multivariate 222 0.30 (0.22, 0.41) GBM RT + TMZ Caucasian MSP
Lai et al. (51) America Non-RCT Multivariate 70 0.49 (0.34, 0.71) GBM RT + TMZ + BEV Mixed race MSP
Lakomy et al. (52) Czech Republic Non-RCT Univariate 38 0.40 (0.21, 0.78) GBM RT + TMZ Caucasian MS-HRM
Lam and Chambers (53) Canada Non-RCT Univariate 101 0.64 (0.38, 1.08) GBM RT + TMZ Caucasian MSP
Lee et al. (54) Korea Non-RCT Multivariate 36 0.22 (0.04, 1.12) GBM RT + TMZ Asian MSP
Liu et al. (21) China Non-RCT Multivariate 137 0.88 (0.58, 1.26) Recurrent GBM BEV + FTM Asian MSP
Lombardi et al. (55) Italy Non-RCT Multivariate 151 0.2 (0.10, 0.50) GBM RT + TMZ Caucasian MSP
Lombardi et al. (56) Italy Non-RCT Univariate 34 0.80 (0.65, 0.97) Recurrent GBM TMZ + FTM Caucasian MSP
Ma et al. (57) China Non-RCT Multivariate 56 0.44 (0.19, 0.83) GBM RT + TMZ + ELE Asian MSP
Malmström et al. (58) Europe (multicenter) RCT Univariate 72 0.56 (0.34, 0.93) GBM TMZ Caucasian MSP
Malmström et al. (58) Europe (multicenter) RCT Univariate 131 0.97 (0.69, 1.38) GBM RT Caucasian MSP
Metellus et al. (59) France Non-RCT Multivariate 61 0.10 (0.02, 0.37) GBM RT + TMZ Caucasian MSP
Metellus et al. (60) France Non-RCT Multivariate 21 0.19 (0.06, 0.77) Recurrent GBM TMZ + BCNU Caucasian MSP
Minniti et al. (61) Italy Non-RCT Multivariate 243 0.30 (0.21, 0.42) GBM RT + TMZ Caucasian MSP
Minniti et al. (62) Italy Non-RCT Multivariate 83 0.41 (0.22, 0.75) GBM RT + TMZ Caucasian MSP
Minniti et al. (63) Italy Non-RCT Multivariate 36 0.40 (0.19, 0.94) Recurrent GBM RT + TMZ Caucasian MSP
Montano et al. (64) Italy Non-RCT Multivariate 73 0.72 (0.37, 1.37) GBM RT + TMZ Caucasian MSP
Motomura et al. (65) Japan Non-RCT Multivariate 68 0.38 (0.18, 0.83) GBM RT + TMZ + β-IFN Asian Pyrosequencing
Murat et al. (66) Germany Non-RCT Multivariate 42 0.06 (0.001, 0.20) GBM RT + TMZ Caucasian NA
Nguyen et al. (67) America Non-RCT Multivariate 303 0.39 (0.30, 0.52) GBM RT + TMZ + BEV Mixed race MSP
Niyazi et al. (68) Germany Non-RCT Univariate 30 0.28 (0.10, 0.77) GBM RT + TMZ Caucasian MSP
Park et al. (69) Korea Non-RCT Multivariate 48 0.81 (0.43, 1.52) GBM RT + ACNU + CDDP Asian MSP
Perry et al. (70) Canada and Europe RCT Univariate 281 0.93 (0.68, 1.21) GBM RT Caucasian MSP
Rosati et al. (71) Italy Non-RCT Multivariate 47 0.27 (0.12, 0.60) GBM RT + TMZ Caucasian MSP
Sana et al. (72) Czech Republic Non-RCT Univariate 58 0.51 (0.29, 0.91) GBM RT + TMZ Caucasian MS-HRM
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author country Study type cox Patients (N) OS HR (95% ci) type of cancer treatment after resection Race methylation assay 
method

Saraiva-Esperon et al. (73) America Non-RCT Multivariate 159 0.52 (0.36, 0.73) GBM RT + TMZ Caucasian MSP
Saraiva-Esperon et al. (73) Australia Non-RCT Multivariate 144 0.42 (0.28, 0.63) GBM RT + TMZ Mixed race Pyrosequencing
Schaich et al. (74) Germany Non-RCT Multivariate 61 0.88 (0.36, 2.15) GBM RT + TMZ Caucasian MSP
Schaub et al. (75) Germany Non-RCT Univariate 143 1.13 (0.77, 1.66) Recurrent GBM RT + BEV + CPT-11 Caucasian NA
Shenouda et al. (76) Canada Non-RCT Univariate 48 0.40 (0.19, 0.77) GBM RT + TMZ Caucasian NA
Soffietti et al. (77) Italy Non-RCT Multivariate 38 0.82 (0.38, 1.74) Recurrent GBM BEV + FTM Caucasian MSP
Stummer et al. (78) Germany Non-RCT Univariate 79 0.23 (0.10, 0.52) GBM RT + TMZ Caucasian MSP
Stupp et al. (79) Europe(multicenter) Non-RCT Univariate 55 0.44 (0.21, 0.91) GBM RT + TMZ + Cilengitide Caucasian MSP
Thon et al. (80) Germany Non-RCT Multivariate 56 0.31 (0.16, 0.58) GBM RT + TMZ (unresectable) Caucasian MSP
Vaios et al. (81) America Non-RCT Multivariate 86 0.11 (0.04, 0.26) GBM TMZ Mixed race NA
Van Mieghem et al. (82) Belgium Non-RCT Multivariate 112 0.70 (0.27, 1.8) GBM RT + TMZ Caucasian MSP
Wee et al. (83) Korea Non-RCT Multivariate 340 0.54 (0.41, 0.70) GBM RT + TMZ Asian MSP
Weller et al. (19) Europe(multicenter) Non-RCT Univariate 105 0.55 (0.44, 0.68) Recurrent GBM RT + TMZ Caucasian MSP
Wick et al. (84) Europe(multicenter) RCT Univariate 101 0.96 (0.56, 1.63) GBM RT Caucasian MSP
Wick et al. (84) Europe(multicenter) RCT Univariate 108 0.44 (0.27, 0.72) GBM TMZ Caucasian MSP
Yang et al. (85) China Non-RCT Multivariate 206 0.78 (0.57, 1.04) GBM RT + BCNU Asian MSP
Yang et al. (86) China Non-RCT Multivariate 238 0.59 (0.37, 0.95) GBM RT + TMZ Asian Pyrosequencing
Zhang et al. (87) China Non-RCT Multivariate 154 0.24 (0.15, 0.39) GBM RT + TMZ Asian NA

author country Study type cox Patients (N) OS HR (95% ci) type of cancer treatment after resection Race testing methods

Lai et al. (51) America Non-RCT Multivariate 70 0.47 (0.32, 0.70) GBM RT + TMZ + BEV Mixed race MSP
Shenouda et al. (76) Canada Non-RCT Univariate 48 0.47 (0.22, 0.78) GBM RT + TMZ Caucasian NA
Soffietti et al. (77) Italy Non-RCT Multivariate 38 0.48 (0.21, 1.09) Recurrent GBM BEV + FTM Caucasian MSP
Stupp et al. (79) Europe (multicenter) Non-RCT Univariate 45 0.26 (0.13, 0.51) GBM RT + TMZ + Cilengitide Caucasian MSP
Arita et al. (31) Japan Non-RCT Multivariate 453 0.48 (0.37, 0.61) GBM RT + TMZ Asian Pyrosequencing
Lee et al. (54) Korea Non-RCT Multivariate 36 0.40 (0.15, 1.1) GBM RT + TMZ Asian MSP
Metellus et al. (59) France Non-RCT Multivariate 61 0.42 (0.21, 0.92) GBM RT + TMZ Caucasian MSP
Metellus et al. (60) France Non-RCT Multivariate 21 0.15 (0.08, 0.48) Recurrent GBM TMZ + BCNU Caucasian MSP
Minniti et al. (61) Italy Non-RCT Multivariate 243 0.29 (0.21, 0.40) GBM RT + TMZ Caucasian MSP
Minniti et al. (63) Italy Non-RCT Multivariate 36 0.38 (0.18, 0.79) Recurrent GBM RT + TMZ Caucasian MSP
Ohno et al. (88) Japan Non-RCT Multivariate 88 0.35 (0.21, 0.59) GBM RT + TMZ + ACNU Asian Pyrosequencing
Thon et al. (80) Germany Non-RCT Multivariate 56 0.32 (0.17, 0.59) GBM RT + TMZ Caucasian MSP
Weller et al. (19) Europe (multicenter) Non-RCT Univariate 105 0.57 (0.35, 0.90) Recurrent GBM RT + TMZ Caucasian MSP
Gilbert et al. (40) America RCT Univariate 760 0.61 (0.52, 0.73) GBM RT + TMZ Mixed race MSP
Cominelli et al. (37) Italy Non-RCT Univariate 70 0.29 (0.04, 2.24) GBM RT + TMZ Caucasian MSP
Giordano et al. (41) Germany Non-RCT Univariate 65 2.04 (1.04, 4.00) GBM RT + TMZ Caucasian NA
Gutenberg et al. (44) Germany Non-RCT Univariate 13 0.93 (0.70, 1.24) GBM BCNU Caucasian MSP
Gutenberg et al. (44) Germany Non-RCT Univariate 17 0.60 (0.33, 1.07) Recurrent GBM BCNU + TMZ Caucasian MSP
Kim et al. (89) Korea Non-RCT Multivariate 72 0.47 (0.27, 0.82) Recurrent GBM RT + TMZ Asian MSP
Kim et al. (49) Korea Non-RCT Multivariate 78 0.63 (0.46, 0.91) GBM RT + TMZ Asian MSP
Lakomy et al. (52) Czech Republic Non-RCT Univariate 38 0.48 (0.25, 0.92) GBM RT + TMZ Caucasian MS-HRM
Liu et al. (21) China Non-RCT Multivariate 137 0.69 (0.52, 0.97) Recurrent GBM BEV + FTM Asian MSP
Lombardi et al. (56) Italy Non-RCT Univariate 34 0.72 (0.59, 0.87) Recurrent GBM TMZ + FTM Caucasian MSP
Nguyen et al. (67) America Non-RCT Multivariate 303 0.43 (0.33, 0.57) GBM RT + TMZ + BEV Mixed race MSP
Sana et al. (72) Czech Republic Non-RCT Univariate 58 0.54 (0.23, 0.96) GBM RT + TMZ Caucasian MS-HRM

Studies enrolled for OS analysis. TMZ, temozolomide; RCT, randomized control trial; RT, radiotherapy; BCNU, carmustine; FTM; fotemustine; BEV, bevacizumab; CCNU, lomustine; ELE, β-element; ACNU, nimustine; CDDP, cisplatin; 
β-IFN, interferon-β; CPT-11, irinotecan; MSP, methylation-specific PCR; NA, not available.
Studies enrolled for PFS analysis. TMZ, temozolomide; RCT, randomized control trial. RT, radiotherapy; BCNU, carmustine; FTM; fotemustine; BEV, bevacizumab; ACNU, nimustine; MSP, methylation-specific PCR; NA, not available.
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taBLe 2 | Summary of subgroup analysis.

variable Subgroup treatment trial (N) HR (95% ci) P-value for HR Bon I2 P-value (egger’)

OS analysis (methylated vs. unmethylated)

Overall TMZ-containing 52 0.46 (0.41–0.52) <0.001 0.017 70.9% 0.001
TMZ-free 12 0.97 (0.91–1.03) 0.32 1 2.90% 0.053

Race Caucasian TMZ-containing 34 0.46 (0.39–0.55) <0.001 0.017 75.5% 0.003
TMZ-free 8 0.99 (0.94–1.04) 0.71 1 0% 0.27

Asian TMZ-containing 10 0.48 (0.42–0.54) <0.001 0.017 43.8% 0.26
TMZ-free 4 0.78 (0.64–0.95) 0.015 0.24 0% NA

Mixed race TMZ-containing 8 0.48 (0.38–0.62) <0.001 0.017 67.7% 0.302
TMZ- free 0 NA NA NA NA NA

Study type non-RCT TMZ-containing 48 0.46 (0.40–0.52) <0.001 0.017 72.9% 0.001
TMZ-free 9 0.90 (0.78–1.03) 0.13 1 26.3% 0.033

RCT TMZ-containing 4 0.56 (0.48–0.65) <0.001 0.017 0% NA
TMZ-free 3 1.02 (0.83–1.25) 0.83 1 0% NA

GBM Type Newly diagnosed TMZ-containing 47 0.45 (0.40–0.52) <0.001 0.017 69.80% 0.007
TMZ-free 7 0.97 (0.90–1.04) 0.374 1 5.6% NA

Elderly TMZ-containing 8 0.46 (0.32–0.65) <0.001 0.017 71% 0.695
TMZ-free 3 1.02 (0.83–1.25) 0.83 1 0% NA

Recurrent TMZ-containing 5 0.59 (0.44–0.78) <0.001 0.017 65% NA
TMZ-free 5 0.92 (0.70–1.19) 0.52 1 16.40% NA

PFS analysis (methylated vs. un-methylated)

Overall TMZ-containing 22 0.48 (0.40–0.57) <0.001 0.014 67.4% 0.092
TMZ-free 3 0.76 (0.57–1.02) 0.068 0.748 40.8% NA

Race Caucasian TMZ-containing 14 0.46 (0.34–0.63) <0.001 0.014 76.2% 0.22
TMZ-free 2 0.75 (0.41–1.38) 0.35 1 54.8% NA

Asian TMZ-containing 5 0.49 (0.41–0.59) <0.001 0.014 0% NA
TMZ-free 1 0.69 (0.50–0.94) 0.02 0.24 NA NA

Mixed race TMZ-containing 3 0.51 (0.40–0.65) <0.001 0.014 NA NA
TMZ-free 0 NA NA NA NA NA

Study type non-RCT TMZ-containing 21 0.47 (0.39–0.56) <0.001 0.014 67% 0.19
TMZ-free 3 0.76 (0.57–1.02) 0.07 0.7 40.8% NA

RCT TMZ-containing 1 0.61 (0.52–0.73) <0.001 0.014 NA NA
TMZ-free 0 NA NA NA NA NA

GBM type Newly diagnosed TMZ-containing 16 0.47 (0.39–0.57) <0.001 0.014 66.1% 0.44
TMZ-free 1 0.93 (0.70–1.24) 0.62 1 NA NA

Elderly TMZ-containing 0 NA NA NA NA NA
TMZ-free 0 NA NA NA NA NA

Recurrent TMZ-containing 6 0.49 (0.34–0.70) <0.001 0.014 66% NA
TMZ-free 2 0.66 (0.49–0.88) 0.005 0.065 0% NA

HR, hazard ratio; CI, confidence interval; NA, not applicable; TMZ-containing treatment, TMZ-alone and combined radiotherapy/TMZ and combined radiotherapy/TMZ-containing 
chemotherapy; TMZ-free treatment, radiotherapy alone and combined radiotherapy/TMZ-free alkylation agents chemotherapy; Mixed race: patients in American studies; Bon, P for 
Step-down Bonferroni adjustment.
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compared to unmethylated patients with similar treatment 
(HR = 0.46, 95% CI 0.32–0.65, p < 0.001, Bon = 0.017, I2 = 71%, 
Figure  6). No significance benefit from TMZ­free treatment 
found in methylated elderly patients than unmethylated elderly 
patients (HR  =  1.02, 95% CI 0.83–1.25, p  =  0.83, Bon  =  1, 
I2 = 0%, Figure 6).

The efficacy of TMZ­containing therapy versus radiotherapy 
in elderly patients was assessed according to three randomized 
controlled trials (58, 70, 84). Methylated elderly patients with 
TMZ­containing treatment had better OS than those with radio­
therapy alone (HR = 0.55, 95% CI 0.44–0.68, p < 0.001; I2 = 0%, 
Figure  7). However, the benefit of TMZ­containing therapy 
was not observed in elderly patients with unmethylated status 
(HR = 0.97, 95% CI 0.68–1.38, p < 0.001, I2 = 72.8%, Figure 7). 
Elderly patients were often unable to tolerate multimodality 
therapy, so we further assess whether elderly patients with MGMT 

methylation could benefit from TMZ alone or radiotherapy alone 
therapy. Compared to unmethylated elderly patients, prolonged 
OS was observed in methylated elderly patients receiving TMZ 
alone therapy but not in those receiving radiotherapy alone 
(TMZ alone: HR = 0.48, 95% CI 0.35–0.66, p < 0.001, I2 = 0%; 
Radiotherapy alone: HR  =  1.02, 95% CI 0.83–1.25, p  =  0.83, 
I2  =  0%, Figure  8). These results indicated the strong correla­
tion between MGMT methylation and better response to TMZ 
therapy in elderly GBM patients.

association between MGMT Promoter 
methylation and Survival in Recurrent 
GBm Subpopulation
Eleven studies were included to analyze the association between 
MGMT promoter methylation and survival in recurrent GBM 
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FiGURe 2 | Calculated hazard ratios (HRs) and 95% confidence intervals (CIs) for the relationship between methylation and overall survival benefit from 
temozolomide (TMZ)-containing or TMZ-free therapy in overall glioblastoma patients (methylated vs. unmethylated patients).
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patients (19, 21, 22, 44, 46, 56, 60, 63, 75, 77, 89). A significant 
improvement on OS and PFS was observed in methylated 
recurrent patients (OS: HR = 0.70, 95% CI 0.56–0.88, p < 0.001, 
I2  =  61.4%; PFS: HR  =  0.54, 95% CI 0.42–0.70, p  <  0.001, 

I2  =  54.8%, Figure S4 in Supplementary Material). Subgroup 
analysis showed TMZ­containing therapy conferred a survival 
benefit in methylated recurrent patients (OS: HR = 0.59, 95% 
CI 0.44–0.78, p < 0.001, Bon = 0.017, I2 = 65%, Figure 9; PFS: 
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FiGURe 3 | Calculated hazard ratios (HRs) and 95% confidence intervals (CIs) for the relationship between methylation and progression-free survival benefit from 
temozolomide (TMZ)-containing or TMZ-free therapy in overall glioblastoma patients (methylated vs. unmethylated patients).
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HR = 0.49, 95% CI 0.34–0.70, p = 0.001, Bon = 0.014, I2 = 66%, 
Figure 10). In contrast, TMZ­free therapy did not improve OS 
(HR = 0.92, 95% CI 0.70–1.19, p = 0.52, Bon = 1, I2 = 16.4%, 
Figure  9) or PFS (HR  =  0.66, 95% CI 0.49–0.88, p  =  0.005, 
Bon  =  0.065, I2  =  0%, Figure  10) in methylated recurrent 
patients.

association between MGMT Promoter 
methylation and Survival in GBm Patients 
with Different Races
There were 42 studies for Caucasian (European, Canadian, 
Australian), 16 studies for Asian (Chinese, Japanese, Korean), 
and 8 studies for mixed race (American). Compared to unmethy­
lated patients, both OS and PFS were improved in methylated 
patients (OS: Asian: HR = 0.54, 95% CI 0.44–0.65, p < 0.001, 

I2 = 61.1%; Caucasian: HR = 0.53, 95% CI 0.45–0.63, p < 0.001, 
I2 = 86.8%; Mixed race: HR = 0.48, 95% CI 0.38–0.62, p < 0.001, 
I2 = 67.7%; PFS: Asian: HR = 0.53, 95% CI 0.43–0.65, p < 0.001, 
I2 = 31.4%; Caucasian: HR = 0.49, 95% CI 0.37–0.65, p < 0.001, 
I2 = 77.8%; Mixed race: HR = 0.51, 95% CI 0.40–0.65, p < 0.001, 
I2 = 61%, Figure S5 in Supplementary Material). Among GBM 
patients with TMZ­containing treatment, MGMT methylation 
benefited to both Caucasian and Asian (Asian OS: HR = 0.48, 
95% CI 0.42–0.54, p  <  0.001, Bon  =  0.017, I2  =  43.8%; PFS: 
HR = 0.49, 95% CI 0.41–0.59, p < 0.001, Bon = 0.014, I2 = 0%; 
Caucasian OS: HR  =  0.46, 95% CI 0.39–0.55, p  <  0.001, 
Bon  =  0.017, I2  =  75.5%; PFS: HR  =  0.46, 95% CI 0.34–0.63, 
p < 0.001, Bon = 0.014, I2 = 76.2%, Figure S6 in Supplementary 
Material). Among patients receiving TMZ­free treatment, sur­
vival benefit in Asian patients was not observed anymore after 
Bonferroni correction (Asian OS: HR = 0.78, 95% CI 0.64–0.95, 
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FiGURe 4 | Calculated HRs and 95% CIs for the relationship between methylation and OS benefit from TMZ-containing or TMZ-free therapy in newly diagnosed 
GBM patients (methylated vs. unmethylated patients).
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p = 0.02, Bon = 0.24, I2 = 0%; PFS: HR = 0.69, 95% CI 0.50–0.94, 
p = 0.02, Bon = 0.24, Figure S6 in Supplementary Material). No 
benefit was observed in Caucasian receiving TMZ­free therapy 
regardless of Bonferroni adjustment. The impact of MGMT pro­
moter methylation in mixed race was not evaluated since data in 
TMZ­free group was not available.

Publication Bias
Publication bias was evaluated by Egger’s test. Publication bias 
was observed in OS and PFS analysis in overall GBM patients 
(OS: p < 0.001; PFS: p = 0.04). More results were presented in 
Table  2. Therefore, we performed the trim and fill analysis to 
estimate the publication bias. However, those results remain 
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FiGURe 5 | Calculated HRs and 95% CIs for the relationship between methylation and PFS benefit from TMZ-containing or TMZ-free therapy in newly diagnosed 
GBM patients (methylated vs. unmethylated patients).
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unchanged after introducing the trim and fill method to correct 
the publication bias.

Sensitive analysis
Sensitivity analysis was conducted by sequentially omitting indi­
vidual studies to assess whether a single study might significantly 
affect the overall results. Sensitivity analysis showed one study 
(41) predominantly contributed to heterogeneity in elderly GBM 
subpopulation, especially in TMZ­containing group (Figure S7 
in Supplementary Material). Further sensitivity analysis revealed 
that other results did not show any apparent variations in pooled 
HRs for OS or PFS, supporting the robustness of the primary 
findings.

DiScUSSiON

Although MGMT has been widely established as a clinically 
relevant biomarker in GBM patients, its clinical implication has 
not been definitely confirmed. A prognostic factor is a clinical or 
biologic characteristic that is objectively measured and provides 
information on likely outcome of the cancer disease independent 
of treatment, while a predictive factor is a clinical or biologic 
characteristic providing information on likely benefits from 
one specific treatment rather than another (90). Which one is 

more appropriate to describe the relationship between MGMT 
promoter methylation and GBM prognosis? Among overall 
GBM patients, MGMT methylation conferred a survival benefit 
to patients with TMZ­containing treatment, but not to those 
with TMZ­free treatment. It seems that MGMT methylation has 
a predictive value for GBM patients exposed to TMZ­containing 
treatment. However, considering the differentiation of prognostic 
variables among patients, including primary or recurrent GBM, 
age and race, the universality of predictive value of MGMT 
methylation in different GBM subgroups should be profoundly 
validated. Therefore, we further assess its clinical significance in 
newly diagnosed patients, recurrent patients, elderly patients, and 
Asian and Caucasian patients.

In newly diagnosed and recurrent GBM patients, MGMT 
methylation was associated with improved OS and PFS with 
TMZ­containing treatment, but not in those with TMZ­free 
treatment. Then MGMT methylation is predictive for a benefit 
from TMZ–containing chemotherapy in newly diagnosed and 
recurrent patients.

In elderly GBM patients, MGMT methylation also conferred 
an OS benefit in patients with TMZ­containing treatment, but not 
in those with TMZ­free treatment. Therefore, MGMT methyla­
tion in elderly patients is likely to have a similar predictive value 
as in newly diagnosed and recurrent GBM patients. Elderly GBM 
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FiGURe 7 | Calculated HRs and 95% CIs for the relationship between methylation and OS benefit in elderly GBM patients (TMZ-containing therapy vs.  
radiotherapy alone).

FiGURe 6 | Calculated HRs and 95% CIs for the relationship between methylation and OS benefit from TMZ-containing or TMZ-free therapy in elderly GBM patients 
(methylated vs. unmethylated patients).
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patients are often clinically unable to tolerate multimodality 
therapy, thus TMZ or radiotherapy alone is commonly used. This 
meta­analysis showed that elderly patients with methylated status 
exposed to TMZ alone had improved OS than those exposed to 
radiotherapy alone, while such difference was not observed in 
those with unmethylated status. Our results highlight that TMZ 

alone therapy might be a more effective option than radiotherapy 
alone therapy for elderly GBM patients with methylated MGMT 
status. But the optimal radiotherapy regimen for elderly and/or 
frail patients with newly diagnosed GBM remains to be defined 
(91). A recent study showed that short­course radiation (40 Gy 
in 15 fractions) plus TMZ conferred a survival advantage over 
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FiGURe 9 | Calculated HR and 95% CIs for the relationship between methylation and OS benefit from TMZ-containing or TMZ-free therapy in recurrent GBM 
patients (methylated vs. unmethylated patients).

FiGURe 8 | Calculated HRs and 95% CIs for the relationship between methylation and OS benefit in elderly GBM patients exposed to TMZ alone or radiotherapy 
(RT) alone (methylated vs. unmethylated patients).
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radiotherapy alone in elderly patients (65 years of age or older) 
with newly diagnosed GBM, especially in those with methylated 
MGMT status (70). Due to the lack of a uniform definition for 
elderly, different cutoff age was employed in different studies. 
Patients aged more than 70 years were excluded from Stupp study 
(87). In this meta­analysis, patients aged 60 or more were enrolled 

for analysis. Our results showed that patients aged over 70 years 
with MGMT methylation also benefit from TMZ­containing 
therapy. The definition of cutoff age for the elderly are closely 
linked to prognosis, therapeutic goals, or patterns of care, so 
further research in this field should standardize the cutoff age for 
enrollment eligibility (92).
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FiGURe 10 | Calculated HR and 95% CIs for the relationship between methylation and PFS benefit from TMZ-containing or TMZ-free therapy in recurrent GBM 
patients (methylated vs. unmethylated patients).
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Another interesting issue is the clinical value of MGMT 
methylation in Asian and Caucasian patients. A previous study 
showed that MGMT methylation correlated with better OS and 
PFS in Caucasian patients and only better OS in Asian patients 
regardless of therapeutic intervention (93). But the benefit of 
different therapies in methylated patients was not investigated 
in the study. In our analysis, survival benefit in Asian patients 
with TMZ­free treatment was not observed anymore after 
Bonferroni adjustment. Bonferroni correction can avoid false 
positives, and then the risk of false negatives would be increased. 
So the finding in Asian patients should be cautiously inter­
preted. It must be noted that only four studies (519 patients) 
for OS and a single study (137 patients) for PFS were enrolled 
for this subgroup analysis. Therefore, our finding on patients 
with different races needs to be further verified by more clinical 
studies. Furthermore, recent studies also give a hint about the 
different regulation of MGMT methylation in different ethnic 
background. Single nucleotide polymorphisms (rs16906252) in 
MGMT promoter­enhancer is a key determinant in the acquisi­
tion of MGMT methylation (94). The genotype of rs16906252 
varies among different ethnic groups (95), which may result in 
different MGMT methylation status. In addition to promoter 
methylation, other molecules are also involved in regulation 
of MGMT expression or function. For example, miR­181d can 
bind to the 3′untranslated region of MGMT transcripts, then 
decrease its mRNA stability and/or reduce protein transla­
tion (96). Further studies on ethnically genetic variations are 
necessary.

Due to the limited number of trials recruited for analysis, the 
presented information about PFS in patients with TMZ­free treat­
ment, especially in newly diagnosed and recurrent subgroups, 
should be interpreted carefully. It should be acknowledged that 
we did not obtain any data of PFS in elderly patients exposed 

to TMZ­free treatment. Therefore, the predictive or prognostic 
value of this biomarker for PFS is far from identified in our 
analysis. In fact, clinical measurement of PFS may be a critical 
challenge in GBM trials. It is well known that GBM patients 
suffer inevitably recurrence despite integrated therapy (97). 
Pseudoprogression, also denoted as radiotherapy­introduced 
necrosis, exhibits contrast enhancement similar to early tumor 
progression on magnetic resonance imaging. Primary GBM 
patients receiving concurrent and adjuvant TMZ­based chemo­
radiotherapy have a high likelihood of developing pseudopro­
gression (98, 99), which occurs mainly within 3  months after 
completion of chemoradiotherapy. However, no technique has 
been proven to reliably differentiate between tumor recurrence 
and pseudoprogression. Additionally, both entities might coex­
ist in the same patient at the same time in different areas of the 
tumor. The misdiagnosis of pseudoprogression as tumor recur­
rence may lead to a record of shorter PFS. Interestingly, MGMT 
promoter methylation was associated with a high incidence of 
pseudoprogression in newly diagnosed GBM patients undergo­
ing TMZ­based chemoradiotherapy (100). In addition, GBM 
patients with the occurrence of pseudoprogression had a longer 
OS than those without pseudoprogression (98, 101), indicating 
that pseudoprogression may be a predictor for better response to 
therapy. Therefore, it is critically important to develop imaging 
techniques and biomarkers to discriminate pseudoprogression 
from early progression.

We also noticed the methodological diversity of measurement 
of MGMT promoter methylation. MGMT promoter methylation 
was detected by methylation­specific polymerase chain reac­
tion (MSP), pyrosequencing, and methylation­sensitive high­ 
resolution melting (MS­HRM) in 48, 6, and 2 studies, respectively. 
Additionally, various cutoff values for methylated positivity were 
used in these studies. However, there were few studies that have 
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compared the merits and disadvantages of these MGMT testing 
methods (17). Further efforts should standardize the MGMT 
methylation testing methods and cutoff point.

Limitations of this study should be acknowledged. Firstly, 
heterogeneity existed in the pooled analysis for PFS and OS 
either in overall population or in subgroup analysis. Heter­
ogeneity may result from different techniques of defining 
MGMT promoter status and varied therapy schedule. Different 
chemotherapy and radiotherapy schedules may influence the 
prognosis of GBM patients, thus analysis of the correlation 
between a single treatment schedule and MGMT promoter 
status was not conducted in this meta­analysis. Second, con­
sidering the scarce number of multivariate studies in some 
of subgroup analysis, univariate studies were also included 
in our analysis. We also performed analysis using only mul­
tivariate studies and similar findings were observed (Table S3 
in Supplementary Material). Third, due to the limited number 
of original documents on PFS, there was not enough power 
to identify the impact of MGMT methylation on PFS, espe­
cially in patients receiving TMZ­free therapy. Fourth, quality 
assessment was performed by a modified domain­based NOS  
(102, 103), which was proposed as a potential helpful and 
practically method for assessment of tumor prognostic stud­
ies. However, this novel NOS has not been fully validated and 
results should be interpreted with caution. Fifth, Egger’s test 
showed that publication bias existed in pooled analysis for OS, 
but the trim and fill analysis upheld the reliability of our results.

In conclusion, our results highlight the universal predictive 
value of MGMT methylation in newly diagnosed GBM patients, 
elderly GBM patients and recurrent GBM patients. For elderly 
methylated GBM patients, TMZ alone therapy might be a more 
suitable option than radiotherapy alone therapy. This study may be 
helpful to optimize therapeutics in different GBM subpopulation.
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