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Microsaccade Characteristics  
in Neurological and Ophthalmic 
Disease
Robert G. Alexander, Stephen L. Macknik and Susana Martinez-Conde*

State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, United States

Microsaccade research has recently reached a critical mass of studies that allows, 
for the first time, a comprehensive review of how microsaccadic dynamics change in 
neurological and ophthalmic disease. We discuss the various pathological conditions 
that affect microsaccades, their impact on microsaccadic and other fixational eye 
movement dynamics, and the incipient studies that point to microsaccadic features 
as potential indicators of differential and early diagnoses of multiple clinical conditions, 
from movement disorders to attention-deficit hyperactivity disorder to amblyopia. We 
propose that the objective assessment of fixational eye movement parameters may 
help refine differential diagnostics in neurological disease and assist in the evaluation 
of ongoing therapy regimes. In addition, determining the effects of ophthalmic dis-
ease on fixational eye movement features may help evaluate visual impairment in an 
objective manner, particularly in young patients or those experiencing communication 
difficulties.

Keywords: microsaccades, fixational eye movements, square-wave jerks, Parkinson’s disease, progressive 
supranuclear palsy, amblyopia, strabismus, fixational saccades

iNTRODUCTiON

When we attempt to fixate our gaze on a target, our eyes are never still, but produce small “fixa-
tional eye movements,” which include tremor, drift, and microsaccades. Microsaccades (also called 
fixational saccades) occur at a typical rate of 1–2 Hz. Converging research points to a saccadic 
generation continuum, which extends from the smallest fixational microsaccades to the largest 
exploratory saccades (1–5). Drift is a slow (typically less than 2°/s) motion that occurs between 
microsaccades and saccades, and travels in an erratic pattern that has been modeled as a random 
walk (6). Tremor (or ocular microtremor) occurs simultaneously with drift, during intersaccadic 
intervals. This is the smallest fixational eye movement, with amplitudes that approximate the width 
of a single photoreceptor and dominant frequencies between 70 and 103 Hz (averaging 84 Hz)  
(7, 8). Tremor studies are much scarcer than those centered on microsaccades and/or drift, due 
to the technical difficulties inherent to measuring this tiny motion (8, 9). Thus, we do not address 
tremor in this review.

Because we spend approximately 80% of our waking hours fixating our gaze [not only in a 
sustained way but also in transient fashion, between large saccades (10)], understanding fixational 
dynamics is critical to advance current knowledge of oculomotor and visual function. Fixational eye 
movement assessments may also help further our understanding of central and peripheral patholo-
gies that result in impaired fixation.
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FigURe 1 | Square-wave jerks (SWJs) from three progressive supranuclear palsy (PSP) patients (left) and three age-matched controls (right). In both populations, 
(micro)saccades with amplitudes equal to or larger than half a degree of visual angle are paired as SWJs. Only the horizontal eye positions are shown. Modified from 
Otero-Millan et al. (14).
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Various neurological and ophthalmic disorders produce 
abnormal fixational eye movement patterns, with distinctive char-
acteristics. Thus, establishing how neurological and ophthalmic 
disease affects fixational dynamics holds the potential to help in 
the early and differential diagnosis of such disorders, clarify their 
pathophysiology, and quantify their progression and response 
to treatment. Recent research efforts have set out to character-
ize fixational dynamics in a growing record of neurological and 
ophthalmological conditions, which we discuss in this review.

A classification of abnormal eye movements in different 
disorders of fixation was previously published [see Table 1 of 
Martinez-Conde (10)]. The intervening decade has seen an 
upsurge in fixational eye movement research, with an emphasis 
on microsaccade studies. In addition, cross-fertilization between 
fundamental and translational approaches to fixational dynamics 
has facilitated the identification of previously unknown links 
between (micro)saccadic eye movements and saccadic intrusions 
(the latter formerly relegated to the clinical literature).

Such recent developments have resulted in a critical mass of 
studies that allows us, for the first time, to offer a comprehensive 
review of how microsaccadic dynamics change in neurological 
and ophthalmic pathologies, from movement disorders to atten-
tion-deficit hyperactivity disorder (ADHD) to amblyopia.

MiCROSACCADeS iN NeUROLOgiCAL 
DiSeASe

The balance that fixational eye movement system must achieve 
in healthy oculomotor function is quite delicate: whereas insuf-
ficient eye motion can result in visual losses due to neural adap-
tation and visual fading, excessive eye motion leads to blurred 
and unstable vision. This fine calibration is disrupted in patients 
of various neurological and neurodegenerative disorders who 
display increased gaze instability during the attempt to fixate 
(11). Recent research efforts aimed to characterize such fixation 
instability—with an emphasis on the dynamic of microsaccades 
and drift—in neurological disease seek not only to improve early 
and differential diagnosis and help evaluate the efficacy of con-
current treatments but also to gain a deeper understanding of the 
pathophysiology and pathogenesis of such disorders.

Microsaccades, Saccades, and Saccadic 
intrusions in the Healthy Brain and in 
Neurological Disease
Converging evidence from physiological and behavioral studies 
conducted over the last decade has led to the current consensus 
that microsaccades and saccades—though previously considered 
as two different eye movement types—share a common oculo-
motor generator [(3); for review see Ref. (12)]. More recently, 
the proposal of a microsaccade-to-saccade continuum has been 
expanded to saccadic intrusions (3, 13, 14), defined as invol-
untary saccades that interrupt, or intrude on, precise fixation. 
Sacccadic intrusions are prevalent in certain neurodegenerative 
disorders, although healthy individuals also produce them. The 
most common saccadic intrusion is the square-wave jerk (SWJ), 
which consists of a small, horizontal saccade moving away from 
the fixation target, quickly followed by a corrective return sac-
cade of equivalent amplitude and opposite direction. Though 
microsaccades and SWJs have most often been studied as two 
separate types of eye movements, recent work has put forward 
the notion that they, too, may be fundamentally the same kind of 
eye movement with different names (4, 5, 13, 14).

Progressive Supranuclear Palsy (PSP)  
and Other Movement Disorders
Pinnock and colleagues found larger and more frequent saccadic 
intrusions (including small intrusions due to microsaccades) 
in patients with Parkinson’s disease, multiple system atrophy, 
and PSP, than in healthy age-matched controls (15). Otero-
Millan et al. subsequently set out to study the characteristics of 
microsaccades and SWJs in patients with PSP—a parkinsonian 
disorder that affects the basal ganglia, mesencephalon, and 
frontal lobe—in which SWJs are a distinctive clinical feature 
(14) (Figure 1).

Though normal microsaccades were found to be rare in PSP, 
microsaccade magnitude was linked to SWJ coupling in both PSP 
patients and in healthy participants, with large microsaccades 
being more likely to trigger return saccades (forming SWJs) 
than small microsaccades (Figure 2). In addition, microsaccades 
and SWJs were slower in PSP patients than in controls, and they 
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FigURe 2 | Square-wave coupling takes place for large but not small (micro)saccades. In this eye position trace from a healthy participant, red arrows point to pairs 
of larger microsaccades forming square-wave jerks; green arrows point to smaller unpaired microsaccades. From Otero-Millan et al. (14).
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had a diminished vertical component, consistent with the verti-
cal saccadic palsy that sets apart PSP from other parkinsonian 
patients. The results supported the hypothesis that a common 
mechanism may account for microsaccade and SWJ generation 
(13, 14) and explained how the position error from a large first 
saccade could serve as the trigger for the return saccade in 
SWJs produced by both PSP patients and healthy participants 
(16). The study concluded that the apparent distinction between 
microsaccades and SWJs could be due to two complementary 
mechanisms, underlying: (1) microsaccade production and (2) 
correction of gaze fixation errors due to oversized microsaccades 
(14). These two factors, combined, could explain square-wave 
coupling, both for microsaccade pairs in healthy subjects and for 
saccadic intrusions in neurological patients suffering from PSP, 
Parkinson’s disease, and other movement disorders, including 
multiple system atrophy, corticobasal syndrome, and spinocer-
ebellar ataxia (5, 14).

Mild Cognitive impairment and 
Alzheimer’s Disease
Kapoula and colleagues recorded the eye movements of Alzhei-
mer’s disease patients, patients with mild cognitive impairment, 
and healthy age-matched participants during the attempt to fix-
ate. Whereas most microsaccadic features, including magnitude, 
velocity, duration, and intersaccadic intervals were equivalent 
across the three groups, oblique microsaccade directions were 
more prevalent in mild cognitive impairment and Alzheimer’s 
disease patients than in healthy participants (17). Layfield and 
colleagues wondered about potential links (positive or negative) 
between microsaccade dynamics and the amelioration of cogni-
tive deficits in aging adults—following from targeted interven-
tions known as “Speed Processing Training”—but found no 
relationship (18).

Attention-Deficit Hyperactivity  
Disorder (ADHD)
The neural system that controls attention and the system that 
generates (micro) saccadic eye movements overlap extensively. 
Thus, multiple research studies have examined the connection 

between microsaccades, attention, and distractors [for review see 
Ref. (3)]. The superior colliculus, which plays a central role in 
(micro)saccade triggering, has moreover attracted recent inter-
est as a potential site of dysfunction in ADHD (19, 20). A handful 
of studies have examined the connection between ADHD and 
gaze instability during fixation (21–23). Most recently, two 
studies have focused on the characteristics of microsaccades 
in individuals with ADHD (24) and ADHD traits (20). Fried 
et al. found a higher microsaccade rate in adult individuals with 
ADHD who were off medication than in control participants. 
Methylphenidate medication served to normalize microsaccade 
rates in the ADHD group. Panagiotidi and colleagues similarly 
found differing microsaccade rates in non-clinical participants 
with high and low levels of ADHD-like traits (20), assessed with 
the Adult ADHD Self-Report Scale (25). These combined results 
suggested that abnormal fixation behavior is a core deficit in 
ADHD, which could aid in the development of a biomarker for 
the disorder (20). Another recent study set out to investigate the 
impairment of temporal expectations in ADHD, by examining 
the inhibition of microsaccades prior to the onset of predicted 
stimuli. The data indicated decreased microsaccade inhibition 
in participants with ADHD than in controls, suggesting that 
microsaccade characterization may help enhance current under-
standing of the range of cognitive deficits that affect ADHD 
individuals (26).

Autism Spectrum Disorder (ASD)
Recent research has found increased drift in autistic individuals 
(27). Microsaccade sizes and rates during fixation of a small target 
were comparable in ASD and neurotypical participants (27, 28), 
but those with ASD presented greater fixation instability, more 
microsaccades, and larger microsaccades when asked to maintain 
fixation on a blank screen with no target (28).

Tourette Syndrome
A recent study found patients with Tourette syndrome to have 
reduced microsaccade amplitudes and increased intersaccadic 
intervals, along with increased fixation instability and drift 
velocities (29).
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Schizophrenia
Egaña and colleagues (30) found that previously reported 
decreased oculomotor function—in terms of decreased saccade 
and fixation rate—in schizophrenic patients (31) no longer 
differed from that of control participants once they included 
microsaccades in the analyses. In other words, schizophrenic 
patients made similar numbers of overall eye movements as 
healthy individuals, but produced fewer large, exploratory sac-
cades to scan wide regions of the visual field. This study shows 
that fixational eye movement analyses in neurological and psy-
chiatric disorders can be valuable not only to differentiate across 
populations but also to reveal previously unknown similarities 
between groups.

Cerebral Palsy
Kozeis and colleagues proposed that microsaccadic impairment 
might complicate the acquisition of reading skills in children 
with cerebral palsy (32), but no studies to date have directly 
characterized fixational eye movements in this disorder.

Hemianopia and Cortical Blindness
Hemianopia, or blindness in one-half of the visual field, can result 
from any lesion impairing post-chiasmatic central visual path-
ways. Reinhard and colleagues found microsaccadic distributions 
in hemianopic patients to be asymmetrical, with microsaccade 
directions biased toward the blind hemifield (33).

Gao and Sabel (34) subsequently investigated the charac-
teristics of microsaccades in hemianopic stroke patients, to 
determine their potential relationship with visual performance 
and to assess how microsaccadic direction might be related to 
visual defect topography. They found that hemianopia resulted 
in enlarged microsaccades with impaired binocular conjugacy. 
Alterations of microsaccade dynamics worsened over time, 
being most prominent for older lesions. The data also revealed 
a microsaccade bias toward the seeing field, which was associ-
ated with faster reaction times to super-threshold visual stimuli 
in areas of residual vision, and suggested greater allocation 
of attention. Visual acuity was highest in patients with more 
binocular microsaccades and lower microsaccade velocities. 
The authors proposed that microsaccades may help compensate 
visual impairment in hemianopia and provide a basis for vision 
restoration and plasticity.

Blindsight is a rare phenomenon in which patients who have 
cortical blindness (due to lesions to the primary visual cortex) 
produce appropriate behavioral responses to visual stimuli they 
do not consciously see. Though no studies to date have system-
atically characterized microsaccadic properties in blindsighted 
patients, researchers in a recent case report studied microsac-
cadic inhibition (i.e., the transient suppression of microsaccade 
production after the presentation of a peripheral stimulus) in 
a patient who suffered from blindsight due to traumatic brain 
injury. The investigators observed that the patient’s microsaccade 
rates dropped briefly after the presentation of high- and low-
contrast peripheral stimuli, in both the left (blind) and the right 
visual fields. In the case of low-contrast stimuli, the release from 
microsaccadic inhibition was slower in the blind field than in the 
sighted field, however (35).

Short-Term Hypoxia
Di Stasi and colleagues found that saccadic velocity decreased 
and intersaccadic drift velocity increased, in connection with 
short-term hypobaric hypoxia in aviators. The finding that acute 
hypoxia diminishes eye stability, the authors proposed, may help 
to better understand the relationship between hypoxia episodes 
and central nervous system impairments (36).

MiCROSACCADeS iN OPHTHALMiC 
DiSeASe

Vision and eye movements are intrinsically linked. Whereas it 
may seem intuitive to consider vision primarily in terms of its 
spatial characteristics, the process of seeing is a spatiotemporal 
one, where many timing features and constraints that impact 
our visual experience derive from the timing of eye movement 
production and targeting. Eye movements shape what we see,  
and our visual perception, in turn, affects the way we move our 
eyes. Ophthalmic disease, due to its deleterious effects on visual 
quality, tends to result in measurable abnormalities in eye move-
ment properties, which extend to the fixational domain.

Because human beings are typically unaware of their fixational 
eye movements, studying their characteristics in ophthalmic dis-
ease may help evaluate the extent of a patient’s visual impairment 
in an objective manner—particularly in very young patients or 
those experiencing communication difficulties.

Amblyopia and Strabismus
Most studies of fixational eye movements in ophthalmic disease 
to date have centered on amblyopia and strabismus. Amblyopia is 
defined as underdeveloped vision of one eye due to any condition 
that interferes with focusing during early childhood, including 
strabismus (in which the two eyes do not align correctly during 
fixation) and uncorrected refractive error (with anisometropia, or 
unequal refractive power in the two eyes).

Starting in the late 1970s, Ciuffreda and his colleagues con-
ducted a series of pioneering studies on how amblyopia and 
strabismus affected fixation behavior (37–39). They found that, 
whereas amblyopic patients produced normal fixational eye 
movements during binocular fixation (and during monocular 
fixation with the fellow eye), monocular fixation with the 
amblyopic eye resulted in increased drift (whether or not 
strabismus was also present) (11, 37–40). If the amblyopia 
was due to strabismus, or in cases of alternating strabismus, 
this increase in drift was accompanied by sizable and frequent 
saccadic intrusions (37–39). By contrast, amblyopic fixation in 
dark-adaptation conditions was found to be normal or close to 
normal (41, 42).

More recently, Shi and colleagues found less frequent but larger 
microsaccades during monocular fixation with the amblyopic 
eye than with the fellow eye (43) and proposed that the objec-
tive evaluation of oculomotor function in amblyopia includes 
a microsaccade assessment. Otero-Millan et al. (44) noted that 
microsaccades produced during normal binocular fixation of 
large targets have similar features to those reported by Shi et al. 
during monocular fixation with the amblyopic eye, which might 
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FigURe 3 | Eye movements of a patient with strabismic amblyopia. Horizontal (X) and vertical (Y) positions are plotted for the left eye (gray, amblyopic eye) and the 
right eye (black, fellow eye). Amblyopic eye viewing results in larger microsaccades in both eyes. Monocular viewing with the fellow eye is tied to increased instability 
in the amblyopic eye. Monocular viewing with the amblyopic eye produces increased instability in the two eyes. From González et al. (45).
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indicate a common lack of fixation precision in both scenarios. 
This possibility is consistent with work finding reduced fixation 
stability in the amblyopic eye, as compared to the fellow eye and 
to binocular viewing (45) (Figure 3).

Ghasia et  al. found that fixational saccades and ocular drift 
were more disconjugate for patients with strabismus than for 
control participants. This disconjugacy was greater for patients 
with large-angle strabismus and impaired stereopsis (as a result of 
the misalignment of their eyes) than for patients with small-angle 
strabismus and preserved stereopsis (Figure 4). This study also 
found that drift was faster in patients with strabismus than in 
control subjects (46).

Fixation stability, usually measured as the eye position disper-
sion [i.e., bivariate contour elliptical area (BCEA)] during the 
attempt to fixate, combines the effects of microsaccades and 
drifts, without making a distinction between the two types of eye 
motion (44). Subramanian et al. (47) found that the BCEA was 
larger in the amblyopic eye than in the fellow eye, especially along 
the horizontal axis, and that patients with larger BCEAs tend to 
have lower visual acuities.

Increased drift and decreased microsaccade production in 
severe amblyopia may lead to perceptual fading of large portions 
of the visual field, including the “small fixation spot, small and 
large acuity targets, and even portions of the laboratory” during 

monocular fixation with the amblyopic eye (37, 48–50). One 
patient reportedly “made saccades to revive the faded or blanked-
out portions” of the image in such situations (37), suggesting that 
visual fading in amblyopia might be related to ordinary Troxler 
fading [i.e., the kind of visual fading that normally sighted 
individuals can experience during fixation in the absence of 
microsaccades (10, 51)].

Increased drift in amblyopia could also produce lower visual 
acuity—and increased variability in visual acuity measurements— 
by shifting retinal images to more eccentric positions (39, 52). 
Such links exemplify the tight bond between the motor and 
sensory aspects of fixational eye movements (44).

Aiming to increase fixation stability for the amblyopic eye 
(and thus produce bifoveal fixation), Raveendran et  al. (53) 
decreased the contrast of the image viewed by the fellow eye until 
it was equivalent to the contrast perceived by the amblyopic eye. 
Fixation stability in the amblyopic eye improved as a result, but 
bifoveal fixation was nevertheless temporary (due to the ambly-
opic eye drifting away from foveal alignment).

Loudon and colleagues used a binocularity score to assess 
how well subjects fixated a target with both eyes and proposed 
that the presence of fixation instability can help detect amblyopia 
at an early age (when it otherwise goes undetected up to a third 
of the time) (54).
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FigURe 5 | Eye positions during fixation in a patient with macular disease (left) and a healthy control subject (right). From Kumar and Chung (57).

FigURe 4 | Visual fixation of a target for 5 s, under monocular viewing 
conditions. (A) Participant with normal vision: both microsaccades and 
intersaccadic drift are conjugate. (B) Participant with small-angle strabismus 
and stereopsis present: disconjugancy across the two eyes is mild for both 
microsaccades and drift. (C) Participant with large-angle strabismus and 
absent stereopsis: disconjugancy is pronounced for both microsaccades  
and drift. (A–C) Horizontal (red: right eye, gray: left eye) and vertical  
(blue: right eye, gray: left eye) eye positions are presented. Black arrows 
indicate microsaccades, and gray arrows represent intersaccadic drift.  
From Ghasia et al. (46).
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Successful orthoptics therapy tends to normalize fixational eye 
movements in amblyopia [though not all oculomotor and visual 
functions may improve concurrently (52, 55)]. Thus, Ciuffreda 
and colleagues have proposed that amblyopic therapies should 
not be interrupted when patients achieve normal visual acuity 
and centralized fixation, but should continue until they produced 

normal or stabilized fixational eye movements. Because critical 
periods for some aspects of oculomotor plasticity may extend 
into adulthood, lack of fixational eye movement normalization 
in amblyopic patients could be a factor in their reverting to the 
pre-treatment condition once therapy is discontinued (52). Thus, 
fixational eye movement assessments may help establish the 
optimal duration of treatments.

Central Scotoma due to Macular Disease 
or Dysfunction
Macular scotomas, and other pathologies producing prolonged 
monocular visual deprivation, have also been connected to 
increased drift, with comparable characteristics to drift in ambly-
opes (11, 56). A recent study by Kumar and Chung (57) found 
that patients with macular disease presented not only increased 
drift amplitudes but also larger microsaccadic amplitudes 
(Figure 5) than healthy subjects, without a corresponding change 
in microsaccade rate. The authors concluded that an increase in 
drift and microsaccade amplitudes—as opposed to changes in 
velocity or rate—is the strongest predictor of overall fixation 
instability in macular disease. Moller et  al. previously found, 
in a group of diabetic maculopathy patients, that microsaccade 
magnitude increased as visual acuity decreased (58). A more 
recent study set out to determine if saccades in an eye affected 
by diabetic maculopathy were influenced by the other eye dur-
ing binocular fixation. The results revealed that microsaccades 
during monocular fixation with the eye most affected by macular 
edema were larger, more frequent, and involved a larger retinal 
area than those produced during binocular fixation. A significant 
negative correlation was found between area of fixation and 
visual acuity during monocular, but not binocular, fixation. The 
authors concluded that binocular fixation can reduce the fixation 
area and microsaccade amplitude in the “worst eye” of diabetic 
maculopathy patients and advised that microsaccades in diabetic 
maculopathy are studied during monocular fixation (59).

Myopia
Recent work found increased microsaccade amplitude—without 
a corresponding change in microsaccade velocity or microsaccade 
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rate—in myopic individuals (60). As the severity of uncorrected 
refractive error increased, so did the sizes of microsaccades. This 
suggested that the control of microsaccade amplitude relies on 
the precision of visual information on the fovea, with blurred 
information leading to fixational instability.

Retinal implants
Here, we discuss current efforts to characterize fixational eye 
movements, including microsaccades, in patients with subreti-
nal implants. Because subretinal implants are placed below the 
retina (unlike epiretinal implants such as the Argus II, where an 
external camera is used to capture an image), the eye movements 
of implanted patients have the potential to affect—and be affected 
by—their visual perception.

In recent research, patients with a subretinal Alpha IMS scanned 
their visual field to locate a fixation target that appeared at random 
locations. Upon target fixation, the patients produced fixational 
eye movements—including microsaccades (with and without 
square-wave coupling) and drifts—that were analogous to those 
produced by control participants (61). A previous study by the 
same group made similar observations (62). The properties of 
(micro)saccades moreover depended on the shape of the stimulus 
being viewed. For instance, both patients and control participants 
made more horizontal eye movements when viewing a rectangle 
than when viewing a square (61). These data suggest that (micro)
saccadic dynamics might help provide an objective measure of 
the success of an implant, especially in situations where subjective 
reports are questionable or inviable: if eye movements charac-
teristics change in response to changes in the stimulus, it would 
indicate that visual inputs have been processed appropriately (61).

One limitation of subretinal implants such as the Alpha IMS is 
that visible stimuli typically fade from perception within seconds 
(61–63). Understanding the relationship between fixational eye 
movement dynamics and image fading in prosthetic vision may 
prove key to improving future subretinal implants. Microsaccades 
have been shown to counteract, and to help prevent, perceptual 
fading in natural vision (51, 64–68). Similarly, microsaccade 
occurrence has been connected to fading prevention in patients 
with subretinal implants (61). It has also been proposed that the 
characterization of microsaccade patterns in patients could help 
fine-tune the frequency of stimulation that results in optimal vis-
ibility in specific individuals. That is, depending on a particular 
observer’s fixational eye movement patterns, he/she may need 
higher or lower stimulation frequencies to maintain visibility 
(69). Future research may investigate the translational value of 
this potential relationship.

It remains currently unknown why visual fading is more severe 
in patients with prosthetic implants than in healthy observers. 
One possibility is that fixational eye movements counteract and 

prevent perceptual fading less effectively in implanted patients 
than in natural vision (70). Recent modeling work has suggested 
that increased fading in prosthetic vision might be due to a lack 
of OFF responses and to lower contrast sensitivity than in natural 
vision (71); thus, the quality of the visual input may be too low for 
eye movements to refresh retinal images effectively. Fading may 
also be more or less prevalent depending on the size of electrodes 
used: stimulation from a single electrode may affect such a large 
visual region that even when microsaccades shift the stimulus 
to adjacent electrodes, they may not significantly change the 
activated neurons (70, 72).

CONCLUSiON

We have reviewed the characteristics of fixational eye move-
ments in neurological and ophthalmic disease, with an emphasis 
on microsaccades. Though studies addressing microsaccadic 
impairments in patient populations remain relatively scarce, 
this has recently become an area of active inquiry, with valuable 
implications for both clinical and basic research (3). Converging 
studies have made significant headway vis-à-vis the potential of 
microsaccade and other fixational eye movement dysfunctions 
as indicators of ongoing pathologies beyond the oculomotor 
realm. Thus, the objective assessment of fixational eye movement 
parameters may help refine differential diagnostics and assist in 
the evaluation of ongoing therapy regimes (i.e., successful treat-
ments should result in the normalization of previously impaired 
fixational eye movements). These measures will also help refine 
current understanding of the pathogenesis of neural disease, 
as well as place constraints on—and guide the development 
of—future saccadic generation models, especially with regards 
to the relationship of (micro)saccades to saccadic intrusions in 
neurological disease.
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