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Functional electrical stimulation (FES) is important in gait rehabilitation for patients with 
dropfoot. Since there are time-varying velocities during FES-assisted walking, it is 
difficult to achieve a good movement performance during walking. To account for the 
time-varying walking velocities, seven poststroke subjects were recruited and fuzzy logic 
control and a linear model were applied in FES-assisted walking to enable intensity- and 
duration-adaptive stimulation (IDAS) for poststroke subjects with dropfoot. In this study, 
the performance of IDAS was evaluated using kinematic data, and was compared with 
the performance under no stimulation (NS), FES-assisted walking triggered by heel-off 
stimulation (HOS), and speed-adaptive stimulation. A larger maximum ankle dorsiflexion 
angle in the IDAS condition than those in other conditions was observed. The ankle plan-
tar flexion angle in the IDAS condition was similar to that of normal walking. Improvement 
in the maximum ankle dorsiflexion and plantar flexion angles in the IDAS condition could 
be attributed to having the appropriate stimulation intensity and duration. In summary, 
the intensity- and duration-adaptive controller can attain better movement performance 
and may have great potential in future clinical applications.

Keywords: fuzzy logic control, linear model, dropfoot, functional electrical stimulation, treadmill

inTrODUcTiOn

Stroke is a leading cause of disability in the lower limb, such as dropfoot (1). A typical cause of drop-
foot is muscle weakness, which results in a limited ability to lift the foot voluntarily and an increased 
risk of falls (2–4). Great effort is made toward the recovery of walking ability for poststroke patients 
with dropfoot, such as ankle–foot orthoses (5), physical therapy (6), and rehabilitation robot (7).

Functional electrical stimulation (FES) is a representative intervention to correct dropfoot and 
to generate foot lift during walking (8, 9). The electrical pulses were implemented via a pair of 
electrodes to activate the tibialis anterior (TA) muscle and to increase the ankle dorsiflexion angle. 
The footswitch or manual switch was used to time the FES-assisted hemiplegic walking in previous 
studies, while they were only based on open-loop architectures. The output parameters of the FES 
required repeated manual re-setting and could not achieve an adaptive adjustment during walking 

Abbreviations: FES, functional electrical stimulation; TA, tibialis anterior; NS, no stimulation; HOS, heel-off stimulation; SAS, 
speed-adaptive stimulation; IDAS, intensity- and duration-adaptive stimulation; FLC, fuzzy logic control.
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FigUre 1 | Block diagram of the functional electrical stimulation (FES) 
system.
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(10, 11). Some researchers have found that the maximum ankle 
dorsiflexion angle by using FES with a certain stimulation inten-
sity had individual differences due to the varying muscle tone and 
residual voluntary muscle activity and varied during gait cycles 
(12, 13). If the stimulation intensity was set to a constant value 
during the whole gait cycle, the result could be that the muscle 
fatigues rapidly (14). Another important problem was that the 
FES using fixed stimulation duration from the heel-off event to 
the heel-strike event would affect the ankle plantar flexion angle 
(15, 16).

Closed-loop control was an effective way to adjust the 
stimulation parameters automatically, and several control tech-
niques have been proposed (17, 18). Negård et al. applied a PI 
controller to regulate the stimulation intensity and obtain the 
optimal ankle dorsiflexion angle during the swing phase (19). 
A similar controller was also used in Benedict et al.’s study, and 
the controller was tested in simulation experiments (20). Cho 
et al. used a brain–computer interface to detect a patient’s motion 
imagery in real time and used this information to control the 
output of the FES (21). Laursen et al. used the electromechanical 
gait trainer Lokomat combined with FES to correct the foot drop 
problems for patients, and there were significant improvements 
in the maximum ankle dorsiflexion angles compared to the 
pre-training evaluations (22). There were also several studies 
that used trajectory tracking control to regulate the output and 
regulate the pulse width and pulse amplitude of the stimulation 
(23). The module was based on an adaptive fuzzy terminal sliding 
mode control and fuzzy logic control (FLC) to determine the 
stimulation output and force the ankle joint to track the refer-
ence trajectories. In their study, FES applied to TA was triggered 
before the heel-off event. Because the TA activation has been 
proven to occur after the heel-off event and the duration of the 
TA activation changed with the walking speed (24, 25), a time 
interval should be implemented after the heel-off event (26). In 
Thomas et al.’s study, the ankle angle trajectory of the paretic foot 
was modulated by an iterative learning control method to achieve 
the desired foot pitch angles (27). The non-linear relationship 
between the FES settings and the ankle angle influenced the 
responses of the ankle motion (28). FLC represents a promising 
technology to handle the non-linearity and uncertainty without 
the need for a mathematical model of the plant, which has been 
widely used in robotic control (29). Ibrahim et al. used FLC to 
regulate the stimulation intensity of the FES (30), and the same 
control was used on the regulation of the stimulation duration 
to obtain a maximum knee extension angle in Watanabe et al.’s 
study (31). However, most closed-loop controls adjust only one 
stimulation parameter, and few FES controls considered both 
varying the stimulation intensity and duration while accounting 
for the changing walking velocities.

In the present study, an intensity- and duration-adaptive 
FES was established, the FLC and a linear model were used to 
regulate the stimulation intensity and duration, respectively. The 
performance of the intensity- and duration-adaptive stimulation 
(IDAS) was compared with those of stimulation triggered by 
no stimulation (NS), heel-off stimulation (HOS), and speed-
adaptive stimulation (SAS) for poststroke patients walking on a 
treadmill. The objective of this study is to find an appropriate FES 

control strategy to realize a more adaptive ankle joint motion for 
poststroke subjects.

MaTerials anD MeThODs

subjects
Seven poststroke subjects [five males and two females; mean 
(±SD) age of the subjects was 46.1 (±11.2) years old; mean (±SD) 
months after stroke was 9.1 (±7.1) months; Fugl-meyer motor 
assessment for lower limb was conducted by a physical therapist 
and the mean value was 25.8 (±3.3) scores] with the ability to walk 
continuously, and had sufficient passive ankle range of motion to 
enable their paretic ankle joint to reach at least 5° plantar flexion 
with the knee flexed at 90° were recruited. Before participating in 
the experiment, all of the subjects consented to the experimental 
protocol and provided their written informed consent. The study 
was approved by the Ethics Committee of the Guangdong Work 
Injury Rehabilitation Center.

system Description
The FES rehabilitation system is presented in Figure  1. The 
system consists of a treadmill (G6425-F3, Beistegui Hermanos, 
Spain), a functional electrical stimulator (P2-9632, Faisco, 
China), a micro-controller (STC89C52, Amtel, USA), a motion 
capture system with four cameras (OptiTrack, NaturalPoint, 
USA), and a footswitch (B-201, Tekscan, USA). To obtain the 
positions of each lower limb joint, five markers were attached 
to them and the three dimensional signals of each marker were 
captured through the motion capture system. Five markers from 
top to bottom were placed on the following anatomical refer-
ence locations: the mid-thigh sufficiently distal to the hip, the 
lateral knee joint, the mid-shank sufficiently distal to the knee 
joint, the lateral malleolus, and the space between the second 
and third metatarsal heads (32). Additionally, a four segment 
rigid body model of the lower extremity was implemented to 
calculate the joint angles (32). A footswitch was placed on the 
hindfoot to detect the heel-off and heel-strike events, and the 
signals were recorded on the computer by the A-D converter 
(see Figure 1). The input signals of the motion capture system 
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FigUre 2 | Block diagram of the proposed decentralized modular controller 
for the control of ankle joint movement. The two inputs were error signals (e) 
and walking speeds (v). nz was the z coordinates of the marker on toe and ns 
was the average value based on previous five step speeds.

Table 1 | Fuzzy rules for the adjustment of PWM wave.

e Δe negative 
big (nb)

negative 
medium 

(nM)

nes Ze Positive 
small 
(Ps)

Positive 
medium 

(PM)

Positive 
big 
(Pb)

NB PS PS PS PS PS PS PM
NM PS PS PS PS PS PM PM
NES PS PS PS PS PS PM PM
Z PM PM PS PS PM PM PM
PS PM PM PM PB PB PB PB
PM PM PM PB PB PB PB PB
PB PM PB PB PB PB PB PB
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and A-D converter were then acquired by the PC-based module, 
which included the data processing part and the FES control part. 
The data processing part adopted the input signals to calculate the 
walking speed, and the joint angle data included the angle signals, 
the error signals, and the derivative of the error signals. The fuzzy 
rules and the speed-adaptive rules were adopted to calculate the 
output signals uout1 and uout2, which were the duty ratio and trig-
ger signal, respectively, and then, they were transmitted to the 
microcontroller. The microcontroller was used to generate the 
PWM modulation signal, which was delivered to the stimulator 
to regulate the stimulation intensity and duration. Finally, the 
stimulator generated the stimulation current to the surface of the 
TA muscle through two surface electrical stimulation electrodes 
(M2223, 3M, USA). The pulse amplitude of the stimulator ranged 
from 0 to 120 mA. The sample rates of the motion capture system 
and the footswitch were 100 Hz.

intensity- and Duration-adaptive Fes
The intensity- and duration-adaptive FES system was imple-
mented during the walking to induce an appropriate ankle joint 
motion. The structure of the FES system is presented in Figure 2. 
The output of the FLC and the output of the linear model were 
transmitted to the micro-controller as two independent signals to 
determine the intensity and duration of stimulation, respectively. 
In this study, a change in the stimulation intensity was realized 
by the modulation of the stimulation pulse amplitude. In the 
control process, the maximum ankle dorsiflexion angles of each 
cycle were compared to the desired angle, and the output uout1 
was adjusted on the basis of the error in the next cycle. There 
are several steps for the proposed FLC system. First, fuzzification 
was a procedure that translated the inputs into fuzzy linguistic 
variables. In the proposed FLC, the inputs were the error signal, 
e, and the derivative of the error signal, Δe. Here, e was the dif-
ference between the actual maximum ankle dorsiflexion angle, θa, 
and the reference value, θreq. Additionally, θreq was 4.9°, which was 
from the normal maximum ankle dorsiflexion angle of human 
walking (33). The membership degree values of the two inputs 
can be calculated according to the membership functions, and 
the functions were defined as triangular membership functions, 
which were used for the fuzzification process. The input fuzzy 
sets were acquired by the seven membership functions includ-
ing negative small (NES), negative medium (NM), negative big 

(NB), zero (Z), positive small (PS), positive medium (PM), and 
positive big (PB), and the output fuzzy sets were composed from 
three membership functions, the PS, PM, and PB (23). Then, 
we used the predefined fuzzy rule set (Table 1) to elaborate the 
relationship between the inputs and the outputs of the member-
ship degree value. Finally, the center of the area was implemented 
as a defuzzification process to transform the membership degree 
values of the control signal to the actual value of the output uout1 
(34). The uout1 was transmitted to the microcontroller to control 
the degree of the PWM wave.

For the linear model, the input was the walking speed, 
which was calculated by the coordinates of the marker on the 
toe (35) and the values based on the previous five step speeds 
were averaged (36). The output of the linear model uout2 was 
determined by the time interval of the TA, which was from the 
heel-off event to the onset timing of the TA activation and the 
duration of the TA, which was from the onset timing to the 
terminal timing of the TA activation. In this study, the onset 
timing and terminal timing were the two trigger signals that the 
values of uout2 converted from 0 to 1 and 1 to 0, respectively. They 
were transmitted to the microcontroller through the serial com-
munication function to control the generation and interrupt of 
the PWM wave. There were linear relationships between the 
stimulation duration and walking speed, and between the time 
interval and walking speed (25). After the correlation analysis 
and least square curve fitting, the linear models of the walking 
speed for the time interval and EMG duration were built, and 
the slope and intercept were −111.7 and 416.9 for the first linear 
relationship and −213.2 and 877.7 for the second. All of the 
slopes and intercepts were obtained from healthy subjects in the 
preliminary experiments.

experimental Procedure
During the experiment, the subjects were instructed to hold 
onto a handrail and walk on a treadmill. Each subject walked on 
the treadmill at multiple speeds to adapt to the treadmill walk-
ing before participating in the experiment. Poststroke subjects 
were instructed to walk at three speeds: slow, free, and fast. The 
free speed was the comfortable walking speed on the treadmill, 
while the fast speed was approximately 25–30% larger than the 
free walking speed (37). The slow speed was smaller than the 
free speed with the same proportion. The subjects walked in 
the four conditions at each speed: no stimulation (NS), FES-
assisted walking triggered by the HOS, FES-assisted walking 
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FigUre 3 | A result of the maximum ankle dorsiflexion angle based on fuzzy 
logic control: (a) the ankle angle error; (b) the derivative of angle error; (c) 
the output of stimulation pulse amplitude.
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triggered by the SAS, and FES-assisted walking triggered by 
the IDAS. There were 12 trails for each poststroke subject. The 
order of the trials was randomly arranged, and a 2-min rest was 
given between each pair of successive trials to avoid muscle 
fatigue. In the NS condition, there was no FES during walking. 
In the HOS condition, the TA stimulation was triggered and 
terminated by the heel-off and heel-strike events, respectively 
(38). The stimulation intensity was set as a constant to achieve 
a neutral ankle angle with the subjects seated (12). In the SAS 
condition, the duration of the TA stimulation was linear with 
the walking speed, and the stimulation intensity was the same 
as the value in the HOS condition. In the IDAS condition, the 
maximum stimulation intensity was set when reaching the 
maximum tolerance or achieving the sufficient ankle dorsi-
flexion angle for each subject (27), and the actual stimulation 
intensity in the experiment would not exceed this maximum 
value. The duration of the TA stimulation in this condition was 
the same as that in the SAS condition. The pulse width and the 
frequency of stimulation were 390  µs and 40  Hz in the four 
conditions.

Data analysis and statistical evaluation
The coordinates of the five markers were acquired to calculate 
the walking speeds, the maximum ankle dorsiflexion angle, the 
maximum knee flexion angle during the swing phase, and the 
ankle plantar flexion angle at the toe-off event. The kinematic 
signal was filtered by a second-order low-pass Butterworth filter 
with a cutoff frequency of 15 Hz (39).

The Kolmogorov–Smirnov test was used to assess all of the 
variables for the normality of the distribution. Then, the one-
way analysis of variance with repeated measures (ANOVA) was 
applied to analyze the influence of the stimulation condition (NS, 
HOS, SAS, and IDAS) on the ankle dorsiflexion, ankle plantar 
flexion, and knee flexion angles. If there was a significant differ-
ence, then post hoc analysis was conducted using the Bonferroni 
between different conditions. All of the statistical analyses were 
performed using SPSS 19 (SPSS, Inc., Chicago, IL, USA), and the 
level of significance was set at 0.05.

resUlTs

automatic adjustment of Pulse amplitude
Figures  3A,B showed the error signal between the actual 
maximum ankle dorsiflexion angle and the reference value, e, 
and the derivative of the error signal, Δe, in the IDAS condi-
tion. Figure  3C showed the adaptive pulse amplitude of one 
poststroke subject during FES-assisted hemiplegic walking at 
free speed. From Figure 3, there were relatively large errors at 
the beginning of the walking. After the cycle to cycle adjustment 
of the pulse amplitude in real-time according to the FLC, the 
maximum ankle dorsiflexion angles reached the reference value 
in approximately 5  s and the errors were lower than 2° after 
the adjustment (The positive ankle angle was equal to the ankle 
dorsiflexion angle and the negative ankle angle was equal to 
the ankle plantar flexion angle.) The mean errors between the 
maximum ankle dorsiflexion angles and reference value were 

1.4°, 1.7°, and 1.7° at the slow, free, and fast speed, respectively, 
in the IDAS condition, which were the smallest values among 
the four stimulation conditions at each speed (The mean errors 
were 4.5°, 4.0°, and 4.1° at the slow, free, and fast speed, respec-
tively, and in the NS condition were 2.4°, 2.9°, and 2.8°, at the 

https://www.frontiersin.org/Neurology/
https://www.frontiersin.org
https://www.frontiersin.org/Neurology/archive


Table 2 | The maximum ankle dorsiflexion angles during swing phase.

ankle 
dorsiflexion 
angles (°)

stimulation conditions

ns hOs speed-adaptive 
stimulation

intensity- and duration-
adaptive stimulation

Speed Slow 0.6 2.8 2.1 4.1
Free 0.7 2.9 2.4 4.2
Fast 0.7 3.2 2.4 4.5

FigUre 5 | Seven stroke subjects’ results for: (a) ankle plantar flexion 
angles at toe-off event; (b) maximum ankle dorsiflexion angles during swing 
phase; (c) maximum knee flexion angles during swing phase; *Significant 
difference from NS (P < 0.05); Significant difference from HOS (P < 0.05). 
The error bars represented the SDs.

FigUre 4 | (a) Ankle angles during the gait cycle for one poststroke subject 
at free speed; (b) knee angles during the gait cycle for the same poststroke 
subject at free speed.

5

Chen et al. Adaptive Functional Electrical Stimulation

Frontiers in Neurology | www.frontiersin.org March 2018 | Volume 9 | Article 165

slow, free, and fast speed, respectively; in the HOS condition, 
they were 3.0°, 3.6°, and 3.1° at the slow, free, and fast speed, 
respectively, in the SAS condition).

Kinematic Data in the Four stimulation 
conditions
The Kolmogorov–Smirnov test was applied to the kinematic 
variables, and the results indicated that all the variables followed 
a Gaussian distribution (P > 0.05). Figure 4 presents the ankle 
and knee angles of a stroke subject in a gait cycle at free speed. 
Figure 5 presents the maximum ankle dorsiflexion angles dur-
ing the swing phase, the ankle plantar flexion angles at the toe-
off event, and maximum knee flexion angles of the poststroke 
subjects during the swing phase in the four walking conditions. 
Compared to the NS condition, the HOS, SAS, and IDAS condi-
tions all achieved a larger maximum ankle dorsiflexion angle 
during the swing phase at all of the speeds, and the differences 
were significant (P  <  0.05). The maximum ankle dorsiflexion 
angles in the IDAS condition were closest to 4.9° compared to 
those in the HOS and SAS conditions at all of the speeds. At 
the slow, free, and fast speed walking, the average maximum 
ankle dorsiflexion angles in the IDAS condition were 4.1°, 4.2°, 
and 4.5°, respectively (Table  2). The values of the maximum 

ankle dorsiflexion angles in the IDAS condition were larger 
than those in the HOS and SAS conditions at all of the speeds, 
and significant differences were found between the IDAS and 
HOS conditions at the free and fast speeds. The maximum ankle 
dorsiflexion angles of two subjects were larger than 4.9° at the 
free speed in the HOS and SAS conditions, which were 5.3° and 
6.6°, respectively, and the average maximum ankle dorsiflexion 
angles were 2.8°, 2.9°, and 3.2° at the slow, free, and fast speed, 
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Table 4 | The maximum knee flexion angles during swing phase.

Knee flexion 
angles (°)

stimulation conditions

ns hOs speed-adaptive 
stimulation

intensity- and duration-
adaptive stimulation

Speed Slow 31.4 30.5 33.0 33.0
Free 33.4 32.1 33.5 33.3
Fast 34.4 33.4 33.9 34.4

Table 3 | The ankle plantar flexion angles at toe-off event.

ankle plantar 
flexion  
angles (°)

stimulation conditions

ns hOs speed-adaptive 
stimulation

intensity- and duration-
adaptive stimulation

Speed Slow −3.1 −0.3 −3.3 −2.5
Free −4.9 −2.2 −5.0 −4.6
Fast −5.8 −3.9 −5.5 −5.9
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respectively, in the HOS condition and were 2.1°, 2.4°, and 2.4° at 
slow, free, and fast speed, respectively, in the SAS condition. The 
SDs of the maximum ankle dorsiflexion angles in the HOS and 
SAS conditions were larger than those in the IDAS condition at 
all of the speeds. The plantar flexion angle in the HOS condition 
had the minimum value, and the plantar flexion angles in the 
SAS and IDAS conditions were significantly larger than those 
in the HOS condition at all of the speeds (Table 3). The plantar 
flexion angles in the SAS and IDAS conditions were similar to 
that in the NS condition. The maximum knee flexion angles in 
the SAS (33.0°) and IDAS conditions (33.0°) were significantly 
larger than those in the NS (31.4°) and HOS conditions (30.5°) 
at the slow speed, and there was a significant difference between 
the NS (33.4°) and HOS conditions (32.1°) at the free speed 
(Table  4). No significant differences in the maximum knee 
flexion angle were found in the other two walking conditions 
(P > 0.05).

DiscUssiOn

Functional electrical stimulation-assisted ankle dorsiflexion 
was triggered mainly by the fixed stimulation parameters or the 
modulation of one parameter in previous studies (33, 40, 41). 
In this study, an intensity- and duration-adaptive FES stimula-
tion was established, and the FLC and linear model were used 
to regulate the intensity and duration in the IDAS condition, 
respectively. The performance of the IDAS was compared with 
those in the NS, HOS, and SAS conditions.

Although higher maximum ankle dorsiflexion angles in the 
HOS and SAS conditions than that in the NS condition were 
found, the stimulation intensity was set to be a constant in these 
two conditions, which could not account for the changing ankle 
angles during the gait cycles. If the intensity was too strong, 
then an exaggerated foot lift would be caused during walking. 
Overlarge maximum ankle dorsiflexion angles of two subjects 
were observed in the HOS and SAS conditions, which might 
cause the muscle to fatigue rapidly and the subjects to feel 
discomfort (14). If the intensity was too weak, then, it might 

not yield a sufficiently large maximum ankle dorsiflexion angle 
during walking. The insufficient maximum ankle dorsiflexion 
angles would lead to decreased foot clearance, which results in 
an increasing risk of falls (42, 43). Delivering FES in the IDAS 
condition was intensity adaptive, which can account for chang-
ing the ankle angles during the gait cycles. As demonstrated 
by the results in Figures  4 and 5, the SDs of the maximum 
ankle dorsiflexion angles in the IDAS condition were smallest 
compared to those in other conditions at all of the speeds, and 
they were closer to the data of the healthy subjects described in 
the previous research (44), which would produce a more safe 
foot lift during walking. The larger variance in other conditions 
might be caused by the loss of muscle control ability during 
walking due to the fixed stimulation intensity (36). Although 
the ankle plantar flexion angle was not worsened in the SAS 
condition, a smaller maximum ankle dorsiflexion angle was 
observed in the SAS condition than that in the HOS condi-
tion. This difference would cause a smaller ankle excursion 
influencing the stability of walking, and a similar result was 
also shown in Kesar et al.’s study (45). Because the TA muscles 
were activated with the same stimulation intensity in these two 
conditions, greater stimulation intensity for the TA muscle 
would be required to generate a larger maximum ankle dorsi-
flexion angle during the swing phase in the SAS condition. At 
the same time, the stimulation intensity should be regulated to 
an appropriate magnitude but not an excessively high level, to 
avoid muscle fatigue.

In addition to the stimulation intensity being important, the 
stimulation duration was also essential for the FES parameteriza-
tion. Liberson et al. and Springer et al. started and terminated the 
stimulation using heel-off events and heel-strike events, respec-
tively (46, 47). Although there was improvement in the maximum 
ankle dorsiflexion angle in the HOS condition, the ankle plantar 
flexion angle was worsened at the toe-off event in the HOS condi-
tion when compared to those in other conditions, which suggest 
that they were not the optimal timing for the stimulation (shown 
in Figure 5). On the other aspect, the FES triggered by the HOS 
condition led to the decreased maximum knee flexion angles at 
the swing phase when compared to those in the other conditions, 
and similar results were also discovered in Bhadra et al.’s study 
(48). The decreased maximum knee flexion angles were related 
to the decreased ankle plantar flexion angles at the toe-off event. 
Additionally, the decreased ankle plantar flexion angle would 
result in a decreased forward propulsive force (12). There were 
improvements in the maximum ankle dorsiflexion angles, ankle 
plantar flexion angles, and maximum knee flexion angles at all 
of the speeds in the IDAS condition, which suggested that the 
proposed control was more suitable for the poststroke subjects’ 
rehabilitation.

Although both the maximum ankle dorsiflexion and ankle 
plantar flexion angle have improved in the IDAS condition, there 
were still some limitations. Only movement in the sagittal plane 
was considered in this study. Further studies will be conducted 
to address the undesired foot eversion/inversion in the frontal 
plane for poststroke subjects. The maximum ankle dorsiflexion 
angle, ankle plantar flexion angle, and maximum knee flexion 
angle were applied to evaluate the performance of FES-assisted 
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walking, and more evaluation methods will be investigated in a 
future study, such as the differences in the pattern of ankle/knee 
motion between the poststroke subjects and healthy subjects. 
Peri et  al. combined cycling with FES to enhance functional 
improvements for poststroke subjects (49). In our future study, 
the combination of the proposed FES control strategy and cycling 
will be investigated to further confirm its clinical effectiveness.

cOnclUsiOn

The purpose of this study was to apply an intensity- and duration-
adaptive FES control to determine the output of a stimulator and 
to explore whether the proposed control strategy was appropriate 
or not for poststroke subjects’ rehabilitation. The results showed 
that there were improvements in both the maximum ankle dorsi-
flexion angle and ankle plantar flexion angle in the IDAS condi-
tion compared to those in the other conditions. In the future, 
more studies on electrode placements are needed to validate 
whether the ankle joint angle is influenced by the precision of 
the electrode placements. Investigations could also be conducted 
with more poststroke subjects in a clinical experiment to validate 
the effectiveness in rehabilitation training.
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