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Guam parkinsonism–dementia complex (G-PDC) is an enigmatic neurodegenerative 
disease that is endemic to the Pacific island of Guam. G-PDC patients are clinically char-
acterized by progressive cognitive impairment and parkinsonism. Neuropathologically, 
G-PDC is characterized by abundant neurofibrillary tangles, which are composed of 
hyperphosphorylated tau, marked deposition of 43-kDa TAR DNA-binding protein, and 
neuronal loss. Although both genetic and environmental factors have been implicated, 
the etiology and pathogenesis of G-PDC remain unknown. Recent neuropathological 
studies have provided new clues about the pathomechanisms involved in G-PDC. For 
example, deposition of abnormal components of the protein quality control system in 
brains of G-PDC patients indicates a role for proteostasis imbalance in the disease. This 
opens up promising avenues for new research on G-PDC and could have important 
implications for the study of other neurodegenerative disorders.

Keywords: Guam parkinsonism–dementia complex, mutant ubiquitin, protein quality control, protein aggregation, 
tau, neurofibrillary tangles, 43-kDa tAr DNA-binding protein, neuropathology

iNtrODUctiON

Guam parkinsonism–dementia complex (G-PDC) is a mysterious neurodegenerative disorder 
that afflicts the indigenous Chamorro people of Guam (Mariana Islands). It was first described in 
clinicopathological studies by Hirano et al. in 1961 (1, 2). Mental deterioration and extrapyramidal 
signs (rigidity, tremors, and bradykinesia) characterize G-PDC clinically (3). Neuropathologically, 
G-PDC is characterized by widespread neurofibrillary tangles (NFTs), consisting of highly phos-
phorylated tau, marked deposition of 43-kDa TAR DNA-binding protein (TDP-43) and neuronal 
loss (4).

A remarkably high incidence of amyotrophic lateral sclerosis (ALS) was previously found in 
the same Western Pacific focus of neurological disease (5–12). Because of co-occurrence and 
overlapping pathology, displaying features of classical ALS in combination with NFTs, it has been 
proposed that these cases of ALS and G-PDC are variations of the same disorder, i.e., ALS/PDC of 
Guam (known in Guam as lytico-bodig) (13, 14). However, ALS and G-PDC might be completely 
separate disease entities: NFTs have been reported to be a frequent background feature in the 
affected population, and, therefore, occurrence of ALS in Guamanians often results in mixed 
pathology (15–20).
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FiGUre 1 | Neuropathological features of Guam parkinsonism–dementia complex (G-PDC). In the brains of G-PDC patients, various pathological protein 
aggregates can be found, e.g., neurofibrillary tangles (NFTs) (mouse anti-phosphorylated tau, AT8, 1:3,000, Innogenetics; mouse anti-MC1/CP13, 1:200, gift  
from Dr. P. Davies) (A,B) and 43-kDa TAR DNA-binding protein (TDP-43)-positive inclusions (mouse anti-TDP-43, 1:1,000, Abnova) (c). Abnormal protein  
deposits are decorated with ubiquitin (rabbit anti-ubiquitin, Z0458, 1:3,000, DAKO) (D). Immunoreactivity for phosphorylated pancreatic ER kinase (pPERK)  
indicates activation of the unfolded protein response and is associated with granulovacuolar degeneration (rabbit anti-pPERK, sc-32577, 1:400, Santa Cruz 
Biotechnology) (e). Furthermore, the ubiquitin-binding protein p62 is deposited in G-PDC brains (rabbit anti-p62, 1:500, Biomol) (F). Accumulation of p62 is a 
marker for the inhibition of autophagic flux. The photomicrographs in panels (A–F) show representative hippocampal sections from G-PDC brains. Arrowheads 
indicate distinct immunoreactive structures. Scale bar: 100 µm (Verheijen et al., unpublished data).

2

Verheijen et al. PQC Dysfunction in G-PDC

Frontiers in Neurology | www.frontiersin.org March 2018 | Volume 9 | Article 173

Although several causes have been suggested for G-PDC, 
including genetics, infectious agents, mineral deficiencies, and 
environmental toxins, the etiology and pathogenesis of this 
disease remain unknown (21–26). Determining the cause(s) 
of G-PDC and the pathways that lead to neurodegenera-
tion in G-PDC is of great interest, as this could lead to new 
insights into more common neurodegenerative diseases, such 
as Alzheimer’s disease (AD) and other tauopathies. Similarly, 
insights derived from studies on other neurodegenerative dis-
orders may be helpful for understanding and revealing unique 
aspects of G-PDC. Here, we highlight some recent observa-
tions that open up new opportunities to investigate disease 
mechanisms in G-PDC.

NeUrOPAtHOLOGicAL FeAtUres  
OF G-PDc

The search for the cause of G-PDC has become increasingly chal-
lenging due to a notable decline in neurological disease inci dence 
on the island in the last decades (27–31). The rapid Westernization 
of Guam may have contributed to this decrease. However, neu-
ropathology has been found to be unaltered during this time 
(although the severity and distribution of pathological lesions may 
have changed to some extent) (32).

Neuropathologically, G-PDC is characterized by severe neu-
ronal loss and abundant NFTs in different brain regions, includ-
ing the temporal and frontal cortex, basal ganglia, thalamus, and 
brainstem (2, 17, 32, 33). NFTs (Figures 1A,B) are biochemically 
and ultrastructurally similar to those found in AD brains (34) 
and closely resemble those seen in frontotemporal dementia 
(FTD) tauopathies (35).

Besides frequent tangles, other pathological protein deposits 
have been identified in neurons of G-PDC brains. These include 
cytoplasmic TDP-43-containing aggregates (Figure  1C) and 
focal α-synuclein pathology (32, 36–40). This could hint at a 
role for these particular proteins in specific disease processes in 
G-PDC. For example, abnormal aggregation of the RNA-binding 
protein TDP-43 may be linked to defective RNA processing  
(e.g., pre-mRNA splicing) and several other cellular perturbations, 
like disrupted nucleocytoplasmic transport, mitochondrial dys-
function, and inhibition of endocytosis (41–46). Amyloid-β (Aβ) 
deposits were initially reported to be rare or absent in G-PDC (47) 
but were later found to be present by several authors (32, 48–51). 
Intracellular inclusions are often ubiquitinated (32) (Figure 1D).

It is interesting to point out that glial cells, i.e., astrocytes and 
oligodendroglia, also contain pathological inclusions (tau, TDP-
43) in G-PDC and that these cells may play a significant role in 
G-PDC pathogenesis (32, 52). Extracellular NFTs are associated 
with reactive microglia (53, 54).
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FiGUre 2 | Accumulation of mutant ubiquitin (UBB+1) in Guam parkinsonism-dementia complex (G-PDC). UBB+1 is a frameshift mutant of ubiquitin that is generated 
through “molecular misreading,” a form of transcriptional mutagenesis that introduces dinucleotide deletions (; ΔGA or ΔGU) in or near GAGAG motifs in mRNA  
(A). UBB+1 contains an extended C-terminal tail that can be recognized by anti-UBB+1 antibodies. Deubiquitinating enzymes (DUBs), i.e., ubiquitin C-terminal hydrolase 
L3 (UCH-L3), can cleave this abnormal C-terminal domain, destroying the epitope. However, inhibition of DUBs, e.g., by oxidative stress conditions, prevents this 
cleavage (B). Accumulation of UBB+1 (rabbit anti-UBB+1, Ubi2A, 1:400, Dr. F. W. van Leeuwen) (c) and specific ubiquitin-proteasome pathway components, i.e.,  
the DUB ubiquitin C-terminal hydrolase L1 (UCH-L1) (rabbit anti-UCH-L1, 1:500, Biomol) (D) and the proteasomal ATPase subunit Rpt3 (rabbit anti-Rpt3, 1:400, 
Biomol) (e) can be observed in G-PDC patient brains (hippocampal sections), which strongly suggests proteostasis breakdown. UBB+1 is not present in young  
control brains (non-Guamanian cases). Arrowheads indicate various immunoreactive structures. Scale bar: 100 µm (Verheijen et al., unpublished data).
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Importantly, findings related to multiple proteinopathy have 
been complemented by the detection of molecular markers 
that link G-PDC to certain protein homeostasis (proteostasis) 
pathways. We have recently found some evidence for activa-
tion of the unfolded protein response (UPR) in G-PDC brain 
(Verheijen et  al., unpublished data). The UPR is an adaptive 
signaling cascade that is triggered by endoplasmic reticulum 
(ER) stress and is associated with abnormal protein aggregation 
and neurodegeneration (55, 56). Phosphorylation of pancreatic 
ER kinase, an ER transmembrane protein and ER stress sensor, 
plays an important role in the initiation and regulation of the 
UPR (Figure  1E). The primary goal of the UPR is to restore 
proteostasis in the ER via translational block and activation of 
ER stress responsive genes, but extensive or prolonged ER stress 
and UPR activation in disease can turn the UPR maladaptive. In 
addition, the autophagy substrate p62/SQSTM1 accumulates in 
G-PDC brains (Figure 1F), which could indicate compromised 
autophagy-mediated degradation (57, 58).

Together, some of these pathological characteristics suggest 
proteostasis network dysfunction in G-PDC. Disruption of the 
intracellular protein degradation machinery and proteostasis col-
lapse has been associated with many neurodegenerative diseases, 
and it will be interesting to see if, and to what extent, protein 
degradation pathways are affected in G-PDC (59, 60). Failure of 
protein quality control (PQC) mechanisms to maintain proteo-
stasis may represent a key pathogenic mechanism in G-PDC.

MUtANt UBiQUitiN AND iMPAireD 
PrOteOLYsis iN G-PDc

Multiple neuropathological observations imply impaired PQC 
in G-PDC. In a recent study, abnormal components of the 
ubiquitin-proteasome pathway (UPP), i.e., frameshift mutants of 
ubiquitin-B (UBB+1), have been found to accumulate in G-PDC 
brains (61).

The UPP is a major mechanism for the clearance of (abnormal)  
proteins in cells and impairment of the UPP has been reported 
to occur during neurodegeneration (62–65). UBB+1 is a dose-
dependent inhibitor of the UPP that is thought to be generated 
through “molecular misreading,” a poorly understood process 
that introduces mutations (e.g., ΔGA or ΔGU dinucleotide dele-
tions) not present in DNA into mRNA, resulting in the generation 
of aberrant proteins (66–68) (Figure  2A). The mutant protein 
lacks a C-terminal glycine residue (G76, which is replaced by 
a 20-amino acid extension in UBB+1) that is necessary to ubiq-
uitinate other proteins, but can still be ubiquitinated itself. The 
abnormal C-terminal domain of UBB+1 can be recognized by 
UBB+1 antibodies (69) (Figures 2B,C).

UBB+1 accumulates in several neurodegenerative diseases 
other than G-PDC, including tauopathies (e.g., AD) and poly-
glutamine (polyQ) diseases (e.g., Huntington’s disease) and  
has been shown to be detrimental to neurons (66, 70–73). The 
mechanisms by which UBB+1 exerts its effects on the UPP and 
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neuronal function are not known exactly, but it has been dem-
onstrated that UBB+1 is an inhibitor of deubiquitinating enzymes 
(DUBs) (74), and that it can affect mitochondrial function (75). 
UBB+1 expression in primary neurons causes neuritic beading 
of mitochondria in association with neuronal degeneration, 
presumably due to impaired axonal transport (76). Transgenic 
expression of UBB+1 in mice results in contextual memory 
deficits and central breathing dysfunction, which are consistent 
with neurodegenerative disease (77, 78). Also, UBB+1 was shown 
to increase mutant protein load in a mouse model for familial 
encephalopathy with neuroserpin inclusion bodies (FENIB), 
by impairing ER-associated degradation (79). UBB+1 might 
act as a modifier of the aggregation and cytotoxicity of other 
aggregation-prone proteins, such as prion protein and disease-
associated huntingtin (80).

Dissecting the precise role of UBB+1 in neurodegeneration 
is complicated by its dual role as both substrate and inhibitor 
of the UPP: at low concentrations, UBB+1 is degraded via the 
ubiquitin-fusion degradation pathway, but at high concentrations 
it is a potent inhibitor of the UPP (81–85). In addition, UBB+1 
can induce cytoprotective programs, like chaperone expression 
(86), which may compensate for diminished UPP function. 
Overexpression of UBB+1 in AD transgenic mice resulted in an 
unexpected decrease in Aβ plaque load (87), which could suggest 
that accumulation of UBB+1 is actually part of a cellular protec-
tive response. It is tempting to speculate that UBB+1 can interfere 
with non-degradation-based PQC processes like misfolding-
associated protein secretion (MAPS) as well, because MAPS 
enables PQC when conventional proteasomal degradation is 
impaired (88). Recent progress in identifying and understanding 
the roles of different ubiquitin chain topologies potentially adds 
another layer of complexity to the study of UBB+1, because differ-
ent ubiquitin chain linkages on UBB+1 could change its properties 
(89–91). The E3 ubiquitin ligases and DUBs that regulate UBB+1 
ubiquitination in neurons also remain to be identified (73).

In G-PDC, UBB+1 deposits are not exclusively located in neu-
rons, but are also present in glial cells (61). Such glial deposits 
have previously been observed in progressive supranuclear 
palsy (71), a disease that shares some similarities with G-PDC 
(23, 92, 93). The role of the UPP in glia with regard to neuro-
degenerative disease has been somewhat neglected (94), and it 
would be interesting to find out how UBB+1 impacts neuroglia. 
In cultured astrocytes, UBB+1 expression seems to confer protec-
tive effects via various mechanisms, ranging from regulation of 
pro-inflammatory signaling to altering mitochondrial dynamics  
(95, 96). Thus, UBB+1 and UPP inhibition may elicit cell type-
specific responses in the context of disease.

In addition to UBB+1, several other proteins related to the 
UPP were found to be present in G-PDC aggregates, i.e., the 
DUB ubiquitin C-terminal hydrolase L1 (UCH-L1) (Figure 2D) 
and the proteasomal ATPase subunit Rpt3 (Figure  2E) (61). 
Accumulation of these UPP components has been associated with 
neuropathology in earlier studies (97, 98). Mutations in UCH-L1 
lead to motor dysfunction in patients (99, 100) and mice lacking 
functional UCH-L1 show neurodegeneration (101). Strikingly, 
motor neuron-specific knockout of Rpt3 results in an ALS-like 
phenotype in mice (102).

Based on these findings, we conclude that the UPP is disturbed 
in G-PDC. The definite roles of UBB+1, different UPP compo-
nents, and PQC mechanisms in G-PDC remain to be determined.

PrOteOstAsis iMBALANce AND 
NeUrODeGeNerAtiON iN G-PDc

Accumulation of (abnormal) PQC components in G-PDC brains 
could be an important clue as to why disease-associated pro-
teins aggregate and neurons degenerate in G-PDC. Impaired 
PQC and several neurodegenerative diseases have been caus-
ally linked through genetic analyses of familial cases [e.g., in 
familial Parkinson’s disease (PD) (103)], demonstrating that 
PQC dysfunction can be a disease-initiating factor. Moreover, 
pharmacological inhibition of PQC via injection of proteasome 
inhibitors causes parkinsonian features in rats (104). Age-related 
decline in PQC function might (in part) explain the loss of pro-
teome integrity associated with age-related neurodegenerative 
disorders, including G-PDC (105, 106).

Detailed examination of the PQC system and UBB+1 in the 
context of the multiproteinopathy that characterizes G-PDC, in 
different experimental models (e.g., in  vitro neuronal cell cul-
ture and experimental animal models), will likely increase our 
knowledge of the timing (early vs. late) and relative importance 
of different disease processes. We take the view that mechanistic 
studies in such experimental model systems, and validating new 
findings against the reality of human tissues (neuropathology), 
will be a powerful approach for making discoveries. It is well 
recognized that abnormal PQC is implicated in AD, ALS(-FTD), 
PD, and other neurodegenerative disorders. Because this is a 
quite recent finding for G-PDC, insights derived from studies 
on other neurodegenerative diseases will be valuable to help 
understanding G-PDC, including its unique characteristics.

The cellular mechanisms that control proteostasis are not 
limited to protein degradation by the UPP, but also involve 
protein synthesis, folding, trafficking, and other (extracellular) 
clearance routes (107). PQC critically depends on additional 
cellular machinery, such as molecular chaperones (108, 109), and 
is often associated with specific cellular compartments/organelles  
(e.g., ER, mitochondria). Crosstalk within the proteostasis network 
and interactions between disease-related proteins and various  
disease mechanisms (e.g., DNA damage, defective RNA process-
ing, ER and mitochondrial dysfunction, nitrative and oxidative 
stress, cytoskeletal defects, Golgi fragmentation, abnormal stress 
granule formation, prion-like mechanisms, neuroinflammation, 
synaptic malfunction, disrupted membrane trafficking, and exci-
totoxicity) can determine whether a neuron will degrade (toxic 
protein aggregates) or degenerate. It should be mentioned that 
protein aggregation itself, even though it reflects failure of PQC 
to get rid of potentially harmful proteins, need not be pathogenic 
and in some cases may even be protective (110).

Ultimately, new mechanistic insights may result in the 
identification of therapeutic targets that prevent or slow down 
neurodegeneration. If G-PDC and other neurological disor-
ders converge on the dysregulation of proteostasis as a com-
mon underlying mechanism of pathogenesis, exploring PQC 
pathways to restore proteostasis could be a promising strategy 
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to find therapies for multiple neurodegenerative diseases. 
Current advances include the use of UPP activation to remove 
and stop propagation of pathogenic protein species (111–113). 
Other targets, such as chaperones and autophagy, are also being 
explored (58, 109, 114). However, different proteins, in different 
protein states, can be cleared via separate pathways. Ideally, 
a proteostasis “reset,” rebalancing the entire proteostasis net-
work in proteotoxically stressed neurons, would be desirable, 
because this could counteract many defects at the same time. 
It is unknown whether such a reset switch exists in human 
neurons, but some cells appear to exhibit a remarkable capacity 
to reestablish proteostasis (e.g., via lysosome acidification and 
metabolic shift in C. elegans germ lineage, “exopher” forma-
tion in C. elegans neurons and during differentiation of mouse 
embryonic stem cells) (115–117). Combinatorial therapies 
are likely to be required to generate robust treatments that 
effectively restore homeostasis in human somatic cells in such 
a way. The diverse pathology of G-PDC provides an excellent 
paradigm for interrogating interactions between multiple 
pathogenic proteins, the proteostasis network and different 
mechanisms of neurodegeneration.

FUtUre DirectiONs

Novel neuropathological findings in G-PDC stress the impor-
tance of utilizing pathway-specific markers to unravel disease 
mechanisms. While determining the (possibly multifactorial) 
cause of G-PDC, perhaps through new genetic and/or expo-
some (i.e., the totality of all environmental exposures) studies 
in the geographical isolate, remains a major outstanding 
problem, more studies into the pathomechanisms underlying 
neurodegeneration in G-PDC are warranted. Applying insights 
derived from studies on other neurological diseases that share 
molecular neuropathology, including work on postmortem 
human brains and various experimental model systems, will 
help to identify critical disease mechanisms. Investigating the 
interplay between G-PDC-associated pathological proteins and 
specific cellular/molecular pathways (e.g., PQC pathways), using 
relevant experimental models (e.g., patient induced pluripotent 
stem cell-derived neurons), will be an exciting and challenging 
task for the future. Such studies have also been initiated on the 
Kii peninsula of Japan, another hyperendemic focus of ALS/PDC 
(118–120) (Verheijen et  al., under investigation). The resulting 
insights could improve our understanding of other neurode-
generative diseases and might result in the identification of new 

biomarkers or therapeutic targets. It will be important for future 
studies to replicate findings in other populations with increased 
prevalence of ALS/PDC (121, 122).

sOMe OPeN QUestiONs

•	 Is impairment of the PQC system an important pathogenic 
mechanism in G-PDC?

•	 Does UBB+1 modify the cytotoxicity of aggregation-prone 
proteins, like tau and TDP-43?

•	 What is the role of glia in G-PDC? What are the effects of 
UBB+1 on glial cells?

•	 Are UBB+1 and PQC proteins also deposited in diseases that 
are similar to G-PDC, e.g., Kii ALS/PDC?

•	 What are the roles of the UPR and other adaptive stress 
response pathways in G-PDC?

•	 Is accumulation of UBB+1 and PQC dysfunction an early or 
late event in G-PDC? Is it a cause or consequence (or both) 
of disease?

•	 How can new insights into pathogenic mechanisms of G-PDC 
be used to advance the understanding and treatment of other 
neurodegenerative diseases? E.g., can UBB+1 and particular 
PQC components be used as therapeutic targets in neurode-
generative disorders?
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