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Robotic assistant-based therapy holds great promise to improve the functional recovery 
of stroke survivors. Numerous neural-machine interface techniques have been used to 
decode the intended movement to control robotic systems for rehabilitation therapies.  
In this case report, we tested the feasibility of estimating finger extensor muscle forces of a 
stroke survivor, based on the decoded descending neural drive through population moto-
neuron discharge timings. Motoneuron discharge events were obtained by decomposing 
high-density surface electromyogram (sEMG) signals of the finger extensor muscle. The 
neural drive was extracted from the normalized frequency of the composite discharge 
of the motoneuron pool. The neural-drive-based estimation was also compared with the 
classic myoelectric-based estimation. Our results showed that the neural-drive-based 
approach can better predict the force output, quantified by lower estimation errors and 
higher correlations with the muscle force, compared with the myoelectric-based estima-
tion. Our findings suggest that the neural-drive-based approach can potentially be used 
as a more robust interface signal for robotic therapies during the stroke rehabilitation.

Keywords: motor unit decomposition, high-density surface electromyogram, neural drive, stroke, neural control, 
muscle weakness

INtRoDUCtIoN

Stroke survivors manifest impaired hand functions, especially the finger extension of their affected 
side. The use of robot-assisted devices (e.g., orthosis) (1–3) has shown great promise as a rehabilita-
tion or assistive tool for stroke survivors. In order to control the robot based on user intention, 
surface electromyogram (sEMG) signals have been widely used as the neural control signal of 
the assistive robots or orthoses (4–6). However, since the global electromyogram (EMG) can be 
regarded as a random process at the macro level, directly using EMG as a control input can mask 
the actual neural control information (7). Moreover, abnormal muscle activation generated from 
the affected side can lead to less accurate myoelectric control.

In contrast, motoneuron discharge timings have been introduced as a better neural interface to 
robotic control (7), because the discharge timings can reflect the input signal to the neuromuscular 
system, and can be more robust for decoding user intent than the traditional EMG-based approach. 
The motoneuron discharge timing can be extracted from EMG decomposition, and the descending 
neural drive to the motor unit (MU) pool then can be estimated based on the firing behaviors of 
the pool. The neural drive can overcome different inconvenient processes in EMG and motor unit 
action potential (MUAP) that can interfere myoelectric control, such as the crosstalk of multiple 
EMG channels (9), cancelation of the waveform of MUAPs (8), and variations of MUAPs generated 
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FIgURe 1 | Exemplar root-mean-square map for index finger from both 
affected (a) and contralateral sides (C). (B) Root-mean-square map of panel 
(a) with background noise and motion artifact without filtering.  
(D) Experiment electrode placement. All root-mean-square maps were 
calculated from the trapezoid 50% contraction. All the X and Y axis labels 
indicate the row or column number of the electrodes.
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by conductive process from muscle fibers to the skin surface or 
location shift of electrodes. In addition, the neural-drive-based 
approach could also overcome the variation or abnormal MUAPs 
due to the tremor and weakness on the affected side of stroke 
survivors.

Therefore, we quantified the performance of traditional 
EMG-based approach and the neural-drive-based approach on 
estimating the forces of individual finger (index, middle, and 
ring) extension of a stroke survivor. Our case study provided a 
promising approach that can help improve the utility of reha-
bilitation/assistive devices for hand functional recovery of stroke 
survivors.

MateRIaLs aND MetHoDs

Case Report
We reported a case of an 88-year-old woman who suffered a 
hemispheric ischemic stroke ten years ago. Her Chedoke assess-
ment scale on the hand section was 3 (moderate impairment). 
Her primary concern regarding her affected hand was muscular 
weakness in the hand muscles. The maximin force ratios of the 
finger extension on the affected side relative to the contralateral 
side were 0.48, 0.45, and 0.6 for index, middle, and ring fingers, 
respectively. In addition, the subject had difficulty generating 
forces with her little finger on her affected side. This study was 
carried out in accordance with the recommendations of the 
local Institutional Review Board (IRB) with written informed 
consent from the subject. The subject gave written informed 
consent in accordance with the Declaration of Helsinki. The 
protocol was approved by the local IRB. The written informed 
consent was obtained from the participant for the publication 
of this case report.

experimental setup
The subject sat upright in the experimental chair with the tested 
forearm comfortably placed on a horizontal table and the elbow 
supported on a foam pad. Her wrist was secured within two 
padded boards in a neutral position with respect to the flexion/
extension to limit the use of her wrist. The four fingers (index, 
middle, ring, and little) were comfortably abducted. Each finger 
was secured to one load cell (Interface, SM-200N) for finger force 
measurement (with 1 kHz sampling rate). During the experiment, 
the subject was required to isometrically extend one designated 
finger (index, middle, or ring) each time. First, maximin voluntary 
contraction (MVC) of each finger was measured when the subject 
ramped up contraction force until it reached the maximum level 
and then maintained for 2 s. The average force value during the 2 s 
contraction plateau was taken as the MVC. After practice trials, 
she performed different tracking tasks. The subject was asked to 
track a targeted force trajectory shown on the screen by adjusting 
the muscle force of a designated finger. Two target trajectories 
were tested separately such as sine wave and trapezoid. Two 
contraction levels (20% or 50% MVC) were tested in each target. 
For the sine-wave target, the force oscillated either from 10% to 
20% or from 25% to 50% at the designated force levels. Two repeated 
trials were performed for each condition. Additionally, the subject 

was instructed to only extend one of the designated fingers in 
each trial, but was allowed to activate other fingers, when she 
has difficulty isolating other fingers. The order of the finger and 
the contraction level was randomized during the experiment. A 
3 min rest was provided between trials to avoid fatigue. The two 
sides were tested on two separate sessions separated by a week 
apart. A total of 24 trials (three fingers ×  two contraction lev-
els × two tracking tasks × two repetitions) were recorded for each 
side. The force feedback of the designated finger was displayed via 
a custom-built program using Matlab (MathWorks, Inc.).

Surface EMG signals were recorded over the extensor digitorum 
communis muscle (EDC) using an 8 × 16 -channel (Figure 1D) 
high-density (HD) EMG electrode array with an inter-electrode 
distance of 10  mm (OT Bioelettronica, Torino, Italy). The HD 
array was attached to the skin surface at the middle of olecranon 
process and the styloid process with a double-sided sticker. Prior 
to the array placement, the skin was scrubbed with abrasive 
alcohol pads and then cleaned with regular alcohol pads. The 
EMG signals were sampled at 2,048 Hz with a gain of 1,000 and 
filtered with a cutoff frequency at 10–900 Hz via EMG-USB2  + 
(OT Bioelettronica, Torino, Italy).

Data analysis
The neural-drive-based and EMG-based estimates were 
evaluated using a 500  ms moving window with an overlap 
of 400  ms between two adjacent windows. Different window 
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FIgURe 2 | Example time-series plots of four different contraction tasks. (a,B) Contralateral side. (C,D) Affected side. The corresponding root-mean-square errors 
(RMSEs) are presented and the correlation coefficients are shown in brackets. (e) Illustration of the decomposition results and the neural-drive-based estimation 
from trial (D). One channel electromyogram (EMG) signal with highest root-mean-square value is shown, and the corresponding waveforms of motor unit action 
potentials (MUAPs) in that channel are plotted.
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parameters tended to influence both estimation approaches 
in a similar manner. A previous study (10) has demonstrated 
that the muscle activation of individual finger was localized 
to particular regions of the muscle. Similar results were 
further verified in the current study as shown in Figure  1. 
EMG signals in the channels with low amplitude may contain 
background noise or components from the co-contraction of 
other fingers. Therefore, only half of the channels with higher 
signal amplitude were selected for the decomposition and for 
the root-mean-square calculation of the EMG. Namely, signals 
from row 1–8, 5–12, and 9–16 were used for index, ring, and 
middle fingers, respectively.

Electromyogram-Based Estimation
The EMG amplitude has been shown to be the most important 
and common feature to control external devices. For example, 
previous studies (11, 12) have indicated that the root-mean-
square of EMG exhibited superior performance among the dif-
ferent amplitude-based control features, especially for high-force 
contractions (≥ 25% MVC). Raw EMG signals were first filtered 
with a high-pass filter (4th order Butterworth with a cutoff 
frequency of 50 Hz) to reduce the influence of motion artifacts.  
A notch filter (2nd order IIR filter at 60 Hz with a bandwidth of 
1  Hz) was used to reject the power-line interference. For each 
sliding window, the root-mean-square of each EMG channel was 
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taBLe 1 | Overall results of the root-mean-square error (RMSE) and correlation coefficient.

Index Middle Ring

eMg Drive eMg Drive eMg Drive

Sine 20 C 0.15 (0.84) 0.22 (0.70) 0.18 (0.81) 0.14 (0.90) 0.19 (0.86) 0.13 (0.91)
A 0.22 (0.70) 0.27 (0.67) 0.23 (0.77) 0.19 (0.85) 0.15 (0.90) 0.10 (0.94)

Sine 50 C 0.27 (0.81) 0.21 (0.80) 0.19 (0.80) 0.17 (0.83) 0.16 (0.91) 0.10 (0.92)
A 0.18 (0.73) 0.10 (0.94) 0.23 (0.76) 0.19 (0.84) 0.25 (0.75) 0.19 (0.85)

Trapezoid 20 C 0.17 (0.91) 0.20 (0.89) 0.22 (0.84) 0.21 (0.88) 0.16 (0.92) 0.16 (0.92)
A 0.32 (0.32) 0.25 (0.76) 0.14 (0.88) 0.13 (0.89) 0.25 (0.77) 0.15 (0.85)

Trapezoid 50 C 0.10 (0.95) 0.16 (0.92) 0.12 (0.92) 0.13 (0.92) 0.10 (0.94) 0.10 (0.95)
A 0.33 (0.28) 0.12 (0.95) 0.25 (0.82) 0.22 (0.86) 0.16 (0.93) 0.12 (0.95)

Mean 0.22 ± 0.08 
(0.60 ± 0.36)

0.19 ± 0.06 
(0.83 ± 0.11)

0.20 ± 0.05 
(0.82 ± 0.06)

0.17 ± 0.04 
(0.87 ± 0.03)

0.18 ± 0.05 
(0.87 ± 0.07)

0.13 ± 0.03 
(0.91 ± 0.04)

The correlation coefficients are written in brackets. C and A represent contralateral and affected sides. Values in italics show the cases that the EMG-based estimation is better than 
the neural-drive-based estimation.
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calculated and then was averaged across all channels as the force 
estimation. The average of the root-mean-square of HD EMG 
signals is defined as [1]:
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where xi(n) is the ith channel, n is the index of sample, N is the 
length of the EMG recording in samples, M is the number of EMG 
channels, and i is the index of EMG channel.

Neural-Drive-Based Estimation
Raw EMG signals were decomposed into individual MU discharge 
events using the FastICA method (13) that has been verified as 
an accurate decomposition algorithm by previous studies (14). 
All the details of the decomposition algorithm and the parameter 
selection have been described in Ref. (13, 14). After EMG decom-
position, the discharge timings of each individual MU were 
obtained. The general extension step for EMG decomposition and 
limitations of the FastICA algorithm (e.g., repeatedly converge 
to the same MU) usually result in a decomposition output with 
replicas of the same MU. The replicated MUs were removed for 
further analysis. Then, the discharge timings of all unique MUs 
were pooled into a composite spike event train. The composite 
discharge rate was calculated by dividing the number of events 
within each window by the window length (500 ms).

The performance of the two approaches was evaluated by 
the root-mean-square error (RMSE) and the correlation coef-
ficient between the actual force and the estimates. To reduce 
the interference from the residual muscle activation even when 
the subject was instructed to relax, the estimation values were 
subtracted from the baseline values of the initial 2 s of each trial. 
Due to potential neural-mechanical delay between the neural 
drive/EMG and the force, the lag cross-correlation coefficient 
was used to make up the delay before the RMSE and correlation 
calculations. The lag cross-correlation coefficient was used to find 
the time delay when the force and the estimate had the highest 
cross-correlation coefficient. Since the units of EMG (volts), 

neural drive (Hz) and force (N) are different, the values were all 
normalized by its maximum value before comparison, leading to 
a maximum value of 1 (7). The performance differences of the 
two approaches were compared statistically using paired t-tests.

ResULts

A total of 48 trials were analyzed. The number of MUs (mean ± SD) 
obtained from the decomposition was 7.94 ± 3.60 on the affected 
side and 10.17 ± 3.17 on the contralateral side. Figure 1 shows 
the 2-D muscle activation map for index finger from both affected 
and contralateral sides under the condition of a steady contraction 
level at 50% MVC. The contralateral side revealed more concen-
trated and stronger muscle activation, compared with the affected 
side. The time-series plots of the two force estimation approaches 
and the corresponding actual forces for the two tracking tasks are 
shown in Figure 2. In general, the neural-drive-based estimate 
(in blue) showed a better approximation to the actual force  
(in red), compared with EMG-based estimate (in green). In addi-
tion, the overall results of the RMSE and correlation coefficient 
are summarized in Table  1. For most cases, the neural-drive-
based approach is better than the EMG-based estimation.

Since four factors (three fingers × two contraction levels × two 
tracking tasks  ×  two sides) were tested, the mean  ±  SE of the 
RMSE for each factor was obtained by averaging the values 
across all the trials among other factors (see Figure 3). Overall, 
the neural-drive-based estimates showed a significant lower 
error than the EMG-based estimates [paired t-test: t(47) = 3.473, 
p = 0.001]. We also observed similar trend for individual factors. 
Finally, the affected side also showed a larger RMSE than the 
contralateral side for the EMG-based estimation. Similarly, the 
neural-drive-based estimates showed a higher correlation with 
the actual forces than the EMG-based estimates [paired t-test: 
t(47) = 3.421, p = 0.001].

DIsCUssIoN

In this study, we investigated the feasibility of a novel neural drive 
estimation of the individual finger force of a stroke survivor, 
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FIgURe 3 | The grand mean ± SE value of RMSE and correlation coefficient of each factor [(a,e) finger, (B,F) contraction level, (C,g) tracking task, and (D,H) side]. 
The error bars represent the SE.

based on motoneuron discharge timings at the population level. 
The discharge timings of the motoneurons can directly reflect 
the high-level control from the brain. It provides an alternative 
control input for the simultaneous and proportional control of 
individual finger forces. In general, our results show that the 
neural-drive-based approach was superior to the classic EMG-
based approach for a majority of the conditions, especially on the 
affected side.

Since the EMG signal is regarded as a random Gaussian pro-
cess at the macro level and the information of high-level neural 
control can be corrupted in EMG signals. The EMG signal varies 
due to the variation and cancelation of the waveforms of MUAPs 
at the macro level. Inevitable, external factors, involving ambient 
background noise, electrode shift, and changes in electrode-skin 
contact, can also modify the signal properties. These drawbacks 
can limit the development of a robust and accurate robotic control 
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interface for stroke rehabilitation. In contrast, the neural-drive-
based approach intuitively has a better translation of the high level 
neural control, because the population probability/frequency of 
the discharge at the MU pool level directly encodes the descend-
ing input, without the various limitations in the EMG-based 
approach. Therefore, neural drive estimate reveals an improve-
ment in the estimation accuracy of the muscle force. Previous 
studies have shown that the neural-drive-based approach can 
provide accurate estimation of motor output in different popula-
tions such as amputees following targeted muscle reinnervation 
and intact subjects (7). Our results on the stroke subject also 
showed consistently better performance in the neural-drive based 
approach. However, we still found some conditions (in italics in 
Table 1) showing that the EMG-based estimation is better than 
the neural-drive-based approach, especially in the index finger. 
One possibility is that the muscle activation generated from index 
finger of the stroke survivor is weak. The low signal-to-noise ratio 
(SNR) can decrease the accuracy of the decomposition (13).

Our preliminary results also showed that different factors 
(finger, contraction level, tracking task, and side) can affect the 
estimation of both approaches (see Figure 3). First (finger), the 
magnitude of sEMG signals from the EDC muscle compartment 
controlling the index finger was weaker than the other two 
fingers for this subject. Therefore, the low SNR from the index 
finger had the highest RMSE. Second (contraction level), EMG 
signals from the 50% contraction level had a higher SNR than the 
20% condition, and more MUs can potentially be decomposed, 
which can lead to a better force estimation. Third (tracking task), 
the sine-wave contraction could induce more variations in the 
action potential amplitudes, compared with the trapezoid con-
traction, which could limit the neural-drive-based estimation. 
Nevertheless, the neural-drive-based estimation still revealed 
improved performance than the EMG-based estimation. Finally 
(side), the tremor during voluntary contractions on the affected 
side can cause more errors in EMG-based estimation than the 
contralateral side. In contrast, the neural-drive-based estimation 
showed similar performance across the two sides.

Our current study only tested a single stroke survivor. Although 
the results are promising, further testing involving a large subject 
cohort with different degrees of impairment is clearly needed. 
In addition, we did not test larger force levels above 50% MVC, 
because this particular subject had difficulty generating forces 
continuously at higher levels. During the experiment, the subject 
may inevitably perform co-contractions, especially during her 
ring finger extension. The EMG generated from co-contractions 
can potentially influence the estimation errors in both approaches. 
Our study was also limited to an offline analysis. Further studies 
on real-time decomposition are needed before the neural drive 
control method can be used for real-time applications. In general, 
our current work shows that the neural-drive-based estimation 
performed better than the EMG-based estimation for stroke 
survivors, especially on the affected side. This case study could 
provide a promising control input for robotics devices during 
stroke rehabilitation.
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