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Background: Overactivation of NMDA-mediated excitatory processes and excess of 
GABA-mediated inhibition are attributed to the acute and subacute phases, respectively, 
after a traumatic brain injury (TBI). However, there are few studies regarding the circuitry 
during the chronic phase of brain injury.

Objective: To evaluate the cortical excitability (CE) during the chronic phase of TBI in 
victims diagnosed with diffuse axonal injury (DAI).

Methods: The 22 adult subjects were evaluated after a minimum of 1 year from the 
onset of moderate or severe TBI. Each of the subjects first had a comprehensive neu-
ropsychological assessment to evaluate executive functions—attention, memory, verbal 
fluency, and information processing speed. Then, CE assessment was performed with 
a circular coil applying single-pulse and paired-pulse transcranial magnetic stimulation 
over the cortical representation of the abductor pollicis brevis muscle on M1 of both 
hemispheres. The CE parameters measured were resting motor threshold (RMT), motor-
evoked potentials (MEPs), short-interval intracortical inhibition (SIICI), and intracortical 
facilitation (ICF). All data were compared with that of a control group that consisted of 
the healthy age-matched individuals.

results: No significant differences between the left and right hemispheres were detected 
in the DAI subjects. Therefore, parameters were analyzed as pooled data. Values of RMT, 
MEPs, and ICF from DAI patients were within normal limits. However, SIICI values were 
higher in the DAI group—DAI SIICI = 1.28 (1.01; 1.87) versus the control value = 0.56 
(0.33; 0.69)—suggesting that they had a disarranged inhibitory system (p < 0.001). By 
contrast, the neuropsychological findings had weak correlation with the CE data.

conclusion: As inhibition processes involve GABA-mediated circuitry, it is likely that the 
DAI pathophysiology itself (disruption of axons) may deplete GABA and contribute to 
ongoing disinhibition of these neural circuits of the cerebrum during the chronic phase 
of DAI.

Keywords: brain injuries, craniocerebral trauma, diffuse axonal injury, neurophysiology, transcranial magnetic 
stimulation
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inTrODUcTiOn

Traumatic brain injury (TBI) is one of the major health con-
sequences of trauma from motor vehicle accidents having its 
highest incidence among young male adults (1, 2). Considering 
that this age group is at its prime economic productivity, should 
they suffer a TBI which can cause long-term motor and cognitive 
disabilities, the negative impact of TBI stretches beyond just the 
individual victim (3, 4).

Traumatic brain injury is classified by clinical severity (mild, 
moderate, or severe), pathoanatomic type (focal or diffuse), and 
mechanism of injury (blunt or penetrating) (1). Focal lesions 
tend to have simpler management compared to diffuse injuries, 
whereas widespread damage has a complex mechanism that con-
tributes to morbidity and limits clinical study and management.

Diffuse axonal injury (DAI) is a clinical condition often related 
to closed head traumas. It is the predominant finding in approxi-
mately half of TBI patients, and it has been found in all levels of TBI 
severity. Clinically, trauma victims with prolonged unconscious-
ness (6 h or more) unaccompanied by ischemic damage or mass 
lesions are usually diagnosed with DAI. Still, most of the features 
of DAI are microscopic and cannot be identified on conventional 
methods of neuroimaging, such as computed tomography (CT) 
scans or conventional magnetic resonance imaging (MRI) (1, 5, 6).

The diagnosis of DAI can only be confirmed by postmortem 
histopathological analysis and, for this reason, the development 
of new and more refined techniques—for instance, diffusion-
weighted imaging and diffusion tensor imaging in MRI—enables 
further studies of DAI in vivo. In particular, transcranial magnetic 
stimulation (TMS) seems to be an interesting tool for neuro-
physiological testing as it allows a noninvasive real-time study 
of the brain, providing indirect information about intracortical 
interneuronal circuits through cortical excitability (CE) assess-
ments (6–10).

Some studies using TMS show changes in CE after strokes, in 
psychiatric disorders, in pain syndromes, and even during acute 
phases of TBI (11–14). Mechanisms of intracortical facilitation 
(ICF) and intracortical inhibition are related to glutamatergic and 
GABAergic pathways, respectively, and the imbalance of these 
neurotransmitters is somehow involved in maladaptive plasticity  
(15, 16). Knowledge about how these imbalances lead to the patho-
physiology that develops after brain injury would enable the devel-
opment of new therapeutic strategies and rehabilitation options.

Unfortunately, there are few studies of CE after TBI, and most 
of those studies were carried out in patients with TBI of mild 
severity or only during the acute phase (14–16). Thus, in the 
present study, we sought to evaluate CE in patients during the 
chronic phase of TBI, diagnosed with DAI, using the diagnostic 
mode of TMS. In addition, we tried to correlate the neuropsy-
chological profile of these patients with the CE data and clinical 
characteristics.

MaTerials anD MeThODs

setting and subjects
A convenience sample of 73 adults, 18–60  years old, of both 
genders, who had been clinically diagnosed with DAI during an 

acute hospitalization following trauma were initially evaluated at 
the neurotrauma outpatient center of a tertiary referral hospital 
in Sao Paulo, Brazil.

After this initial screening, 51 patients were excluded. 
Exclusion criteria included (1) associated focal lesions or the 
presence of any abnormality other than DAI (e.g., epidural/
subdural hematoma); (2) having suffered more than one TBI; 
(3) major psychiatric disorders (e.g., major depression, bipolar 
disorder, any disorder requiring admission to a psychiatric ward); 
(4) history of surgical procedures to the brain/skull; (5) the pres-
ence of metallic devices/pieces in the brain/skull (clips, plates, 
electrodes, etc.); (6) pregnancy; (7) epilepsy/seizures; (8) severe 
language impairment (writing/reading/speaking); or (9) illicit 
drug and/or alcohol abuse.

To achieve the most homogeneous sample possible, DAI 
diagnosis was established for this study as (1) a clinical condi-
tion of prolonged unconsciousness (6 h or more) following TBI; 
(2) a head CT scan image taken during acute hospitalization, 
demonstrating a wide spectrum of findings such as a relatively 
normal examination, small hemorrhagic (hyperdense) or 
non-hemorrhagic (hypodense) lesions no more than 25 cm3 in 
size (typically located at the gray–white matter junction, in the 
corpus callosum, and in more severe cases in the brainstem); 
small intraventricular hemorrhage, subarachnoid hemorrhage, 
and signs of brain swelling, such as compressed or even absent 
basal cisterns; (3) MRI obtained during the chronic phase  
(i.e., taken at least 6 months after TBI), demonstrating small 
regions of susceptibility artifact at the gray–white matter junction, 
in the corpus callosum, or the brain stem. Some lesions might 
be entirely non-hemorrhagic (even using susceptibility-weighted 
imaging sequences at high-field strengths). These would, however, 
be visible as regions of high fluid-attenuated inversion recovery 
signals on an MRI of the cranium.

Twenty-two subjects selected to participate in this explora-
tory study were assessed after a 1-year interval, at least, from the 
moment of trauma. The recruitment period was from May 2014 
to 2015. For general comparisons, we used the normative data of 
CE as reference (17), and for supplementary analysis, we selected 
a control group consisting of 22 healthy subjects, with no history 
of brain injury or trauma, from a normative CE database (17), 
matching the DAI subjects for age and gender.

The protocol was approved by the Ethics Committee for Research 
of the respective institutions (Protocol #707.642), in compliance 
with the Declaration of Helsinki, and written informed consent 
was obtained from all the subjects participating in the study.

neuropsychological assessment
All of the selected patients underwent a broad neuropsycho-
logical assessment to evaluate attention, memory, information 
processing speed, dexterity, and executive functions (inhibitory 
control, verbal fluency, and working memory). All the neuropsy-
chological tests were conducted at one session in a quiet room, 
with only the subject and the examiner, at 2–7 days before the CE 
assessment and included the following:

– STAI (State-Trait Anxiety Inventory) (18, 19),
– BDI (Beck Depression Inventory) (18, 20),
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TaBle 1 | Demographic and clinical characteristics of 22 subjects with DAI.

Mean (±sD) or number (%)

Demographic
Age, years 30.1 (±10.3)
Gender, male 19 (86.36)
Education, years 10.3 (±2.3)

clinical characteristics
Handedness, right 20 (90.9)
Time since TBI, months 18.7 (±2.5)
Glasgow Outcome Scale-Extended

5—Lower Moderate Disability 2 (9.09)
6—Upper Moderate Disability 10 (45.45)
7—Lower Good Recovery 7 (31.82)
8—Upper Good Recovery 3 (13.64)

Glasgow Coma Scale, score <8 at admission 16 (72.73)
Mechanisms of injury

Automobile accident 9 (40.91)
Motorcycle accident 8 (36.36)
Running-over 3 (13.64)
Interpersonal aggression 2 (9.09)

Medication
None 19 (86.36)
Benzodiazepine (prior use) 2 (9.09)
Antidepressant (prior use) 1 (4.55)
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– HVLT (Hopkins Verbal Learning Test)—immediate recall/
delayed recall/recognition (21),

– BVMT (Brief Visual Memory Test)—immediate recall/delayed 
recall/recognition (21),

– TMT A and B (Trail-Making Test parts A and B) focused visual 
attention and task-switching attention (22),

– Stroop test, Victoria version—selective attention and inhibi-
tion (22),

– Digit Span Test—working memory (23),
– COWAT (Controlled Oral Word Association Test)—phonologic  

and semantic verbal fluency (24),
– Symbol digit test—information processing speed (24),
– Five-point test—visual fluency (24),
– Grooved pegboard test—dexterity (25).

ce assessment: TMs
The CE assessment was performed using MagPro X100 (MagVenture  
Tonika Elektronik, Farum, Denmark) with a C-100 circular coil 
connected to an electromyography amplifier of a one-channel, 
three-surface electrode output.

The stimulation target—hotspot—was determined using 70% 
intensity to identify the point of highest response of the hand 
muscles, which would correspond to the cortical representation 
of the abductor pollicis brevis muscle on M1 of both hemispheres. 
Each subject sat comfortably on a reclining armchair and wore a 
polyester swim cap on which the hotspot was marked.

The parameters measured were resting motor threshold (RMT),  
motor-evoked potentials (MEPs), short-interval intracortical inhi-
bition (SIICI), and ICF. Peak-to-peak MEP amplitudes were 
considered in microvolts (μV). RMT was established as the low-
est intensity at which MEP of at least 50-µV amplitude could be 
elicited in 5 of 10 consecutive stimuli (13, 17, 26–30).

We used single-pulse TMS for RMT and MEP measurements. 
The average value of four MEP curves taken at 120% of RMT 
was used for analysis. The same procedure was adopted for MEP 
curves at 140% of RMT. Paired-pulse TMS (pp-TMS) was used 
for SIICI and ICF measurements, with the conditioning stimulus 
set at 80% of RMT and the test stimulus at 120% of RMT (13). 
For SIICI analysis, response curves were taken using pp-TMS 
with 2 and 4  millisecond (ms) intervals between pulses [inter-
stimulus intervals (ISI)], denominated ICI 2 ms and ICI 4 ms. As 
for ICF, ISI were 10 and 15 ms, denominated ICI 10 ms and ICI 
15 ms. The average value of four MEP curves at each interval was 
used for analysis. CE measurements were performed using the 
same technique as in previous studies to facilitate comparison  
(17, 26–30).

statistical analysis
All neuropsychological and CE data were analyzed using the 
SPSS version 22.0 Statistical package (SPSS, IBM Inc., Chicago, 
IL, USA) with two-tailed tests and a 5% level of significance. 
Shapiro–Wilk tests were used to verify continuous variables for 
normal distribution, and Wilcoxon tests were used to compare 
the right and left hemispheres in the DAI group.

For inferential analysis, all subjects from DAI group were 
matched by age and gender to healthy subjects from a normative 
database of CE (17), and a Mann–Whitney U-test was performed. 

The Spearman test was performed to analyze correlation between 
neuropsychological and CE data results.

resUlTs

Demographic and clinical characteristics
Most participants had severe TBI. They were mostly young adult 
males (86%), as trauma in general is common in this group.  
For the outcome measure (functionality), participants were clas-
sified according to the Glasgow Outcome Scale-Extended (31). 
Most of them were independent, both inside and outside their 
homes but could not resume all their pre-injury social activities—
upper moderate disability—mostly due to irritability, concentra-
tion problems, and memory failures (Table 1).

Three subjects had used medications in the past that could 
interfere with the neurophysiological tests, but by the time they 
were included in the study, they were no longer taking any medi-
cations and were not outliers on CE data. Therefore, they were not 
excluded from analysis.

ce results
The CE data distribution was skewed, and there were no significant 
differences between hemispheres (p = 0.125). A pooled analysis was 
performed in which data from both hemispheres (left and right) were 
combined (22 subjects, 44 hemispheres). One subject had traumatic 
amputation of the right arm, and CE data of the left hemisphere 
were not collected. Another subject had a brachial plexus injury of 
the left arm, and CE data of right hemisphere were not collected.  
In summary, 42 hemispheres were analyzed for the DAI patients.

DAI Group Data Classified According  
to Normative Data
On a group analysis, CE values for the DAI group were classified 
according to normative data (Table 2). The confidence interval 
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FigUre 1 | Short-interval intracortical inhibition (SIICI) median values and 
95% CI of diffuse axonal injury (DAI) patients compared to healthy subjects.

TaBle 2 | CE data comparison between DAI patients and healthy controls, analyzed according to normative data.

ce parameters Median (95% ci) p-Value 95% ci normative data (17)a classification of Dai patients n(%)

control (n = 44) Dai (n = 42) high normal low

RMT 48.5 (44; 52) 47.5 (43; 51) 0.604 46.3–49.8 19 (45.24) 3 (7.14) 20 (47.62)
MEP-120% 310.5 (260.03; 436.52) 435.85 (253.38; 581.28) 0.388 423.3–689.6 11 (26.19) 11 (26.19) 20 (47.62)
MEP-140% 756.5 (592.31; 1,300) 1,000 (742.02; 1,385.64) 0.346 987.0–1,385.7 15 (35.71) 9 (21.43) 18 (42.86)
Ratio 140/120 2.02 (1.80; 3.16) 2.46 (1.79; 3.12) 0.853 2.4–3.3 11 (26.19) 11 (26.19) 20 (47.62)
ICI 2 ms 0.26 (0.20; 0.47) 1.28 (0.79; 1.70) <0.001 0.2–0.4 36 (85.71) 5 (11.90) 1 (2.38)
ICI 4 ms 0.36 (0.28; 0.62) 1.17 (1.0; 1.84) <0.001 0.4–0.6 36 (85.71) 5 (11.90) 1 (2.38)
ICF 10 ms 1.31 (0.91; 1.77) 1.20 (0.94; 1.57) 0.638 1.5–2.1 7 (16.67) 10 (23.81) 25 (59.52)
ICF 15 ms 1.15 (0.87; 1.37) 1.47 (1.18; 1.88) 0.131 1.4–2.1 12 (28.57) 11 (26.19) 19 (45.24)
SIICI 0.56 (0.33; 0.69) 1.28 (1.01; 1.87) <0.001 0.4–0.6 36 (85.71) 4 (9.52) 2 (4.76)
ICF 1.13 (0.96; 1.48) 1.40 (1.10; 1.68) 0.432 1.5–2.0 10 (23.81) 10 (23.81) 22 (52.38)

aNormative data 95% CI obtained by Cueva (17).
RMT, Resting motor threshold; MEP-120%, Motor-evoked potential at 120% of RMT; MEP-140%, Motor-evoked potential at 140% of RMT; Ratio 140/120, Motor-evoked potential 
amplitude ratio for stimulus intensity at 140 and 120% of RMT; ICI 2 ms, Motor-evoked potential amplitude ratio for 2 ms ISI and 120% of RMT; ICI 4 ms, Motor-evoked potential 
amplitude ratio for 4 ms ISI and 120% of RMT; ICF 10 ms, Motor-evoked potential amplitude ratio for 10 ms ISI and 120% of RMT; ICF 15 ms, Motor-evoked potential ratio for 15 ms 
ISI and 120% of RMT; SIICI, Short-interval intracortical inhibition; ICF, intracortical facilitation; CI, confidence interval.
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range of normal values obtained by Cueva and collaborators (17) 
was utilized to classify CE results for each parameter of each 
patient. Values above the highest confidence limit were classified 
as “high,” those within the confidence interval were classi fied as 
“normal,” and those under the lowest limit were classified as “low.”

For each CE parameter, there were patients with higher/
lower values than normative data ones. For RMT values, there 
were 39 hemispheres (92.86%) out of common healthy values 
(normative data); for MEP-120% values, there were 31 hemi-
spheres (73.81%); for MEP-140%, there were 33 hemispheres 
(78.57%); for Ratio 140/120, there were 31 hemispheres 
(73.81%); for ICI 2 ms, there were 37 hemispheres (88.09%); 
for ICI 4 ms, there were also 37 hemispheres (88.09%); for ICF 
10 ms, there were 32 (76.19%); for ICF 15 ms, there were 31 
(73.81%); for SIICI, there were 38 (90.47%), and for ICF, there 
were 32 (76.19%).

DAI Patients Compared to Healthy Controls
When data from the DAI patients on an individual level were 
analyzed, the difference on SIICI and its components was indeed 
statistically significant compared to those of healthy subjects 
(Table  2). Normal SIICI values usually range from 0.0 to 1.0, 
and our results showed SIICI median values of 1.28 (1.01; 1.87) 
(Figure 1).

Neuropsychological Results
The majority of neuropsychological tests of patients with DAI 
showed mean raw scores below the average expected for healthy 
individuals in our country. Assessments of HVLT, BVMT (imme-
diate and delayed recall), TMT, Stroop, COWAT, Symbol Digit, 
Five Points, and Grooved Pegboard indicated that DAI patients 
were cognitively impaired considering age and/or years of school-
ing. On the other hand, full Digit Span test and only the recogni-
tion part of BVMT showed results within the normative average. 
Table 3 presents mean scores of neuropsychological assessment. 
Each test has a standard score limit that defines normal and/or 
impaired function.

The hypothesis from the SIICI information and neuropsycho-
logical findings was that both of these could somehow be related 
via effects on inhibitory processes. For that reason, a correlation 
analysis was attempted using tests that assessed selective atten-
tion and inhibition (Table  4), but only weak correlations were 
found, though, and few of them were statistically significant 
(Figures 2–4).

DiscUssiOn

From a pathophysiologic perspective on DAI, damage to axons 
occurs at the moment of trauma (primary axotomy) when abrupt 
acceleration–deceleration of the cranium results in shear forces 
and tensile strains on the white matter, generating small loci of 
hemorrhage. The resulting axonal degeneration can last for many 
hours after the trauma episode (caused by secondary axotomy 
and biochemical cascades) (1, 5, 6).

To minimize the influence of inflammation on these neuro-
physiological changes, and focus on the direct neuronal damage, 
we selected subjects during the chronic phase of DAI (at least 1 
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TaBle 3 | Results of the neuropsychological tests and inventories.

Tests/inventory n Mean
raw score (sD)

Mean
Z-score (sD)

STAI – 21 54.14 (8.79) –
BDI – 21 14.19 (12.03) –
HVLT Immediate recall 22 17.68 (4.19) −1.79 (1.06)

Delayed recall 22 5.23 (2.79) −1.42 (1.21)
Recognition 22 9.86 (1.78) 0.75 (1.30)

BVMT Immediate recall 21 16.38 (8.65) −1.10 (1.17)
Delayed recall 21 6.76 (4.23) −1.13 (1.47)
Recognition 21 5.24 (1.09) −0.44 (1.18)

TMT Part A 22 49.72 (27.12)a −0.80 (1.39)
Part B 20 135.55 (91.36)a −1.43 (1.22)

Stroop Card 1 22 23.90 (14.88)a −1.80 (1.25)
Card 2 22 24.86 (10.22)a −1.35 (1.20)
Card 3 22 34.09 (11.88)a −1.17 (1.41)

Digit Span Original order 22 5.00 (1.07) −0.01 (0.77)
Reversed order 22 3.45 (0.80) −0.42 (0.50)

COWAT Phonologic 22 24.14 (9.77) −1.48 (0.84)
Semantic 21 14.38 (4.65) −1.39 (0.97)

Symbol Digit – 22 38.45 (14.29) −1.86 (1.00)
Five Point – 22 19.64 (7.21) −1.47 (0.87)
Grooved Dominant hand 19 87.42 (22.80)a −1.43 (1.27)
Pegboard Non-dominant hand 21 108.10 (35.89)a −1.70 (1.15)

aTask execution score measured by time in seconds.
BDI, Beck Depression Inventory; BVMT, Brief Visual Memory Test; COWAT, Controlled 
Oral Word Association Test; HVLT, Hopkins Verbal Learning Test; STAI, State-Trait 
Anxiety Inventory; TMT, Trail-Making Test.

FigUre 2 | Correlation between short-interval intracortical inhibition (SIICI) 
values and Controlled Oral Word Association Test (COWAT) phonologic test 
results.

TaBle 4 | Correlation between SIICI values and inhibitory control main 
neuropsychological test results (Spearman’s correlation coefficient).

neuropsychological tests (inhibitory control 
assessment)

siici

rho p-Value

Stroop Card 3 Time 0.080 0.611
Z-score −0.019 0.904

COWAT phonologic Raw score −0.407 0.007
Z-score −0.487 0.001

COWAT semantic Raw score −0.314 0.047
Z-score −0.300 0.059

Symbol digit Raw score −0.274 0.078
Z-score −0.385 0.011

Five point Raw score −0.129 0.414
Z-score −0.129 0.414

Grooved Pegboard dominant hand Time 0.212 0.207
Z-score −0.151 0.370

Grooved Pegboard Non-dominant hand Time 0.031 0.845
Z-score −0.121 0.449

SIICI, Short-interval intracortical inhibition; COWAT, Controlled Oral Word Association Test.

FigUre 3 | Correlation between short-interval intracortical inhibition (SIICI) 
values and Controlled Oral Word Association Test (COWAT) semantic test 
results.
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year after TBI). Although there are many mechanisms involved 
in the development and evolution of DAI, such as diffuse vas-
cular injury and blood–brain barrier disruption that could also 
interfere with the function of the neural circuitry, the paucity of 
studies on neurophysiological changes after moderate and severe 
DAI prevents comparison.

From the CE assessment perspective, pp-TMS using short ISI 
applied to the motor cortex can indirectly evaluate inhibitory 
processes mediated by GABAergic circuits (26). The altered SIICI 
results we found drove us to consider a possible association of 

it with dexterity alterations (Grooved Pegboard Test scores) as 
specific motor task controlling involves intracortical inhibition 
process by activating a few selective cells and barring other motor 
neurons (32). The statistical analysis showed that it was not sig-
nificant even though patients with TBI often present associated 
motor and cognitive injuries due to the various mechanisms of 
trauma (4, 33, 34).

Only few neuropsychological tests showed results within the 
average expected. Nevertheless, the recognition on visual memory 
(BVMT) and the original order of Digit Span are rather simple 
tests which might have the results overestimated, considering 
that the city we held this study in has a high schooling rate.  
All other aspects, such as information processing speed, selective 
and task-switching attention, episodic and working memory, 
verbal fluency, and inhibition process, were all impaired on DAI 
group, even though it was not possible to establish a relation 
between the also altered SIICI values.
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FigUre 4 | Correlation between short-interval intracortical inhibition (SIICI) 
values and Symbol Digit test results.
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It seems that the attention and memory impairment in DAI 
are not only affected by intracortical inhibition (GABAergic) 
and facilitation (glutamatergic) processes but also by many other 
circuits with complex influences that could not be fully identified 
in this study. Also, CE assessments can only be performed on 
a single area (the motor cortex), while cognitive tasks activate 
different areas of the brain at the same time in a complex pattern.

Another limitation of our study for correlating CE and neu-
ropsychological data is the limited sample size (n = 22), so further 
studies with larger sample sizes are needed to elucidate this prob-
lem. Despite there being only a few statistically significant corre-
lation of these aspects (Table 4), post-TBI cognition recovery still 
needs investigation, and unfortunately, the post-trauma setting 
restrained knowledge on how these individuals were before the 
incident and on any discrepancies from the neuropsychological 
perspective.

When considering the control group CE data alone, some 
values can be interpreted as already abnormal. Still, they are 
not pathological and just out of what would be considered 
“common”/“norm.” It is worth mentioning that even in healthy 
individuals, CE values are subject to a large variability or be 
influenced by many environmental issues (lack of sleep, caffeine 
consumption, etc.) (17, 35). Minutely, as expected in normative 
data, there will be 5% of healthy sample that will not be within 
confidence interval (95% CI), by definition (36, 37). For this study, 
the control group was considered “healthy” from TBI perspective 
and free from any other CNS disease, so that the comparison we 
wanted to make was DAI patients and healthy (non-TBI) subjects.

Revising potential outliers on DAI group, they seemed math-
ematically outliers, however, not actual clinically outliers. This 
would be explained by the fact that maximum values for SIICI in 
healthy subjects over 50 years can be up to 6.7 and up to 3.5 for 
those who are under 50 years (17).

Regarding the mechanisms of TBI, Almeida-Suhett and col-
laborators (38) suggested that the loss of GABAergic interneu-
rons after mild TBI reflects a reduction of neuronal inhibition. 
Miller and collaborators (39) also suggested an influence of mild 

TBI on intracortical inhibition, measured by silent period (SP) 
parameters. Bernabeu and collaborators (40) showed the abnor-
mal corticospinal excitability in patients with DAI where motor 
recovery was related to the severity of TBI (the lower the severity, 
the better the motor recovery) using input–output curves and SP. 
These studies address mild TBI with a similar change in inhibi-
tion parameter as we found in moderate and severe TBI.

As the inhibition processes involve GABA-mediated circuitry, 
it is reasonable to infer that DAI pathophysiology itself (disrup-
tion of axons) may deplete GABA, contributing to a defective 
inhibition of neural system on the chronic phase of DAI. For bet-
ter evidence of GABA depletion, we would recommend further 
studies measuring GABA noninvasively, if possible, using MR 
spectroscopy.

We acknowledge that measuring MEPs using cancelation 
techniques, such as the triple stimulation method, would provide 
better reliability and more accurate measurements of central 
conduction times and MEP amplitudes. However, our main aim 
was to have a concise and brief assessment of CE parameters that 
would provide a more general view of the excitability status on 
DAI patients. It is interesting that the present study could find 
altered intracortical inhibition on these patients but the imbal-
ance of inhibition and facilitation processes is not limited only 
to GABA-mediated or glutamate-mediated pathways, suggesting 
that different mechanisms may influence on TBI recovery.
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