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Antibodies against myelin oligodendrocyte glycoprotein (MOG-IgG) have been found in 
some cases diagnosed as seronegative neuromyelitis optica spectrum disorder (NMOSD). 
MOG-IgG allowed the identification of a subgroup with a clinical course distinct from that 
of NMOSD patients who are seropositive for aquaporin-4-IgG antibodies. MOG-IgG is 
associated with a wider clinical phenotype, not limited to NMOSD, with the majority of 
cases presenting with optic neuritis (ON), encephalitis with brain demyelinating lesions, 
and/or myelitis. Therefore, we propose the term MOG-IgG-associated Optic Neuritis, 
Encephalitis, and Myelitis (MONEM). Depending on the clinical characteristics, these 
patients may currently be diagnosed with NMOSD, acute disseminated encephalomy-
elitis, pediatric multiple sclerosis, transverse myelitis, or ON. With specific cell-based 
assays, MOG-IgG is emerging as a potential biomarker of inflammatory disorders of the 
central nervous system. We review the growing body of evidence on MONEM, focusing 
on its clinical aspects.

Keywords: neuromyelitis optica spectrum disorder, optic neuritis, myelitis, encephalitis, myelin oligodendrocyte 
glycoprotein antibody

INTRODUCTION

Antibodies against myelin oligodendrocyte glycoprotein (MOG-IgG) have been found in certain 
cases diagnosed as seronegative neuromyelitis optica spectrum disorder (NMOSD). NMOSD is an 
inflammatory condition of the central nervous system (CNS), mainly characterized by optic neuritis 
(ON) and transverse myelitis (TM) and encompassing the entity previously known as neuromyelitis 
optica (NMO) along with limited forms of the disease; these entities are now unified under the term 
NMOSD (1).

Neuromyelitis optica spectrum disorder is traditionally associated with attacks on the optic 
nerves and spinal cord, and the discovery of an NMO-specific antibody in 2004 (2) allowed these 
patients to be distinguished from those with multiple sclerosis (MS). One year later, aquaporin-4 
was identified as its target antigen, present on the end-feet processes of astrocytes (3). Until 2015, 
positivity for aquaporin-4 immunoglobulin G (AQP4-IgG) suggested NMO, although some 
patients with the classic NMO phenotype remained seronegative for AQP4-IgG despite the use of 
increasingly sensitive serologic assays (4–6). Furthermore, several patients with limited forms of 
the disease, such as isolated ON or TM, or extra-optic-spinal involvement, such as area postrema 
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Figure 1 | MOG-IgG-associated optic neuritis, encephalitis, and myelitis 
(MONEM). The clinical phenotypes associated with MOG-IgG 
are encompassed under the term MONEM. MONEM is not limited 
to aquaporin-4-IgG-negative neuromyelitis optica spectrum disorder 
(NMOSD).
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and brain lesions, were AQP4-IgG positive, further challenging 
the traditional definition of NMO.

In this context, we and others have found the presence of 
autoantibodies against myelin oligodendrocyte glycoprotein 
(MOG-IgG) in some patients with clinical presentations sugges-
tive of NMOSD (5, 7–9). However, MOG-IgG is associated with 
a wider clinical phenotype, not limited to NMOSD, and only a 
third of MOG-IgG-seropositive patients or fewer fulfill the cur-
rent diagnostic criteria for NMOSD (10–13).

The majority of MOG-IgG-seropositive cases have ON, 
encephalitis with brain demyelinating lesions, and/or myelitis; 
thus, we propose the new term MOG-IgG-associated ON, 
encephalitis, and myelitis (MONEM) to encompass this group 
of patients with CNS demyelinating syndromes associated with 
MOG-IgG (Figure  1). Depending on the clinical assessment, 
patients can currently be clinically diagnosed with NMOSD, 
acute demyelinating encephalomyelitis (ADEM), pediatric MS, 
or isolated myelitis or ON (14, 15).

Recently, multiple research groups have described isolated 
cortical and subcortical syndromes in MOG-IgG-seropositive 
patients, highlighting the importance of encephalitis in this con-
text (16–20). Furthermore, MOG-IgG acute encephalitis is associ-
ated with pathological evidence of severe demyelination without 
the astrocyte loss usually recognized in AQP4-IgG-seropositive 
NMOSD cases (21). MOG-IgG-associated encephalomyelitis 
and isolated encephalitis represent important clinical syndromes 
associated with MOG-IgG and may be a bridging element in 
the emerging spectrum of MOG-IgG-associated syndrome. 
Currently, it remains unclear whether MONEM should indicate 
a different disease. We review the growing body of evidence on 
MOG-IgG in NMOSD and other CNS inflammatory diseases, 
focusing on its clinical aspects, and we report a clinical vignette 
of a MOG-IgG-positive patient fulfilling the NMOSD criteria to 
highlight some of the features and challenges of this condition.

MOG-IgG: PATHOPHYSIOLOGICAL 
ASPECTS

MOG, a glycoprotein of the immunoglobulin superfamily, is a 
component of the CNS myelin sheath, as are myelin basic protein 
(MBP) and proteolipid protein (22). The precise functions of 

MOG remain to be elucidated but likely include roles in the adhe-
sion of myelin fibers, regulation of oligodendrocyte microtubule 
stability, and modulation of the interaction between myelin and 
the immune system by the complement pathway (23, 24).

Even though MOG is a minor component of the CNS myelin 
sheath, accounting for less than 0.5% of its composition, many of 
its epitopes have been demonstrated to be highly immunogenic, 
both in rodents and humans (25–27).

Immunization of rodents with MOG-derived antigens (28–30) 
and generation of rodents with transgenic MOG-specific T cell 
receptors (31) produce CNS lesions that resemble some of the 
features of MS and NMOSD. Notably, double-transgenic mice 
with both MOG-specific T cell receptors and an MOG-specific 
immunoglobulin heavy chain present more severe experimental 
autoimmune encephalitis than single transgenic mice, revealing 
that T cell/B cell cooperation is a key aspect in the pathogenesis 
of CNS autoimmunity (32, 33).

In humans, high-titer MOG-IgG in serum samples seems 
to efficiently activate the complement cascade in  vitro (9). 
Moreover, purified IgG from MOG-IgG-seropositive patients, 
when incubated with oligodendrocytes in  vitro, led to marked 
disorganization of the cytoskeleton, further suggesting functional 
pathogenicity (34).

Despite the fact that MONEM can overlap with the clinical 
presentation of AQP4-IgG-associated NMOSD, the mechanisms 
that underlie MOG-IgG-driven diseases are likely different. 
Indeed, several animal and human studies have revealed 
immunologic and pathological differences between AQP4-IgG 
NMOSD and MONEM, suggesting that these two groups are 
different nosological entities.

From a pathological standpoint, there are striking differences 
between MOG-IgG and AQP4-IgG groups. Whereas the patho-
logical hallmark of AQP4-IgG NMOSD is astrocytic damage, 
with secondary oligodendrocyte loss and demyelination (35), 
no evidence of astrocytopathy has been reported in MOG-IgG 
cases. In support of that view, a case with an AQP4-seronegative 
MOG-IgG-seropositive NMO phenotype in which cerebrospinal 
fluid (CSF) examination showed elevated MBP, in the absence of 
detectable glial fibrillary acidic protein (GFAP), has been reported 
(36). This distinction has been further validated by a multicenter 
CSF study indicating elevated MBP in MOG-IgG patients with-
out elevation of GFAP compared with AQP4-IgG-seropositive 
NMOSD (37). These findings suggest inflammation and myelin 
destruction without astrocyte injury, thus making the CSF profile 
of MONEM clearly different from that of AQP4-IgG-associated 
NMOSD. Therefore, we avoid the term “MOG-IgG-associated 
NMOSD,” as the current understanding of NMOSD (at least in 
those patients with AQP4-IgG) indicates an immune-mediated 
disorder targeting astrocytes, which contrasts with MONEM, a 
demyelinating disorder affecting oligodendrocytes (38). Of note, 
however, it is still unknown whether the same astrocytopathic 
pattern holds true for AQP4-IgG-seronegative NMOSD.

So far, the histopathology associated with MOG-IgG in 
humans is based on only a few reported cases: two patients with 
recurrent longitudinally extensive transverse myelitis (LETM) 
plus tumefactive brain lesions (16, 21), two patients with ON plus 
clinical or subclinical brain involvement (39), two patients with 
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ADEM (40), and one patient whose initial diagnosis was clini-
cally isolated syndrome suggestive of MS (hemiparesis, impaired 
coordination, and headache) (41). Of note, yet compatible with 
MONEM, these are not the most common presentations, and the 
overrepresentation of such more severe phenotypes, with brain 
involvement, can be explained by indication bias for brain biopsy. 
In all cases, lesions have been described as clearly demyelinating, 
with marked infiltration of macrophages (often containing myelin 
degradation products) and T cells, and relative preservation of 
axons and astrocytes (16, 21, 39–41). In most cases, B cell infiltra-
tion (16, 39–41) and IgG and complement deposition (21, 40, 41) 
have been reported as well. Interestingly, the histopathological 
features above are compatible with the so-called pattern II lesions 
of MS (42). Apart from the cases above, another one has been 
described with fulminant encephalomyelitis, but with detection 
of both MOG-IgG (early in the disease course) and AQP4-IgG 
(later on); in this case, the histopathological aspect of lesions rep-
resented an overlap of features compatible with pattern II MS and 
features usually seen in AQP4-IgG-seropositive NMOSD (43).

MOG-IgG ASSAYS

Recent advances in the laboratory techniques used to detect 
MOG-IgG have impacted both the current approach used to 
determine serological status and our interpretation of findings 
from earlier studies, which used less accurate detection tech-
niques. It has been demonstrated that the biologically relevant 
MOG antibodies are those recognizing conformational MOG 
epitopes (44, 45). However, the early studies used western blot-
ting, which detects unfolded, denatured MOG protein, or ELISA 
(for linear peptides), which did not distinguish specific antibod-
ies against conformational MOG epitopes (46).

The development of cell-based assays (CBA) using transfected 
cells enabled the identification of clinically relevant MOG-IgG 
(7, 47). However, even among studies that used CBA, technical 
heterogeneity remains an issue and may explain some variable or 
conflicting results. Moreover, it has been suggested that variations 
in the epitope specificity of human MOG-IgG (as indicated by 
the ability of patient serum to also recognize rat or mouse MOG, 
leading to different immunohistochemical staining patterns) 
may be associated with different clinical presentations (10). 
This variation may indicate that MOG-IgG has different effects 
depending on the antibody characteristics (e.g., affinity, capacity 
to activate the complement system) and the downstream effects 
on oligodendrocytes after the binding of MOG-IgG to MOG on 
the surface of the myelin sheath.

MOG-IgG IN CLINICALLY SUSPECTED 
NMOSD AND RELATED DISORDERS

The search for novel biomarkers among AQP4-IgG-seronegative 
patients revealed the presence of MOG-IgG in a subset of such 
patients (Figure 2). The demographic, clinical, and paraclinical 
features of MOG-IgG in comparison to AQP4-IgG NMOSD 
have been described by a number of studies (48–51). Notably, 
similar features have been reported across independent cohorts 
of different ethnic backgrounds and geographical areas, thus 

indicating the consistency of the findings. The main features 
that distinguish MOG-IgG from AQP4-IgG NMOSD are sum-
marized in Table 1.

Prevalence
The prevalence of MOG-IgG seropositivity among patients with 
NMOSD or limited forms has been reported by several studies 
and varies widely, depending mainly on each sample’s inclusion 
criteria (for example, children and/or adults; diagnosed based on 
2006 criteria for NMO or 2015 criteria for NMOSD, etc.) but also 
on the detection technique used in each study. A summary of the 
reported prevalence rates is provided in Table 2.

We found that 7.4% of all NMOSD patients were seropositive 
for MOG-IgG, while 64.7% were seropositive for AQP4-IgG 
(48). Kim et al. reported that 6.3% of patients with inflammatory 
demyelinating diseases of the CNS had MOG-IgG, while 18.1% 
had AQP4-IgG (58). Initially, the prevalence of MOG-IgG might 
seem quite low in comparison to that of AQP4-IgG in NMOSD. 
However, when adjustments are made for patients with specific 
phenotypes and those who lack AQP4-IgG, the proportion of 
MOG-IgG-seropositive patients becomes quite higher. Two 
recent studies reported that 40% of patients with bilateral or 
recurrent ON and negative AQP4-IgG were positive for MOG-
IgG (48, 58). In regard to AQP4-IgG-seronegative LETM, the 
reported prevalence of MOG-IgG has ranged between 7.4 and 
23.2% (48, 50, 56, 57). Finally, among children, that prevalence 
seems to be even higher: 50% for patients with definite NMO (53) 
and 80% for patients with recurrent ON (52).

Notably, double positivity (i.e., for both AQP4-IgG and MOG-
IgG) is usually not expected or found when CBA are used, which 
likely suggests that each antibody is present in distinct disease 
processes. The isolated cases reported to have double seropositiv-
ity are extremely rare and usually have significantly higher relapse 
rates, residual disability, and magnetic resonance imaging (MRI) 
lesion burden, but these characteristics are compatible with 
AQP4-IgG-seropositive NMOSD (43, 61, 62).

Demographic Features
The proportion of males is generally higher (between 47 and 62%) 
among people with MONEM than among those with AQP4-IgG 
NMOSD (only 10–15%) (46, 48–51, 63). However, a recent 
multicenter European study reported that 74% of MOG-IgG-
seropositive patients were female, resulting in a female-to-male 
ratio of 2.8:1 (11). Nonetheless, even this degree of female pre-
dominance is low in comparison to the ratio of up to 9:1 described 
in AQP4-IgG patients (64).

The proportion of Caucasian ethnicity is usually deemed 
as higher in MONEM (78–90 versus 60–63% in AQP4-IgG 
NMOSD) (49, 51), but a recent study reported no ethnic bias (12). 
Regarding age at onset, some studies report younger age (around 
the third decade) in the MOG-IgG group versus the AQP4-IgG 
group (the fourth decade) (49, 50), while others report no differ-
ence (48).

Clinical Phenotypes
Two independent groups have reported similar findings regard-
ing the clinical phenotypes associated with MONEM: ON was the 
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Table 1 | Features suggestive of MOG-IgG as opposed to aquaporin-4 
immunoglobulin G in neuromyelitis optica spectrum disorder.

Male gender
Caucasian ethnicity
Single attack or only a few attacks
Bilateral or recurrent optic neuritis sparing the optic chiasm
Longitudinally extensive transverse myelitis involving the lumbar segment and 
conus medullaris
Good recovery after attacks

Figure 2 | Magnetic resonance imaging (MRI) findings and evolution in a MOG-IgG-positive case fulfilling the diagnosis of neuromyelitis optica spectrum disorder 
(NMOSD). A young adult presented with recurrent optic neuritis followed by transverse myelitis. Spinal MRI showed a T2-hyperintense, centrally located 
longitudinally extensive transverse myelitis extending from C4 to C7, with mild cord swelling (A,B). Brain MRI showed a T2/FLAIR-hyperintense lesion on the left 
superior frontal gyrus (C), with gadolinium enhancement (D). In cell-based assays, aquaporin-4 immunoglobulin G (AQP4-IgG) was negative, and MOG-IgG was 
positive. Response to immunotherapy was excellent. Follow-up MRI showed complete resolution of the brain and spinal lesions (E,F). This case illustrates that the 
imaging patterns of MOG-IgG-associated ON, encephalitis, and myelitis (MONEM) often overlap with those of NMOSD, and some cases may even fulfill the 2015 
criteria for the diagnosis of NMOSD without AQP4-IgG.
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60%, LETM in approximately 30%, and ON in approximately 10% 
(10, 11, 48, 50).

Some series have reported that the simultaneous occurrence 
of ON and TM is more common among MOG-IgG patients than 
among AQP4-IgG patients (49–51), but another series reported 
the opposite (48). Interestingly, monophasic presentation with 
both ON and TM occurring during the same attack, which 
resembles the original case of NMO described by Devic in 1894, 
is likely more common in MONEM than in AQP4-IgG NMOSD.

The first attack of TM or ON can be severe. In the largest 
series, visual acuity was reported to be <0.1 at least once in 69% 
of patients with ON (11). Among patients with TM, motor symp-
toms were frequent and included tetraparesis in 28%, paraparesis 

leading phenotype (41–63%), followed by LETM (29–31%), NMO 
(6–24%), and encephalomyelitis (2–6%), while in AQP4-IgG 
patients, the reported phenotypes were NMO in approximately 
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Table 2 | Reported prevalence rates of MOG-IgG seropositivity (based on cell-based assays) among patients with neuromyelitis optica spectrum disorder (NMOSD) 
and limited/related forms, according to phenotype and aquaporin-4 immunoglobulin G (AQP4-IgG) status.

Reference Sample description Prevalence of MOG-IgG seropositivity

Irrespective of AQP4-IgG 
status

Among AQP4-IgG 
seronegative

Among AQP4-IgG 
seropositive

Mader et al. (9) Definite neuromyelitis optica (NMO) 3/45 (6.7%) 2/2 (100%) 1/45 (2.2%)
High-risk NMO [longitudinally extensive transverse myelitis 
(LETM) or recurrent ON]

7/53 (13.2%) 7/21 (33.3%) 0/32 (0%)

Kitley et al. (8) NMO/NMOSD 4/71 (5.6%) 4/27 (14.8%) 0/44 (0%)
Rostasy et al. (52) Children with recurrent ON 12/15 (80%) 12/15 (80%) 0/0 (0%)
Rostásy et al. (53) Children with definite NMO 3/8 (37.5%) 3/6 (50%) 0/2 (0%)
Höftberger et al. (50) Definite NMO 6/48 (12.5%) 4/9 (44.4%) 2/39 (5.1%)

LETM 5/84 (6%) 5/68 (7.4%) 0/16 (0%)
Severe, bilateral, or recurrent ON 7/39 (17.9%) 7/33 (21,2%) 0/6 (0%)

Ramanathan et al. (54) AQP4-IgG-seronegative NMO/NMOSD N/A 9/23 (39.1%) N/A
Sato et al. (48) Definite NMO 1/101 (1%) 1/16 (6.2%) 0/85 (0%)

LETM 5/78 (6.4%) 5/35 (14.3%) 0/43 (0%)
Bilateral or recurrent ON 10/36 (27.8%) 10/25 (40%) 0/11 (0%)

Chalmoukou et al. (55) AQP4-seronegative ON (uni- or bilateral, monophasic, or 
recurrent)

N/A 8/111 (7.2%) N/A

Cobo-Calvo et al. (56) AQP4-IgG-seronegative LETM N/A 13/56 (23.2%) N/A
Hyun et al. (57) Isolated LETM 4/108 (3.7%) 4/53 (7.5%) 0/55 (0%)
Kim et al. (58) Definite NMO 0/23 (0%) 0/3 (0%) 0/20 (0%)

Recurrent or bilateral ON 10/30 (33.3%) 10/25 (40%) 0/5 (0%)
Pröbstel et al. (59) NMO/NMOSD 4/48 (8.3%) 4/17 (23.5%) 0/31 (0%)
Siritho et al. (60) AQP4-seronegative idiopathic inflammatory central nervous 

system diseases with a non-multiple sclerosis phenotype
N/A 6/29 (20.7%) N/A

Yan et al. (61) NMOSD 24/125 (19.2%) 14/46 (30.4%) 10/79 (12.7%)
van Pelt et al. (51) NMOSD or limited forms N/A 20/61 (32.8%) N/A

N/A, not available.
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in 48%, and severe weakness (British Medical Research Council 
grades ≤2) in 21% (11).

Brainstem involvement is also seen in MONEM. The area pos-
trema syndrome (persistent nausea, vomiting, or hiccups), which is 
usually regarded as a typical attack of NMOSD (frequency around 
40%), has been reported in 6–15% of MOG-IgG-seropositive 
patients as well (12, 48). In another series, brainstem involvement 
(comprising a wide range of symptoms and signs and/or radiologi-
cal findings) occurred at some point in the disease course in 30% of 
patients with MOG-IgG-seropositive ON and/or TM (65).

In the largest cohort of MOG-IgG-seropositive patients 
published so far, ADEM (or an ADEM-like episode) has been 
reported as the initial presentation in 18%, with most of these 
attacks occurring in the pediatric age range (12). More recently, 
cortical encephalitis has been described in MOG-IgG-positive 
patients, while this phenotype has not been described in AQP4-
IgG NMOSD (16–20).

Finally, MOG-IgG has also been reported as positive (with 
proper CBA) in a subgroup of patients diagnosed with MS (66). 
Nonetheless, their clinical pictures were actually atypical for MS: 
severe attacks of myelitis, ON, and/or brainstem syndromes, with 
failure to several disease-modifying drugs. Therefore, it is likely 
that the diagnosis in this subgroup should be revised to MONEM, 
rather than MS, despite the fact that they reportedly fulfilled the 
MRI criteria for MS.

Disease Course
A preceding infectious prodrome has been reported in 47% of the 
cases. For instance, Amano et al. described LETM after influenza 

infection (67) and Nakamura et  al. reported anti-MOG-IgG 
ADEM presentation after infectious mononucleosis (68). Jarius 
et al. also reported two cases following vaccination (69).

Different series, with median follow-up times ranging from 
12 to 24 months, suggest a higher proportion of single attacks in 
MONEM (41–70%) than in AQP4-IgG NMOSD (7–29%) (48, 50, 
51). Nevertheless, relapses do occur in MOG-IgG-seropositive 
patients, but the number of relapses is usually lower in this group 
(48, 49, 51). With long-term follow-up, the proportion of patients 
with a single attack is likely reduced, as illustrated by one study 
with a longer median follow-up time (43 months), in which the 
proportion of patients with a single attack was only 29% (10). 
Moreover, in a cohort of incident cases (i.e., wherein the detection 
of MOG-IgG was made shortly after onset and before the second 
relapse), the proportion of relapsing cases after a median follow-
up time of 16 months was 36%, with an annualized relapse rate 
(ARR) of 0.2 in those who were followed-up for ≥24 years (12).

Pröbstel et al. reported that the median time until a second 
attack was longer in MOG-IgG-seropositive patients (11.3 years) 
than in AQP4-IgG-seropositive (3.2  years) or double seron-
egative (3.4 years) patients (70). In the series by Jarius et al., the 
median time between the first and second attacks in MOG-IgG-
seropositive patients was 5 months, although the interval could 
be longer (more than 12  months in eight patients and up to 
492 months in one patient) (11).

Radiological Features
On brain MRI, lesions involving the deep gray matter and 
lesions adjacent to the fourth ventricle were found to be more 
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frequent in AQP4-IgG NMOSD than in MONEM (49). In one 
study, supratentorial brain lesions were seen in 35% of MOG-IgG 
patients at disease onset and in 47% at last follow-up; infratento-
rial abnormalities were present in 15% at onset and in 29% at last 
follow-up (11).

On orbital MRI, optic nerve head swelling, retrobulbar 
involvement, and contrast-enhancing lesions of the optic nerves 
with perineural enhancement were significantly more frequent 
in ON associated with MONEM than with AQP4-IgG NMOSD, 
whereas chiasmal involvement was more frequent in patients 
with AQP4-IgG (71, 72). There is some controversy regarding 
whether bilateral ON is more commonly associated with MOG-
IgG or AQP4-IgG (71).

Regarding spinal cord MRI, while patients with AQP4-IgG 
usually present cervical (with or without brainstem involvement) 
and thoracic lesions, patients with MOG-IgG may present lesions 
of the lower cord, including the conus medullaris (48, 49). As with 
AQP4-IgG NMOSD, not all cases of MOG-IgG-associated TM 
are longitudinally extensive. A small proportion (7%) of MOG-
IgG-seropositive patients were reported to present with short 
myelitis occurring after an initial episode of LETM, isolated at 
disease onset, or following previous episodes of ON (which could 
initially suggest MS) (10).

CSF Features
CSF white cell count is usually elevated, ranging between 3 and 
306 in two series, with lymphocytic predominance (11, 49). CSF 
pleocytosis was more frequent (92 versus 45%) in MOG-IgG-
seropositive patients with a first episode of LETM than in double 
seronegative patients (56).

Evidence of intrathecal synthesis, assessed by the IgG index, 
was generally absent, suggesting that MOG-IgG is likely pro-
duced in the periphery (69). Positivity for MOG-IgG in the CSF 
was found in 71% of patients who were MOG-IgG-seropositive, 
with a median CSF MOG-IgG titer of 1:4, lower than the serum 
titer (69).

Coexisting Autoimmunity
Some studies have suggested other autoimmune abnormalities 
to be less common among those with MOG-IgG. Specifically, 
antinuclear antibodies were found in only 7% of MOG-IgG 
patients (versus 43% of AQP4-IgG patients) (48), and coexisting 
autoimmune conditions were reported in only 11% of MOG-IgG 
individuals (versus 45% of AQP4-IgG subjects) in another series 
(49). On the other hand, by using a wider panel of autoantibodies, 
Jarius et al. reported coexisting autoantibodies in 42% of MOG-
IgG-seropositive patients, while concomitant autoimmune 
disorders were present in only 8% of them (11).

Prognosis
Recovery from attacks is usually reported as better in MONEM 
than in AQP4-IgG-seropositive NMOSD. In our experience, the 
degree of improvement after an attack, measured by the Expanded 
Disability Status Scale (EDSS) score and visual acuity, was better 
for MOG-IgG-seropositive patients (48) than for others. In the 
series by Kitley et al., the median decrease in EDSS scores between 
episode onset and recovery was greater in MOG-IgG-seropositive 

patients than in AQP4-IgG-seropositive patients (6 points and 
2 points, respectively), despite similar EDSS scores during the 
onset episode; moreover, the risks for residual visual and motor 
disability were lower in patients with MOG-IgG (49).

Overall, MONEM patients with ON seem to present a much 
lower risk of severe and sustained visual impairment than AQP4-
IgG-seropositive patients (71). Some studies have used optic 
coherence tomography to compare these two groups in terms of 
measurements of the ganglion cell-inner plexiform layer and the 
retinal nerve fiber layer thickness. They suggested that a single 
episode of ON may be associated with milder retinal neuronal 
loss in MONEM than in AQP4-IgG-seropositive NMOSD, 
despite more severe optic nerve swelling on presentation in the 
former (72–74). On the other hand, one of these studies also 
reported a higher frequency of ON relapses in MONEM, in such 
a way that an increased number of episodes ended up leading to 
a degree of retinal layers thinning similar to that seen in AQP4-
IgG-seropositive NMOSD (73).

In patients with LETM who were seronegative for AQP4-IgG, 
those who had MOG-IgG presented a higher degree of recovery 
after attacks but had a higher predisposition to subsequent ON 
than those who were MOG-IgG seronegative (56).

In comparison to both AQP4-IgG-seropositive patients and 
those who are double seronegative, patients with MOG-IgG usu-
ally reported to have a better overall outcome (48, 50, 51, 75). 
However, as mentioned previously, severe disability after ON or 
LETM does occur in MOG-IgG-seropositive patients, meaning 
that not all individuals will have a full recovery (48). In a large 
cohort of MOG-IgG-seropositive cases, followed-up for a median 
of 28 months, 28% were left with permanent bladder dysfunction; 
21% (among males) with erectile dysfunction; 20% with bowel 
dysfunction; 16% with visual acuity <6/36 in at least one eye; and 
5% with EDSS score ≥6 (12).

MOG-IgG IN PEDIATRIC PATIENTS

Several clinical syndromes compatible with MONEM have been 
described in pediatric patients with MOG-IgG seropositivity, 
mainly multiphasic ADEM, ADEM followed by ON, recurrent 
ON, TM, and AQP4-IgG-seronegative NMOSD (76). Previous 
studies associated the presence of MOG-IgG with MS in children 
younger than 10  years, but this association was not consistent 
in adult patients. However, recent findings suggest that the pres-
ence of MOG-IgG could also predict a non-MS disease course in 
this age group (77, 78). As the MOG-IgG titers found in MS are 
usually lower and different MS diagnostic criteria were used in 
various studies (78), there is no clear association between MOG-
IgG and MS, even in pediatric patients. Similarly, some MOG-
IgG-seropositive/AQP4-IgG-seronegative patients diagnosed 
with NMO do not fulfill the newly revised diagnostic criteria for 
NMOSD (1).

Although MOG-IgG seropositivity apparently does not predict 
the initial clinical presentation or the disease course (monophasic 
or relapsing), some studies have demonstrated that MOG-IgG-
seropositive patients present different clinical manifestations 
according to age (77, 79). Fenandez-Carbonell et  al. found a 
bimodal distribution in 13 pediatric MOG-IgG-seropositive 
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patients, with encephalopathy being more common in younger 
patients (4–8 years) and ON in older patients (13–18 years) (79).

Concerning the evolution of MOG-IgG seropositivity, some 
patients, mainly those presenting with ADEM with full recovery, 
lost their positivity after the acute demyelinating episode (80), 
whereas others persisted with detectable titers suggesting chronic 
inflammation (70). Mayer et al. evaluated the ability to maintain 
IgG seropositivity to vaccines in patients who have lost their 
MOG-IgG-seropositivity and found that MOG-IgG-secreting 
cells are less competent to seed the survival niches than those 
related to immunity to measles and rubella (81). The immuno-
logical mechanisms of this phenomenon remain to be elucidated. 
The presence of MOG-IgG in ADEM could be due to the recogni-
tion of viral or bacterial antigens similar to MOG (cross-reacting 
immune response) (70).

These findings indicate that MONEM is a continuum of CNS 
inflammatory demyelinating diseases also found in pediatric 
patients and that the maintenance of seropositivity could predict 
its clinical evolution. Long-term studies are needed to assess the 
value of MOG-IgG as a biomarker, understand the susceptibility 
of this age group and observe the outcomes of the demyelinating 
episodes in the developing CNS.

TREATMENT OF MONEM

The management of acute attacks usually includes the same strate-
gies used for other CNS immune-mediated conditions, such as 
oral or intravenous methylprednisolone (IVMP), plasma exchange 
(82), intravenous immunoglobulin (IVIg), and cyclophosphamide 
(83). In a study by our group, 87% of these patients achieved good 
recovery with IVMP (48). In a series of eight patients with idi-
opathic ON (i.e., ON patients who did not meet the criteria for 
NMOSD, MS, or other diseases) who were found to be seropositive 
for MOG-IgG, seven had a good or complete response to IVMP 
in the acute phase, and only two presented relapses (84). There are 
also a few reports of cases successfully treated by lymphocytapher-
esis after failure of initial therapies (85, 86).

The greatest challenge is long-term management, since the 
available pharmacological options for NMOSD (corticosteroids, 
immunosuppressive agents, rituximab, and plasma exchange) 
have not been specifically assessed in the subset of patients with 
MONEM (83).

Actually, it is still uncertain whether all MONEM patients 
need long-term treatment, given the possibility of a monophasic 
course, the usually lower relapse rate and the generally good 
recovery after attacks in response to acute treatment. In the 
series by Höftberger et  al., chronic therapy was used in only 
one-third of the MOG-IgG-seropositive patients versus nearly 
all of the AQP4-IgG-seropositive NMOSD patients (50). On the 
other hand, treatment with immunosuppressive drugs for at least 
3  months following the onset attack has been associated with 
reduced risk of a second relapse, in a large series (12).

When chronic treatment is indicated, it seems that first-line 
immunosuppressive drugs may reduce the number of relapses 
in a considerable proportion of patients. MOG-IgG has been 
found in a subset of patients with the chronic relapsing inflam-
matory ON phenotype, which is responsive to corticosteroids; 

these patients can usually be managed with a low-dose oral regi-
men (55). Some authors propose that AQP4-IgG-seronegative 
NMOSD be treated with azathioprine as initial therapy, with 
escalation to mycophenolate mofetil or rituximab as required 
(7); whether the same approach holds valid for MONEM is yet 
to be determined.

Jarius et al. reported some experience with long-term immu-
nosuppressant agents in MOG-IgG-seropositive patients (11). 
The mean ARR for azathioprine was 0.99, with 41% of the attacks 
occurring during the first 6  months, and most of these early 
attacks occurred in individuals who were not under co-treatment 
with corticosteroids (11). For methotrexate, the mean ARR was 
0.22, which is lower than the mean ARR of 0.95 found among 
all patients in this series (11). With rituximab, three out of nine 
patients experienced a decline in the ARR; in the remaining 
patients, most relapses were observed either shortly after rituxi-
mab infusion or at the end-of-dose period (11).

Another observational study demonstrated a beneficial effect 
of chronic immunotherapy in reducing the ARR in MONEM. 
The lowest treatment failure rates were seen with long-term oral 
prednisolone (5%) and rituximab (17%) (13). Maintenance IVIg 
and mycophenolate mofetil were associated with failure rates of 
43 and 44%, respectively; yet, they too were partially effective in 
reducing the pretreatment ARR (13).

While MONEM belongs to the group of demyelinating 
disorders, that includes MS, it has some characteristics of 
autoimmunity, with autoantibody production as seen in AQP4-
IgG-seropositive NMOSD; therefore, its response to MS therapies 
is unpredictable. Many MS therapies may actually exacerbate 
AQP4-IgG-seropositive NMOSD, as has been reported for beta-
interferons (87, 88), natalizumab (89, 90), and fingolimod (91, 
92). Mitoxantrone and natalizumab have failed to reduce relapses 
in patients with MOG-IgG (11).

Currently, it remains to be determined whether the course of 
the disease (i.e., single attack or further relapses) or higher titers 
or persistence of MOG-IgG can predict the need for long-term 
therapy. Upcoming therapeutic trials of NMOSD should enroll 
or stratify patients according to the presence or absence of both 
AQP4-IgG and MOG-IgG.

CONCLUSION

Despite some overlap, MONEM exhibits different pathophysio-
logical and phenotypic features than both AQP4-IgG-associated 
NMOSD and typical MS. In addition, the clinical spectrum of 
MONEM expands beyond NMOSD, likely including ADEM 
and other demyelinating syndromes. We believe that MOG-IgG 
and AQP4-IgG should be considered biomarkers of different 
disease processes instead of different biomarkers for the same 
condition. It is possible that MOG-IgG-associated “NMOSD” 
is not truly a part of the NMO spectrum; instead, MONEM 
could represent another disorder that may overlap in certain 
clinical phenotypes. Further research on the pathophysiology 
of MONEM and the development of clinical trials that treat 
MONEM patients as a specific study population are warranted 
to enable the development of evidence-based management 
strategies for these patients.
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