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Oxytocin is a neurohypophysal hormone known for its activity during labor and its role in 
lactation. However, the function of oxytocin (OTX) goes far beyond the peripheral regula-
tion of reproduction, and the central effects of OTX have been extensively investigated, 
since it has been recognized to influence the learning and memory processes. OTX 
has also prominent effects on social behavior, anxiety, and autism. Interaction between 
glucocorticoids, OTX, and maternal behavior may have long-term effects on the devel-
opmental program of the developing brain subjected to adverse events during pre and 
perinatal periods. OTX treatment in humans improves many aspects of social cognition 
and behavior. Its effects on the hypothalamic–pituitary–adrenal axis and inflammation 
appear to be of interest in neonates because these properties may confer benefits 
when the perinatal brain has been subjected to injury. Indeed, early life inflammation 
and abnormal adrenal response to stress have been associated with an abnormal white 
matter development. Recent investigations demonstrated that OTX is involved in the 
modulation of microglial reactivity in the developing brain. This review recapitulates state-
of-the art data supporting the hypothesis that the OTX system could be considered as 
an innovative candidate for neuroprotection, especially in the immature brain.

Keywords: intra-uterine growth restriction, neuro-inflammation, white matter brain injury, oxytocin, microglia, 
glucocorticosteroid, GABA, maternal behavior

wHiTe MATTeR inJURY (wMi) FOLLOwinG FeTAL GROwTH 
ReSTRiCTiOn

Intrauterine growth restriction (IUGR) is a complication observed in 10% of the pregnancies (1) and 
represents the major causes of neonatal mortality and morbidity (2). Placental insufficiency resulting 
in fetal hypoxia and maternal malnutrition are two identifiable and major causes of IUGR (3). Due to 
its constant increase in both industrialized and developing countries, where 2.8 million children out of 
135 million born in 2010 were born preterm and growth restricted (4), IUGR represents an important 
public health problem. Indeed, growth-restricted infants showed a higher risk of perinatal morbid-
ity and of neurodevelopmental alteration with long-term cognitive and neurobehavioral handicaps 
(5, 6). Interestingly, studies based on magnetic resonance imaging have clearly evidenced that the 
cognitive and psychiatric deficits observed (7–9) are correlated to alterations of brain white and gray 
matter (7, 10, 11), including altered neural circuitry (12, 13). The importance of IUGR in the context 
of public health economy is further highlighted by the presence of a positive correlation between the 
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FiGURe 1 | Causal relationship between abnormal microglia activation and WMI in IUGR infants. IUGR, intrauterine growth restriction; WMI, white matter injury.
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severity of IUGR and the risk to develop cerebral palsy (14), risk 
that is 10- to 30-fold higher in IUGR babies (15–18).

The mechanisms responsible for the induction of brain injury 
in preterm infants remain largely elusive and several putative 
inductor factors have been identified (oxidative stress, excitotox-
icity, neuroinflammation) (19). In the hereinafter of this section, 
we will focus on the role of neuroinflammation and the possible 
cellular mechanisms responsible for inflammatory-induced brain 
damage.

Clinical studies showed that abnormal inflammatory 
responses in the fetus and/or in the neonate can contribute to 
white matter damage (20, 21). These clinical observations are well 
supported by studies conducted in rodents in which IUGR is not 
only associated with an abnormal neuroinflammatory response 
and myelinization defects (22–24), but is also a risk factor for the 
development of inflammatory-induced brain damage (25).

The brain inflammatory response is orchestrated by crosstalk 
between microglia and astrocyte (26). In particular, microglia 
(brain resident macrophage) colonizes the brain during develop-
ment in two phases: the fetal development (first two trimesters 
in humans and between embryonic days (EDs) 10 and 19 in 
rodents) and the early postnatal days (PND) (27). An accurate 
regulation of their activation is critical for the development of a 
proper immune response and for maintaining brain homeostasis. 
Indeed, as recently demonstrated, abnormal microglia activity 
can influence cortical neurogenesis (28), neuronal migration, 
axonal growth (29, 30), and synaptic pruning (31). These events 
that occur during the fetal and the early postnatal period are 
critical for the development of a functional brain architecture and 
their alterations can generate “pre-symptomatic signatures” cor-
related to the manifestation of neurological disease later in life as 
suggested by the neuro-archeological hypothesis (32). Abnormal 
microglia activation can also negatively affect myelinization (27). 
In order to better understand the relation between microglia 
and myelinization, it is important to consider the developmental 
stages of myelinization. The process is defined by initial migration 
and proliferation of oligodendrocyte precursors followed by their 
differentiation first into pre-oligodendrocytes (pre-OL) and then 
into mature oligodendrocytes (33). In particular, pre-OL showed 

higher intrinsic vulnerability to environmental insults and 
exposure of the brain to free radical or to excitotoxic molecules 
dramatically affect their maturation and differentiation (34). 
Abnormal microglial activation is the third factor affecting pre-
OL maturation, a pivotal player in the context of WMI (27, 34) 
(Figure 1). Thus considering this background, the early modula-
tion of the microglia activity could represent a valid therapeutic 
option for the treatment of brain injury in prematurity and to 
prevent the printing of the “pre-symptomatic signature” of neu-
rological disease.

eARLY OveReXPOSURe TO 
GLUCOCORTiCOSTeROiDS (GCs): 
iMPACT On neUROinFLAMMATiOn AnD 
OXYTOCin PRODUCTiOn

The release of GCs is regulated by the hypothalamic–pituitary–
adrenal axis (HPA) (35). HPA axis activation results in the release 
of corticotropin releasing factor (CRF) from the hypothalamic 
paraventricular nucleus (PVN) in the portal vessel system, induc-
ing the secretion of adrenocorticotropic hormone (ACTH) from 
the pituitary that in turn stimulates the release of GCs from the 
adrenal gland.

Glucocorticosteroids, classically described as anti-inflamma-
tory and immunosuppressive agents, have also displayed pro-
inflammatory actions. Indeed, studies conducted in humans and 
in rodents showed that chronic exposure to stress or to high levels 
of GCs potentiate the inflammatory response both at central and 
peripheral levels (36–38).

The pro-inflammatory effects of GCs are long lasting and 
early life stress is able to shift the immune response toward a 
pro-inflammatory phenotype later in life (39–41) with a direct 
effect on microglia immunoreactivity and maturation (42–45). 
Concerning the latter point, the study (42) showed that expo-
sure to prenatal stress between ED 10 and 20 affects microglia 
maturation by inducing a reduction of immature microglia in 
the corpus callosum and an increase in ramified microglia in 
other brain regions at PND 1. More recently, two different studies 
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FiGURe 2 | Bidirectional relationship between hypothalamic–pituitary–adrenal axis and oxytocin system. PVN, paraventricular nucleus; CRF, corticotropin releasing 
factor; ACTH, adrenocorticotropic hormone.
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demonstrated that exposure to maternal separation (MS) (43) 
or to prenatal stress (44) increase the activation of microglia 
cells in the hippocampus at PND15 and the number of activated 
microglia in the hippocampus and in the cortex of adult animals, 
respectively. In the same study (44) the authors showed, through 
an in  vitro approach, that microglia isolated from prenatal 
stressed animals is more amoeboid and releases higher levels 
of pro-inflammatory cytokines. In addition, as reported in Ref. 
(45), exposure to prenatal stress is able to shift the hippocampal 
microglia morphology toward an activated phenotype not only 
in basal condition, but also in response to LPS stimulation in 
adults.

The mechanisms responsible for these effects are not yet well 
understood, however, an important role could be exerted by 
nuclear GCs receptors (GRs). GRs regulate the HPA activity by 
means of negative feedback (46) and the anti-inflammatory effects 
of GCs are promoted by the formation of a GC/GR complex (47). 
As previously reviewed, hippocampal GRs undergo epigenetic 
regulation of their expression that is influenced by early parental 
care (48). Interestingly, two human studies reported an increase 
in GR methylation in leukocytes and mononuclear cord blood 
cells in adults (49) and infants (50) exposed to childhood adver-
sity, respectively. Moreover, a recent study evidenced a relation 
between GR methylation and inflammation at the central level 
(51). Rats exposed to MS showed, as adults, a higher methyla-
tion of hippocampal GR receptor that is linked to an increase in 

hippocampal astrocytes inflammatory response following sevo-
flurane administration. Interestingly, these effects can be reversed 
by treatment with an epigenetic regulator (51).

Because microglia are the resident immune cells of the 
brain, we hypothesize that stress or high levels of GCs can 
induce epigenetic modification of GRs on microglia too. The 
change in GR expression could, therefore, shift the microglia 
response toward the pro-inflammatory phenotype observed in 
premature infants and in animal models of IUGR. In this con-
text, defining strategies to prevent exposure of the developing 
brain to high pro-inflammatory levels of GCs acquire greater 
importance.

Oxytocin is a neuropeptide released by the PVN and by the 
supraoptic nucleus of the hypothalamus. Studies conducted 
in rodents and in humans showed the existence of a bidi-
rectional relation between the HPA axis and OTX: exposure 
to stress induced an increase in OTX plasma levels (52–54), 
while OTX administration counterbalanced axis activation 
reducing GCs release (55–59). The details of this inhibitory 
action were clarified via pharmacological approaches in several 
studies. In particular, intra-cerebroventricular administration 
of OTX induces a reduction in CRF mRNA levels in the PVN 
in response to stress (55, 57) and a reduction in ACTH and 
corticosterone plasma levels both in the basal condition (58) 
and in response to stress (55, 56, 58) (Figure 2). This proven 
ability to modulate the GCs release supports the hypothesis of 
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a functional interaction between the OTX system, HPA axis, 
and immune system. In this mutual communication between 
the three endogenous systems, OTX could exert an indirect 
anti-inflammatory action through the control of HPA axis 
activation. Therefore, during the early phase of life, OTX could 
have an important role to prevent the exposure of the brain to 
high and pro-inflammatory doses of GCs.

ReLATiOn BeTween OTX AnD THe 
iMMUne SYSTeM: eviDenCeS OF An 
AnTi-inFLAMMATORY eFFeCT

Oxytocin known for its role in labor and lactation is generally 
used in clinical practice for the induction and augmentation of 
labor (60). However, recent investigations in animals evidenced 
a pivotal role of OTX in the regulation of a central inflammatory 
response (61–63). The anti-inflammatory action in the brain 
was described for the first time in an animal model of brain 
stroke (MCAO) in combination with social housing and social 
isolation protocols (61). Social environment is associated with a 
reduction in incidence, mortality, and morbidity of stroke (61, 
64). Housing in a social environment increases the synthesis of 
OTX mRNA in the hypothalamus and interestingly, this increase 
mediates the neuroprotective effects of the social environment 
(61). Indeed, intracerebral administration of an OTX receptor 
(OTXR) antagonist neutralized the neuroprotective effects of 
the social environment, whereas the administration of OTX 
to socially isolated animals before induction of cerebral arte-
rial occlusion improved stroke outcome reducing infarct size, 
oxidative stress, stroke-induced gliosis, and neuroinflammation 
(61). In addition, a recent in  vivo study demonstrated that 
intracerebral administration of OTX reduced pro-inflammatory 
gene expression in the hippocampus of adult animals exposed 
to MS (62).

Studies aimed at clarifying the cellular target of this anti-
inflammatory action pointed out a role for the OTX system in 
the regulation of microglia reactivity both in vivo and in vitro 
(61, 63). Regarding the in  vivo evidence, the study (63) dem-
onstrated that intranasal administration of OTX to adult mice 
reduced microglia activation and pro-inflammatory cytokine 
expression induced by an LPS injection. In addition, in the 
same study the authors demonstrated that OXT is able to reduce 
the LPS-induced activation both in primary microglia and in 
microglia cell lines (63). Similar results have been reported 
in microglia cells purified from socially isolated animals and 
stimulated in vitro with LPS (61).

The biological action of OTX is linked to the activation of 
OTXR, a selective seven transmembrane Gq/Gi-coupled recep-
tor (65) expressed both in astrocytes and in microglia (61, 63). 
Exposure of microglia cells to inflammatory stimulus induced a 
time-dependent increase in OTXR expression (63) suggesting 
that the OTX system is an inducible system that undergoes a 
dynamic regulation to respond to the requests of an immune 
challenge. The molecular bases of neuroprotective action of 
OTX are not well known and modulation of the downstream 
ERK/MAPK pathway in microglia was reported only in one 

study (63). In addition, other molecular effectors of OTXR 
(e.g., NFkB, eukaryotic elongation factor 2) could mediate 
the observed effect. Finally, because microglia also express 
receptors for glutamate and other important neurotransmitter 
(e.g., GABA, Acetylcholine) (66), the existence of a functional 
crosstalk between OTXR and other neurotransmitter receptors 
cannot be ruled out.

eFFeCTS OF OTX On THe neOnATAL 
BRAin AnD “GABA SwiTCH”

The early phase of life represents a period of maximum plasticity 
for the brain. Indeed, during this time it undergoes morpho-
logical changes that are fundamental for the development of 
correct excitatory and inhibitory neuronal circuits. An abnormal 
balance between excitatory and inhibitory transmission have 
been proposed as a causal factor for the occurrence of neurode-
velopmental disorders (e.g., autism) (67) and in this context an 
interesting role is mediated by GABA (68, 69). GABA, the main 
inhibitory neurotransmitter in adults, exerts an excitatory effect 
in the immature brain switching transiently to an inhibitory 
action during delivery, and permanently during the first postnatal 
week (70, 71). The peculiar Cl− homeostasis that characterizes 
the immature brain is at the base of GABA excitatory action (67). 
Indeed, immature neurons express on their membrane high levels 
of Cl− importer NKCC1, and low levels of Cl− exporter KCC2 
with a consequent increase in Cl− intracellular concentration 
(67). In presence of this ionic gradient, activation of the GABA 
receptor (GABAAR) induces an efflux of Cl− and the consequent 
generation of an excitatory membrane depolarization (67).

Alteration of GABAergic signaling is reported in several 
neurodevelopmental diseases, such as autism (69) and Fragile 
X (68, 72). Therefore, the understanding of the mechanisms 
underlying the GABA function in the immature brain acquires 
greater importance.

Oxytocin is a key player for the biphasic transition of GABA 
and during delivery a main role is exerted by maternal OTX. 
Parturition is indeed associated with a massive release of OTX 
(73) that easily crosses the placenta and reaches the fetus (74). 
Combining the electrophysiological approach with in  vivo 
administration of an OTXR antagonist to pregnant rats, Tyzio 
et al. elegantly demonstrated that maternal OTX is necessary and 
sufficient to promote GABA switch (70) and that the inhibition of 
this OTX-mediated transition induces in the offspring an autistic-
like phenotype (69). The modulation of NKCC1 activity is at the 
base of OTX-mediated GABA switch during delivery (70) and, as 
observed for OTX, the administration of an NKCC1 antagonist 
to pregnant rats reverts the abnormal electrophysiological phe-
notype in two animal models of autism (69). Concerning the role 
of OTX in the postnatal GABA switch, a recent research high-
lighted the involvement of the KCC2 transporter (67). Indeed, 
mutant OTXR−/− mice showed delayed GABA switch associated 
with reduced KCC2 hippocampal expression. On the contrary, 
wild type animals showed in the early postnatal period correct 
GABA transition and an increase in KCC2 expression that are 
promoted by activation of OTXR and of its downstream pathway  
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Gq/protein kinase C. Interestingly, this OTXR-mediated modula-
tion of KCC2 expression is time dependent and restricts to an 
early time point (67). This observation further highlighted the 
pivotal role of OTX in the first phase of life and supports the 
hypothesis of OTX as a novel neuroprotective agent in the imma-
ture brain. Indeed, a precocious treatment of preterm infants with 
OTX could represent a valid therapeutic strategy to ensure cor-
rect brain development and perhaps reduce the risk of developing 
neurodevelopmental disorders later in life.

eFFeCTS OF OTX On THe neOnATAL 
BRAin AnD THe ROLe OF MODULATiOn 
OF MATeRnAL BeHAviOR

Oxytocin is an important hormone for the regulation of mater-
nal behavior (75–80) and this interaction was first reported by 
Pedereson and Fahrbach (75, 76). Indeed, the authors demon-
strated that intracerebral administration of OTX to virgin female 
rats reduced the latency to develop maternal care in response to 
exposure to forest pups (75, 76). In agreement with these results, 
intracerebral administration of an OTXR antagonist reduced 
maternal behavior and canceled the differences between high 
maternal care (High LG-ABN) and low maternal care (Low 
LG-ABN) mothers (78). High LG-ABN is associated with a higher 
level of OTX (77) and of OTXR in the medial preoptic area, a 
hypothalamic area important for the regulation of maternal care 
(78, 79). In humans, the increase in plasma OTX between the first 
and the second trimester of pregnancy is predictive of mother-
infant bonding (81) and higher plasmatic and salivary levels of 
OTX are observed in mothers with high affectionate contact (80).

Maternal attachment is the first form of social interaction and 
its quality and quantity influence the behavioral and neuroendo-
crine outcomes of the organisms. Indeed, human studies reported 
that a low quantity and quality of maternal care are associated 
with a higher risk to develop adult psychopathy (82) and to worse 
cognitive performances later in life (83). In agreement with these 
human results, animal studies clearly demonstrated that rats 
reared by low LG-ABN showed, as adults, impaired cognitive 
performances (84, 85) increase in anxiogenic behavior (86) and 
fearfulness (87). Moreover, low LG-ABN showed hyperactivity of 
the HPA axis in response to stress (88).

Considering the ability of OTX to modulate the insurgence of 
maternal care and the positive effects of high levels of maternal 
behavior, it is possible to suggest a functional interaction between 
OTX and maternal care. Therefore, OTX could exert an indirect 
neuroprotective effect through modulation of maternal care.

COnCLUSiOn

Intrauterine growth restriction is recognized to be an important 
public health problem and growth-restricted infants present an 
increased risk to develop cognitive and behavioral alterations 
later in life. As evidenced by clinical studies these increased risks 
are significantly correlated to the development of gray and white 
matter injury including altered neural circuitry. Preclinical and 
clinical studies have demonstrated that neuroinflammation, 

associated with abnormal microglia reactivity, is a causal fac-
tor for the development of WMI. Therefore, the modulation of 
inflammation could represent a valid therapeutic strategy for 
the treatment of brain injury in preterm infants. In this context, 
the neuropeptide OTX can exert a pivotal role due to its ability 
to modulate the immune system and shift its activity toward 
an anti-inflammatory phenotype. The studies discussed in this 
review demonstrate that this anti-inflammatory effect is exerted 
through the regulation of microglia activation. However, the 
beneficial effects of OTX are not only related to the modulation 
of neuroinflammation, but also to the development of correct 
neural circuitry. Indeed, its action is necessary to regulate the 
“GABA switch” and the proper balance between excitatory and 
inhibitory transmission whose alterations have been linked to the 
occurrence of neurodevelopmental disorders. Finally, the posi-
tive effects of OTX can not only be confined to a direct action on 
the immature brain. Indeed, OTX is an important regulator of 
maternal behavior and alterations of maternal care are correlated 
to the insurgence of behavioral and neuroendocrine alterations 
later in life. Thus, it is possible to suppose that the modulation 
of maternal care is one of the mechanisms at the base of OTX-
mediated neuroprotection. In conclusion, the data summarized 
here supports the hypothesis of OTX as a potential neuroprotec-
tive agent in the developing brain.

MeTHODS

The present review summarizes clinical and preclinical data about 
causal relations between inflammation and neonatal brain injury, 
and recapitulates experimental evidences hypothesizing OTX 
as a novel anti-inflammatory and neuroprotective agent in the 
immature brain. A literature search was performed in December 
2017–January 2018 using the PubMed library in English. No 
restriction of year and authors were applied and review papers 
were used as references only for the general concepts. The litera-
ture search relating to the pre-clinical studies was restricted to 
research conducted in rats and mice. Only papers that satisfied 
the following criteria were included: pertinence to the subject, 
presence of control groups, and clear descriptions of experimen-
tal procedures.
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