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Background and purpose: Carotid plaque (CP), carotid intima media thickness 
(cIMT), and stiffness (STIFF) are pre-clinical markers of atherosclerosis and predictors of 
cerebrovascular disease (CVD). We sought to investigate whether STIFF is a significant 
determinant of cIMT and CP, which may provide an insight into the mechanism by which 
STIFF adds to the risk of CVD.

Methods: We analyzed 876 stroke-free subjects from the Northern Manhattan Study 
with available ultrasound measures. To obtain the associations with STIFF, we performed 
multivariable-adjusted regression, negative binomial regression (for CP number), and 
multinomial logistic regression (for plaque area).

results: The mean age was 64 ± 9 years; 63% women and 65% Caribbean Hispanics. 
The mean cIMT was 0.93 ± 0.9 mm, the mean diastolic diameter 6.24 ± 0.94 mm, 
and STIFF 8.6 ± 6.2 ln mmHg. Prevalence of CP was 57%, and the mean total plaque 
area was 22.6  ±  23.0 mm2. STIFF was positively associated with cIMT but not with 
CP. There was an association between diastolic diameter and thick plaque. For each 
millimeter increase in diastolic diameter, there was about a 20% increased risk of having 
thick plaque (vs. no plaque). In longitudinal analyses, each millimeter increase in diastolic 
diameter was associated with a 37% increased risk of incident plaque.

conclusion: Increased STIFF was associated with increased cIMT and carotid artery 
dilatation with greater plaque burden. Increased cIMT and plaque burden represent 
vascular remodeling likely resulting from the two different age-related mechanisms, one 
that includes diffuse wall thickening (cIMT) with STIFF and another that incorporates 
focal atherosclerosis (plaque) with luminal dilatation.

Keywords: carotid artery, carotid intima media thickness, stiffness, atherosclerosis, carotid plaque, carotid 
ultrasound, arterial remodeling

iNtroDUctioN

Atherosclerosis is the underlying process of most cardiovascular disease (CVD) (1) leading to luminal 
stenosis with flow restriction or to plaque rupture (2). Carotid plaque (CP), carotid intima media thick-
ness (cIMT), and arterial stiffness (STIFF) are well-established subclinical markers of atherosclerosis 
and significant predictors of CVD (2, 3). They are biologically and genetically distinct phenotypes of 
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atherosclerosis (4, 5). CP thickness and area assessed by ultra-
sound are direct measures of atherosclerotic plaque burden (6) 
and better predictors of CVD than cIMT (4, 7, 8).

Stiffness is a functional measure of the arterial wall’s resist-
ance to pressure deformation during the cardiac cycle (9). 
STIFF and arterial dilatation result from a degenerative process 
affecting mainly the extracellular matrix of elastic arteries where 
the principal risk factor is aging. Arterial dilatation and STIFF 
may be early markers of structural atherosclerotic changes and 
potentially targeted for early anti-atherosclerotic interventions 
(10). However, information on the relationship between arterial 
wall function and structure in the general population is sparse. 
We sought to investigate these associations in a stroke-free popu-
lation from the Northern Manhattan Study (NOMAS).

MateriaLs aND MethoDs

study population
Northern Manhattan Study is a population-based study designed 
to determine the incidence of stroke and CVD described previously 
(11). A total of 3,298 subjects were enrolled. As a part of the Carotid 
Imaging Study (2), 876 individuals with available ultrasonographic 
measurements and signed written informed consents in accord-
ance with the Declaration of Helsinki were included in analyses. 
NOMAS was approved by the Institutional Review Boards of 
Columbia University and the University of Miami.

Data were collected through interviews using standardized 
collection instruments, review of the medical records, and physi-
cal examination (11). Vascular risk factors (vRF) and physical 
activity were described previously (2, 12).

carotid Ultrasound
High-resolution two-dimensional carotid ultrasound imaging 
(Figure S1 in Supplementary Material) was performed according 
to the standardized scanning and reading protocols (2). The left 
and right carotid bifurcations, the internal carotid arteries (ICA), 
and common carotid arteries (CCA) were imaged (13). Plaque 
was defined as focal wall thickening or protrusion in the lumen 
more than 50% greater than the surrounding wall thickness. CP 
boundaries were traced offline using automatic edge detection 
system (M’Ath Inc., Paris, France). The sum of plaque areas in 
all carotid arteries from the both side of the neck was expressed 
as total plaque area (TPA) in square millimeter. IMT (mm) in all 
carotid segments was measured in areas free of plaque. cIMT was 
calculated as a composite measure combining the near and the far 
walls of CCA IMT, bifurcation IMT, and ICA IMT of both neck 
sides and examined continuously as a mean of the mean meas-
urements of the 12 sites. The offline measurement of STIFF was 
performed as described (14). STIFF (ln mmHg) was calculated 
as [(the natural log transformation of (systolic BP  −  diastolic 
BP))/strain], where strain was [(systolic diameter  −  diastolic 
diameter)/diastolic diameter].

A subgroup of 267 individuals with two carotid ultrasound 
images apart were included in an analysis of the relationship 
between DD, STIFF, and strain with incident plaques and the 
change in the maximum plaque thickness and cIMT. Incident 
plaque was defined as an increase in the number of plaques 

between carotid ultrasound measurements, and the change in 
maximal plaque thickness and cIMT was defined as the thickness 
at follow-up minus the thickness at baseline.

statisticaL aNaLYsis

In cross-sectional analyses, independent variables were DD, 
strain, and STIFF and each examined continuously. The depend-
ent variables were the mean cIMT, plaque number, plaque 
thickness, and TPA. TPA was examined in three categories: no 
plaque and tertiles of TPA distribution (tertile 1–2 and the top 
tertile). Plaque thickness was also examined in three categories: 
no plaque, plaque < 1.9 mm, and plaque > 1.9 mm. The latter 
cutoff was used to define thick plaque as it has been significantly 
associated with clinical outcomes in this cohort (2). Multinomial 
logistic regression was used to examine the associations of DD, 
strain, and STIFF with plaque thickness and TPA, with no plaque 
as the reference. Due to overdispersion of plaque number, negative 
binomial regression was used to examine the associations with 
plaque number, examined continuously as dependent variable. 
cIMT was examined as a continuous outcome using linear regres-
sion. We used a sequence of multivariable-adjusted regression 
models. The first model controlled for demographic variables 
(age, sex, and race/ethnicity), the second model controlled for 
demographics and anti-hypertensive medication, and the third 
model additionally controlled for current smoking, diabetes, 
moderate alcohol use, moderate to heavy physical activity, BMI, 
and hypercholesterolemia. We did not adjust for hypertension in 
order to avoid overadjustment as STIFF is a metric that includes 
systolic and diastolic BP measurements. We examined potential 
effect modification by demographic variables, diabetes, smoking, 
and lipids, using interaction terms in the third model.

An exploratory prospective analysis was conducted for strain, 
STIFF, and DD in association with incident plaque using logistic 
regression and with the change in maximal plaque thickness and 
cIMT using linear regression models. The same three models 
described earlier were used, additionally controlling for the time 
span between carotid measurements.

resULts

Among 876 subjects (mean age 64 ± 9 years), 63% were women, 
65% Caribbean Hispanic, 17% black, and 16% white. The mean 
cIMT was 0.93 ± 0.9 mm, the mean STIFF 8.6 ± 6.2 ln mmHg 
(median = 6.9, range = 1.6–51.5), the mean strain 0.08 ± 0.04 
(median  =  0.07, range  =  0.01–0.30), and the mean DD 
6.24 ± 0.94 mm (median = 6.10, range = 3.90–10.50). Prevalence 
of CP was 57% (plaque number distribution: 1 plaque  =  19%, 
2 = 17%, 3 = 9%, 4 = 5%, 5 = 4%, 6 = 2%, 7 = 1%, 8 = < 1%, and 
9 = < 1%), and 38% had plaque > 1.9 mm. Among those with 
plaque, the mean TPA was 22.6 (±23.0) mm2, median = 14.8 mm2. 
TPA distribution for the first two tertiles (N = 326) ranged from 
2.2 to 21.6  mm2 and for the third tertile (N  =  176) from 21.7 
to 168.8 mm2. Table 1 shows the covariate characteristics of the 
study population overall and by TPA categories.

In univariate analysis, significant association was present 
between age and STIFF (p < 0.0001), DD (p < 0.0001), and strain 
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taBLe 2 | Association of carotid stiffness and diastolic diameter with carotid intima media thickness (cIMT) and plaque phenotypes.

estimate, p-value or (95% ci)

ciMt (mean  
of the max)

plaque number  
(continuous)

plaque thickness 
< 1.9 mm vs. no 

plaque

plaque thickness 
> 1.9 mm vs. no 

plaque

plaque area tertiles  
1–2 vs. no  

plaque

plaque area tertile  
3 vs. no  
plaque

Diastolic diameter, per 1 unit

Model 1
Model 2
Model 3

0.019 (<0.0001)
0.019 (<0.0001)
0.019 (<0.0001)

0.053 (0.22)
0.049 (0.27)
0.036 (0.41)

0.83 (0.66–1.03)
0.84 (0.68–1.06)
0.84 (0.67–1.06)

1.22 (1.03–1.46)
1.23 (1.03–1.46)
1.21 (1.01–1.46)

1.03 (0.87–1.22)
1.06 (0.89–1.26)
1.06 (0.88–1.27)

1.18 (0.96–1.45)
1.14 (0.92–1.41)
1.10 (0.88–1.38)

stiffness, per 1 unit

Model 1
Model 2
Model 3

0.001 (0.03)
0.001 (0.03)
0.001 (0.05)

0.010 (0.10)
0.010 (0.13)
0.009 (0.14)

1.00 (0.97–1.04)
1.01 (0.97–1.04)
1.01 (0.97–1.04)

1.02 (0.99–1.04)
1.02 (0.99–1.04)
1.02 (0.99–1.04)

1.00 (0.98–1.03)
1.01 (0.98–1.03)
1.01 (0.98–1.03)

1.03 (1.00–1.06)
1.02 (0.99–1.06)
1.02 (0.99–1.06)

Model 1: controlling for demographics (age, sex, and race/ethnicity).
Model 2: controlling for demographics and anti-hypertensive medication use.
Model 3: controlling for demographics, anti-hypertensive medication use, smoking, diabetes, hypercholesterolemia, moderate alcohol use, moderate-heavy physical activity,  
and BMI.
Significant associations and corresponding p values (p < 0.05) are in bold to aid the viewer.

taBLe 1 | Characteristics of the study population.

Variable study population  
N = 876

No plaque  
N = 374

plaque area tertiles 1–2 
N = 326

plaque area tertile 3 
N = 176

Age, mean ± SD 64 ± 9 61 ± 8 65 ± 9 69 ± 8
Male sex, N (%) 328 (37) 136 (36) 118 (36) 74 (42)
race/ethnicity, N (%) 
Black
White
Hispanic

149 (17)
144 (16)
568 (65)

52 (14)
45 (12)

269 (72)

58 (18)
53 (16)

210 (64)

39 (22)
46 (26)
89 (51)

Current smoker, N (%) 141 (16) 54 (14) 52 (16) 35 (20)
Moderate alcohol use, N (%) 367 (42) 160 (43) 139 (43) 68 (39)
Moderate-heavy physical activity, N (%) 100 (12) 43 (12) 36 (11) 21 (12)
Diabetes, N (%) 157 (18) 51 (14) 59 (18) 47 (27)
Anti-hypertensive medication use, N (%) 346 (40) 140 (38) 115 (35) 91 (52)
Hypercholesterolemia, N (%) 538 (61) 222 (59) 198 (61) 118 (67)
BMI (kg/m2), mean ± SD 28.61 ± 5.29 29.97 ± 5.47 28.42 ± 4.93 28.19 ± 5.50
Stiffness (ln mmHg), mean ± SD 8.61 ± 6.17 7.95 ± 5.47 8.59 ± 6.14 10.08 ± 7.32
Strain, mean ± SD 0.08 ± 0.04 0.08 ± 0.04 0.08 ± 0.04 0.08 ± 0.04
Diastolic diameter (mm), mean ± SD 6.24 ± 0.94 6.15 ± 0.90 6.24 ± 0.91 6.45 ± 1.02
Carotid intima media thickness (mm), mean ± SD 0.93 ± 0.09 0.91 ± 0.08 0.93 ± 0.09 0.99 ± 0.10
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(p =  0.0003). Table  2 shows the relationship between DD and 
STIFF with cIMT and the plaque phenotypes and in the sequence 
of multivariable-adjusted models. DD and STIFF were both posi-
tively associated with cIMT in all three models. For the plaque 
phenotypes, the only association observed was a positive associa-
tion between DD and thick plaque (>1.9 mm). Each millimeter 
increase in DD was associated with a 20% increased risk of thick 
plaque (vs. no plaque). Strain and STIFF were not associated with 
plaque thickness. DD and STIFF were not associated with plaque 
number neither with plaque area. No significant effect modifica-
tions were observed.

In a longitudinal analysis, 115 individuals had a new plaque at 
follow-up, including 30 new plaques among 101 without plaque 
at baseline. The mean time span between measurements was 
3.2 years (range = 2.8–5.4), the mean change in maximal plaque 

thickness was 0.35 ± 1.07 mm, and the mean change in cIMT was 
0.16 ± 0.15 mm. In model 1, STIFF was not associated with inci-
dent plaque (data not shown), but DD was positively associated 
with incident plaque in model 1 (OR = 1.36, 95% CI = 1.01–1.82) 
and model 3 (OR = 1.37, 95% CI = 1.00–1.89). There was a sug-
gested positive association of DD with maximum plaque thickness 
(model 1, beta = 0.15, p = 0.05; model 3 beta = 0.15, p = 0.06).  
No association of DD nor STIFF was found with the change in cIMT.

DiscUssioN

In our elderly community cohort, we report a significant asso-
ciation between increased STIFF and cIMT and between larger  
carotid diameter and CP burden. These associations were inde-
pendent of demographics and major vRF, directly linking 
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parameters of arterial function and structure through the arte-
rial wall remodeling processes. Our findings may help to better 
understand the link between arterial wall mechanics and arterial 
remodeling in early atherosclerosis.

The associations of STIFF with cIMT and plaques have 
been reported previously (10, 15). In the Atherosclerosis Risk 
in Communities, the positive association between STIFF and 
cIMT was found only in the thickest cIMT that represented 10% 
of the carotids, likely representing plaque. This relationship was 
explained by the presence of endothelial damage enhanced by 
intraluminal stress in STIFF arteries and accumulation of ath-
erosclerotic material in arterial wall. However, the mechanisms 
of arterial remodeling leading to increased cIMT in contrast to 
arterial plaque may be different and remains largely unexplained. 
Our study may suggest different remodeling mechanisms lead-
ing to either diffuse arterial wall thickness (cIMT) that is largely 
dependent on arterial STIFF or to focal atherosclerotic changes 
(plaque) dependent on luminal dilatation. According to the 
Glagov’s vascular remodeling mechanism, arteries remodel to 
maintain constant flow despite increases in atherosclerotic lesion 
mass (16). In an experimental model of the carotid arteries in 
rabbits, flow-induced arterial dilatation was accompanied by an 
adaptive remodeling of carotid intima (17), suggesting that arte-
rial dilatation is an early marker of atherosclerotic lesion.

Traditional and less-traditional vRF impact arterial remodeling 
and contribute to the stiffening of the arterial tree (14, 18, 19). 
In our study, the association between STIFF and cIMT was not 
modified by vRF, suggesting a direct flow-pressure contribution 
to the wall injury that deserves further exploration.

We found a positive association between DD and thick plaque. 
A study conducted in hypertensive patients demonstrated that 
change in diameter of CCA directly impacted plaque thickness, 
supporting our findings (20). Based on the Glagov’s remod-
eling mechanism (21), the enlargement of the DD may prefer-
entially induce one phenotype of atherosclerosis, i.e., plaque, 
over another, i.e., cIMT (22, 23). However, the mechanism 
leading to the preferential atherosclerotic phenotype remains  
unclear.

In our longitudinal analysis, we found independent associations 
between enlargement of DD and incident plaque and increased 
maximum plaque thickness. Conversely, no associations were found 
for STIFF with plaque and cIMT and for DD and cIMT. In support, 
the Plaque At RISK study (24) has demonstrated a stronger associa-
tion for DD, plaque progression, and CVD than for cIMT. These 
results suggest that plaque development may be more affected by 
the arterial remodeling mechanism than cIMT. Driving forces that 
induce plaque progressing with aging may be associated with the 
lumen dilatation as an adaptive response to increased pressure in 
the arteries (25). Moreover, a significant interaction between plaque 
and STIFF is present only in advanced stage of the atherosclerotic 
lesion (26). Larger longitudinal studies with multiple follow-up 
ultrasound measurements are needed to establish temporal asso-
ciations between these phenotypes of atherosclerosis.

A lack of the association between STIFF and plaque in our 
study is in contrast to the findings from the Rotterdam Study 
(15), where this correlation was present. The discrepancy may be 

related to different study populations, ultrasound metho dologies, 
and the measurement of STIFF (carotid ultrasound vs. pulse wave 
velocity), which depends by several parameters and may not be 
accurate. Local measurement of STIFF by ultrasound evaluation 
of arterial distensibility and compliance is able to a better evalua-
tion of the absolute or relative changes in the arterial volume and 
distending pressure.

Various studies have adopted different plaque and cIMT 
definitions (27). Our cIMT method is based on the Mannheim 
consensus to avoid discrepancies reported in major cIMT studies 
(28). Development of novel methods such as non-invasive vascu-
lar ultrasound elastography may provide more direct measure-
ments of the arterial walls mechanical properties at the level of 
plaque with increased accuracy and validity. Strengths of the cur-
rent study include a population-based design, inclusion of both 
cross-sectional and prospective analyses, and the use of multiple 
plaque phenotypes for comparisons. The major limitation is that 
our study cohort is old and results may not be generalizable to 
younger populations. The prospective analysis had limited power 
and as in any epidemiology study, confounding is a possibility, 
and causality cannot be inferred.

ethics stateMeNt

As a part of the Carotid Imaging Study (26), 876 individuals 
with available ultrasonographic measurements and signed writ-
ten informed consents in accordance with the Declaration of 
Helsinki were included in analyses. NOMAS was approved by 
the Institutional Review Boards of Columbia University and the 
University of Miami.

aUthor coNtriBUtioNs

DD-M: conceived the presented idea, conceived and planned 
the analysis of the data, contributed to the interpretation of the 
results, and wrote the manuscript. HG: performed statistical 
analysis, contributed to the interpretation of the results, and 
made a critical revision of the manuscript. CD: performed sta-
tistical analysis, contributed to the interpretation of the results, 
and made a critical revision of the manuscript. MM: contributed 
to the interpretation of the results and made a critical revision 
of the manuscript. DC: collected the data for the analysis. ME: 
contributed to the interpretation of the results and made a criti-
cal revision of the manuscript. RS: handled funds, conceived the 
presented idea, conceived and planned the analysis of the data, 
contributed to the interpretation of the results, and made a criti-
cal revision of the manuscript. TR: handled funds, conceived 
the presented idea, conceived and planned the analysis of the 
data, contributed to the interpretation of the results, and wrote 
the manuscript.

fUNDiNG

This work was supported by the National Institute of Neurologic 
Disorders and Stroke grants: R37 NS29993 (Dr. Sacco), R01 
NS047655 (Dr. Rundek), and K24 NS062737 (Dr. Rundek) and 

https://www.frontiersin.org/Neurology/
https://www.frontiersin.org
https://www.frontiersin.org/Neurology/archive


5

Della-Morte et al. Association Between Carotid Function and Structure

Frontiers in Neurology | www.frontiersin.org April 2018 | Volume 9 | Article 246

the Evelyn F. McKnight Brain Institute (Drs. Sacco, Rundek, 
Della-Morte, and Dong).

sUppLeMeNtarY MateriaL

The Supplementary Material for this article can be found online at 
https://www.frontiersin.org/articles/10.3389/fneur.2018.00246/
full#supplementary-material.

fiGUre s1 | Carotid Ultrasound procedures. High-resolution two-dimensional 
carotid ultrasound imaging was performed to measure carotid function and 
structure in 876 subjects from the Northern Manhattan Study (NOMAS). BP, 
blood pressure; CCA, common carotid arteries; cIMT, carotid intima media 
thickness; DBP, diastolic blood pressure; DD, diastolic diameter; ECA, 
external carotid arteries; ICA, internal carotid arteries; SBP, systolic blood 
pressure; DD, diastolic diameter; SD, systolic diameter; TPA, total plaque area 
(mm2).
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