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Despite improvements in perinatal care, preterm birth still occurs regularly and the 
associated brain injury and adverse neurological outcomes remain a persistent chal-
lenge. Antenatal magnesium sulfate administration is an intervention with demonstrated 
neuroprotective effects for preterm births before 32 weeks of gestation (WG). Owing to 
its biological properties, including its action as an N-methyl-d-aspartate receptor blocker 
and its anti-inflammatory effects, magnesium is a good candidate for neuroprotection. In 
hypoxia models, including hypoxia-ischemia, inflammation, and excitotoxicity in various 
species (mice, rats, pigs), magnesium sulfate preconditioning decreased the induced 
lesions’ sizes and inflammatory cytokine levels, prevented cell death, and improved 
long-term behavior. In humans, some observational studies have demonstrated reduced 
risks of cerebral palsy after antenatal magnesium sulfate therapy. Meta-analyses of five 
randomized controlled trials using magnesium sulfate as a neuroprotectant showed ame-
lioration of cerebral palsy at 2 years. A meta-analysis of individual participant data from 
these trials showed an equally strong decrease in cerebral palsy and the combined risk of 
fetal/infant death and cerebral palsy at 2 years. The benefit remained similar regardless of 
gestational age, cause of prematurity, and total dose received. These data support the use 
of a minimal dose (e.g., 4 g loading dose ± 1 g/h maintenance dose over 12 h) to avoid 
potential deleterious effects. Antenatal magnesium sulfate is now recommended by the 
World Health Organization and many pediatric and obstetrical societies, and it is requisite 
to maximize its administration among women at risk of preterm delivery before 32 WG.

Keywords: magnesium sulfate, neuroprotection, preterm birth, cerebral palsy, animal studies, randomized 
controlled trials

inTRODUCTiOn

Preterm brain injury remains a crucial and unresolved issue among neonatologists. The ensuing 
cerebral lesions (i.e., brain injury related to encephalopathy of prematurity, including white mat-
ter injury, periventricular leukomalacia, and intraventricular/intraparenchymal hemorrhage) are 
strongly associated with later cerebral palsy and neurobehavioral developmental disorders. The 
mechanisms leading to these forms of brain injury are numerous and may include inflammation or 
ischemic insult. Numerous risk factors may be present before, during, and after birth (e.g., intra- and 
extra-uterine growth restriction, systemic inflammation, or perinatal hypoxia-ischemia). Although 
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no single neuroprotective intervention is known to prevent pre-
term brain injury, neuroprotective strategies should be adopted 
to reduce the risk of neurodevelopmental anomalies in premature 
newborns. One such intervention is antenatal administration of 
magnesium sulfate (MgSO4) in women at risk of preterm birth. 
This mini review discusses the benefits of antenatal MgSO4 
administration for fetal neuroprotection.

wHY iS MgSO4 A GOOD CAnDiDATe FOR 
neUROPROTeCTiOn?

Biological Properties
Magnesium is the fourth most prevalent ion in the body and 
contributes to several physiological processes including storage, 
metabolism, and energy utilization. In the brain, magnesium is 
predominantly bound to chelators such as adenosine triphosphate 
(ATP) and is a cofactor in more than 300 enzymatic reactions 
(1, 2). Magnesium ions are essential for DNA, RNA, and protein 
synthesis. It contributes to glycolysis and ATP production and 
functions as a cell membrane stabilizer. In the central nervous 
system, magnesium is a non-competitive blocker of the N-methyl-
d-aspartate (NMDA) glutamate receptor and modulates calcium 
influx. Its physiological role as a calcium channel blocker (3) 
and modulator of sodium and potassium flux through its action 
on ion pumps (e.g., Na+/K+ ATPase) and other membrane 
receptors (e.g., nicotinic acetylcholine receptor) (4) underlies its 
central role in heart function, muscle contraction, vascular tone, 
and nerve impulse conduction.

Sixty percent of magnesium is stored in bone, 20% in muscle, 
and 20% in soft tissue. Magnesium exists primarily in an ion-
ized state (60%) but may also be complexed to proteins (33%) or 
anions (7%). Normal adult plasma concentration of magnesium 
is 0.75 mmol/L (95% confidence interval [CI]: 0.45–1.05) (5). In 
newborns, magnesium levels increase during the first week after 
birth (0.91 mmol/L [95% CI: 0.55–1.26]) (6).

Potential Mechanisms of Action 
Underlying the neuroprotective effect of 
Magnesium
Multiple mechanisms may underlie the neuroprotective impact 
of magnesium. Magnesium affects several pathways potentially 
involved in preterm brain injury. As a non-competitive NMDA 
receptor antagonist, magnesium prevents excitotoxic calcium-
induced injury (7). Magnesium decreases extracellular glutamate 
under ischemic conditions, possibly reducing excitotoxicity (8). 
Magnesium limits calcium influx through voltage-gated chan-
nels, which may reduce the activation of apoptosis (9).

Magnesium also has anti-inflammatory properties as it reduces 
oxidative stress and reduces the production of pro-inflammatory 
cytokines interleukin-6 and tumor necrosis factor-α (10–14). 
Magnesium deficiency increases endothelial nitric oxide produc-
tion, which can promote endothelial dysfunction (15, 16). This 
could involve decreased calcium influx and activation of phago-
cytic cells, inhibition of neurotransmitter release, or inhibition of 
nuclear factor kappa B.

neuroprotective effects of Magnesium in 
Preclinical Studies
Since the 1980s, animal studies have investigated the neuropro-
tective role of magnesium. Early experiments involved adult 
animal models of hypoxia, stroke, or traumatic brain injury. In 
1984, Vacanti and Ames demonstrated neuroprotective effects 
of MgSO4 in an adult rabbit spinal cord ischemia model (17). In 
1987, MgSO4 administration to rat hippocampal slices reduced 
the effect of hypoxia (18). McIntosh et al. demonstrated in 1989 
that post-traumatic MgSO4 injection decreased neurological 
disorders in a dose-dependent manner (19). In 1996, Marinov 
et  al. showed that MgSO4 administration before a focal 
ischemic episode in rats could be neuroprotective by blocking 
NMDA receptors (20). The neurological impact of MgSO4 on 
the developing brain was evaluated in several lesion models. In 
1990, McDonald et al. showed that cerebral lesions induced by 
intraspinal injection of NMDA in postnatal (P) day 7 rats were 
decreased after intraperitoneal administration of MgSO4 (21). 
Several studies have reported the importance of the timing 
of MgSO4 administration. Intraperitoneal administration of 
MgSO4 reduced the excitotoxic brain lesions in mice induced 
by intracerebral injection of ibotenate (a glutamate receptor 
agonist) on P5. However, there was no effect on brain lesions 
developing on the day of birth or on P10 (brain lesions induced 
by intracerebral injection of ibotenate in mice are comparable 
to those identified in preterm human infants by age, spe-
cifically P0–22 weeks of gestation (WG), P2–26 WG, P5–32 
WG, P10–41 WG) (22). In this P5 model, MgSO4 prevented 
sensorimotor alterations in P6 and P7 and prevented motor 
impairment, fine motor skill alteration, and memory deficits in 
adolescent mice (P34–40) (23). In the seminal model of focal 
hypoxia-ischemia established by the Rice-Vannucci procedure 
(surgical ligature of the right carotid artery followed by a 1–2-h 
exposure to 8% oxygen) in rats, MgSO4 injection before the 
hypoxic episode on P7 led to reduced lesion sizes, decreased 
hippocampal apoptosis, and improved adult sensorimotor 
performances (9, 24). In that model, MgSO4 treatment pre-
served mitochondrial respiration and reduced inflammation, 
thus reducing the production of reactive oxygen species after 
hypoxia-ischemia (16).

Under hypoxic conditions (fraction of inspired oxygen 
5–7%) in P2 piglet brains, MgSO4 prevented the changes 
induced by hypoxia in the function of neuronal nuclear 
membrane, which decreased the transcription of apoptotic 
proteins and kinase activity. These actions ultimately prevented 
programmed cell death (25, 26). The neuroprotective effect of 
MgSO4 was also assessed under inflammatory conditions. In 
pregnant rats, lipopolysaccharide (LPS)-induced inflammation 
affected progeny learning and memory capabilities at 3 months, 
which is improved by antenatal MgSO4  treatment (27). MRI 
abnormalities (increased T2 and diffusion coefficient levels 
in white and gray matter) were highlighted for pups of LPS-
treated dams, consistent with diffuse cerebral injury, which 
may be prevented by antenatal MgSO4 treatment (28). MgSO4 
protected oligodendrocyte lineage cells in vitro in a model of 
hypoxic-ischemic injury (29).
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eFFeCTS OF MgSO4 TReATMenT in 
PReGnAnCY

Use of MgSO4 in Obstetrics for Maternal 
indication
MgSO4 has been used in obstetrics for decades as a tocolytic 
agent and for prevention or treatment of seizures in women with 
preeclampsia or eclampsia (30, 31). Despite strong evidence indi-
cating effectiveness in preventing eclampsia, MgSO4 is ineffective 
in delaying preterm birth (32). Despite weak evidence, MgSO4 
is still recommended by the American College of Obstetricians 
and Gynecologists for short-term pregnancy prolongation (up 
to 48 h) to allow the administration of corticosteroids (33). In 
a European population-based cohort study, 35% of women with 
severe pre-eclampsia, eclampsia, or HELLP syndrome received 
MgSO4 before delivery. Only 1 of 119 hospital units reported 
using MgSO4 as a first-line tocolytic (34).

MgSO4 Transplacental Passage
Fetuses are passively exposed to MgSO4 administered to preg-
nant women. In animals, fetal blood magnesium concentrations 
increase after maternal administration (35–37) and correlate 
with maternal blood levels (38, 39). The ratio of the mean fetal 
magnesium level to the mean maternal serum level at delivery 
was estimated at 0.94 ± 0.15 (40).

OBSeRvATiOnAL STUDieS

Considering its use in obstetrics for maternal indications, 
its transplacental passage, and its neuroprotective action in 
animal studies, several observational studies have focused on 
the impact of MgSO4 on neurological outcomes in preterm 
neonates. Nelson and Grether showed that exposure to MgSO4 
exposure was higher in the control group than in the group 
of children with cerebral palsy (odds ratio [OR], 0.14; 95% 
CI, 0.05–0.51) (41). In another cohort study, prenatal MgSO4 
exposure was associated with a reduced risk of cerebral 
palsy at 3–5 years (OR, 0.11; 95% CI, 0.02–0.81) (42). Other 
observational studies have not shown effects of MgSO4 on 
infant neurological outcomes (43–52). A meta-analysis of 
these observational studies highlighted that antenatal MgSO4 
treatment was associated with a significantly reduced risk of 
mortality (risk ratio [RR], 0.73; 95% CI 0.61–0.89) and cerebral 
palsy (OR, 0.64; 95% CI 0.47–0.89) (53). Antenatal MgSO4 
treatment was also associated with a decreased incidence of 
apparent echodensities and echolucencies on neonatal cranial 
ultrasonography and cerebellar hemorrhage on MRI (54, 55).

RAnDOMiZeD COnTROLLeD TRiALS 
(RCTs) OF MAGneSiUM AS A 
neUROPROTeCTAnT

A total of five RCTs were performed in the 1990s and 2000s. 
Notably, two RCTs are ongoing: MASP (for administration of 
antenatal magnesium sulfate for the prevention of cerebral palsy 

in preterm infants, inclusion at 24–32  WG) and MAGENTA 
(inclusion at 30–34 WG) (56, 57).

Magnesium and neurological endpoints 
Trial (MagneT)
A total of 1,049 women in preterm labor at 25–33 WG (165 
fetuses) treated at a single US center between October 1995 and 
January 1997 were included in the MagNET. Cases of triplet 
pregnancy or chorioamnionitis were excluded. In the tocolytic 
arm, women in active labor with cervical dilatation of at least 4 
cm were randomly allocated to receive MgSO4 (4 g bolus then 
2–3  g/h maintenance dose) or another tocolytic agent. In the 
neuroprotection arm, women with cervical dilatation of more 
than 4 cm were randomly allocated to receive MgSO4 (4 g bolus 
only) or 0.9% saline placebo.

The study was stopped prematurely in January 1997 due to 
significant mortality in the MgSO4 group (58, 59) and was widely 
discussed (60–63). The excessive number of mortalities occurred 
primarily in the tocolytic arm. The mortality rate in the MgSO4 
group (11%) was consistent with that in previous reports of 
premature infants, whereas that in the placebo group was unusu-
ally low (1.4%). Moreover, causes of death were similar to those 
typical among premature children and were therefore difficult to 
attribute solely to MgSO4 treatment. Additionally, the confound-
ing impact of multiple births was not accounted for, as more twin 
neonates were assigned to the treatment group than the placebo 
group. Finally, this increased mortality rate conflicted with the 
results of observational studies.

Australasian Collaborative Trial of 
Magnesium Sulfate (ACTOMgSO4)
A total of 1,062 women in preterm labor before 30 WG from 16 
centers were included in the Australasian Collaborative Trial 
of Magnesium Sulfate (ACTOMgSO4) between February 1996 
and September 2000 (64). MgSO4 (4 g bolus followed by 1 g/h 
maintenance for 24 h or until birth) was randomly allocated to 
535 women (629 live fetuses), and 527 women (626 live fetuses) 
received placebo. Although the primary study outcome, the rate of 
cerebral palsy at 2 years, was similar between the groups (5.7% in 
the MgSO4 group versus 6.7% in the control group; RR, 0.85; 95% 
CI, 0.55–1.31), the rate of motor dysfunction was significantly 
lower in the MgSO4 group (2.9 versus 5.4% in the control group; 
RR, 0.53; 95% CI, 0.30–0.92). Neonatal and pediatric mortality 
rates were also similar.

PReMAG Trial
The PREMAG trial included 573 women treated at 18 French 
centers between July 1997 and July 2003 (65), with 286 women 
(354 fetuses) randomly assigned to receive a 4-g bolus of MgSO4 
and 278 women (341 fetuses), placebo. The trial was stopped 
after 6  years of enrollment. The primary outcomes (the rates 
of white matter injury and mortality) were similar between 
the groups (white matter injury, 10% versus 11.7%; OR, 0.78; 
95% CI, 0.47–1.31; mortality, 9.4 versus 10.4%; OR, 0.79; 95% 
CI, 0.44–1.44). Combined death or gross motor dysfunction at 
2 years was lower in the MgSO4 group (25.6 versus 30.8%; OR, 

https://www.frontiersin.org/Neurology/
https://www.frontiersin.org
https://www.frontiersin.org/Neurology/archive


TABLe 1 | Main outcomes of the meta-analyses.

Pediatric mortalitya Cerebral palsya Death or cerebral palsya number needed to  
treat to avoid 1 CPb

Doyle et al. (70) 1.04 (0.92–1.17) 0.68 (0.54–0.87) 0.94 (0.78–1.12) 63 (43–155)

Conde-Agudelo and Romero (71) 1.01 (0.89–1.14) 0.69 (0.55–0.88) 1.01 (0.89–1.14) 74 (41–373)

Costantine et al. (72) 1.01 (0.89–1.14) 0.7 (0.55–0.89) 0.92 (0.83–1.03) Before 30 WG: 46 
(26–187)

Between 32 and 34 WG: 
56 (34–164)

Zeng et al. (73) 0.92 (0.77–1.11) 0.61 (0.42–0.89) 
(moderate to severe CP)

N/A N/A

Crowther et al. (IPD meta-analysis) (74) 1.03 (0.91–1.17) 0.68 (0.54–0.87) 0.86 (0.75–0.99) 46 (CI not shown)

aRelative risk (95% CI).
bNumber needed to treat (95% CI).
CP, cerebral palsy; CI, confidence interval; IPD, individual participant data.
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0.62; 95% CI, 0.41–0.93), but there was no difference in cerebral 
palsy (66).

Beneficial effects of Antenatal Magnesium 
Sulfate (BeAM)
The BEAM trial included 2241 women in preterm labor before 
32 WG at 20 centers between December 1997 and May 2004 
(67). Women were randomized to receive a 6-g bolus of MgSO4 
followed by a 2-g/h maintenance dose for 12 h (1,096 women, 
1,188 fetuses) or placebo (1,145 women, 1,256 fetuses). Antenatal 
MgSO4 administration had no impact on pediatric mortality. 
Although the primary outcome (composite of stillbirth or death 
by 1 year or cerebral palsy at 2 years) was similar in the two groups, 
moderate or severe cerebral palsy was significantly reduced in the 
MgSO4 group (1.9 versus 3.5%; RR, 0.55; 95% CI, 032–0.95).

MAGnesium Sulfate for Prevention of 
eclampsia (MAGPie)
The MAGPIE trial, a large international trial to evaluate the impact 
of antenatal MgSO4 administration in the prevention of eclamp-
sia, included 10,141 women with preeclampsia between July 
1998 and November 2001: 1,544 women (1,593 fetuses) before 37 
WG (68). The women were randomly allocated to receive either 
MgSO4 (4 g bolus followed by 1 g/h maintenance dose for 24 h) 
or placebo. A pediatric follow-up study including 4,483 children 
(2,254 and 2,229 in the MgSO4 and placebo groups, respectively) 
showed no difference in neurological outcomes (Ages and Stages 
questionnaire) or mortality at 18 months. Notably, only 19% of 
the children followed were born before 33 WG.

Meta-Analyses
These five RCTs have been the subject of four meta-analyses to 
date, with consistent findings and conclusions (69–73). In all 
meta-analyses, antenatal MgSO4 given to women at risk of pre-
term delivery was associated with a significantly reduced risk of 
cerebral palsy in children exposed in utero, with an RR ranging 
from 0.61 to 0.70 and no impact on mortality. The number of 
women needed to treat (NNT) to prevent one case of cerebral 

palsy ranged from 56 to 74 in infants born before 34 WG, and it 
was 29 in those born before 28 WG (Table 1). Minor maternal 
side effects (e.g., flushing, nausea or vomiting, sweating, injection 
site discomfort) were more frequent in the MgSO4 groups, but 
with no significant effect on serious maternal complications.

An individual participant data meta-analysis was also 
undertaken by the AMICABLE group (Antenatal Magnesium 
sulfate Individual participant data international Collaboration: 
Assessing the benefits for babies using the Best Level of 
Evidence) to explore the interaction between treatment 
and participant characteristics (74), which included the 5 
above-mentioned RCTs (5,493 women and 6,131 babies). The 
overall RR of cerebral palsy among survivors after antenatal 
MgSO4 was 0.68 (95% CI, 0.54–0.87), and the NNT was 46. 
Interestingly, MgSO4 also reduced the combined risk of fetal/
infant death or cerebral palsy in the analysis of the 4 trials with 
fetal neuroprotective intent (RR 0.86, 95% CI, 0.75–0.99).

In all RCTs and meta-analyses to date, MgSO4 treatment 
had no impact on pediatric mortality or neonatal morbidity 
(respiratory distress syndrome, chronic lung disease, any 
intraventricular hemorrhage, cystic periventricular leukoma-
lacia, necrotizing enterocolitis, patent ductus arteriosus, and 
retinopathy of prematurity). Similarly, MgSO4 treatment was 
not associated with serious maternal side effects. The benefit 
remained constant regardless of gestational age, cause of pre-
maturity, total dose received, or maintenance dose administra-
tion after the loading dose. These data indicating persistent 
benefits of MgSO4 regardless of dose and support the use of low 
doses (e.g., 4 g loading dose ± 1 g/h maintenance dose for 12 h, 
16 g maximum total dose) compared to high doses (e.g., 6 g 
loading dose + 2 g/h maintenance dose during 24 h, maximum 
total dose received: 54  g). Indeed, high MgSO4 dosage was 
implicated in the vasculopathy and high mortality observed in 
the MagNET trial (75). In a mouse preclinical model, MgSO4 
demonstrated a dose-dependent, potentially deleterious effect 
on brain angiogenesis, vessel damage, and endothelial cell 
survival. The highest neuroprotective dose of MgSO4 induced 
cerebral hypoperfusion, whereas the lowest dose did not (76). 
These results support the use of MgSO4 in low doses.
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Long-Term Follow-Up
Cohorts from the PREMAG and ACTOMgSO4 trials were fol-
lowed up over their school-age years. From the PREMAG trial, 
431 children were assessed at a mean age of 11 years (26.9% lost to 
follow-up) using a questionnaire completed by the parents (77). 
Although the ORs for motor, cognitive, behavioral outcomes, and 
school performance were favorable after magnesium treatment, 
the impact on neurodevelopment was not statistically significant. 
From the ACTOMgSO4, 669 children (21.3% lost to follow-up) 
were assessed at a mean age of 8 years using pediatric and psy-
chological assessments and questionnaires completed by parents 
and teachers (78). Antenatal MgSO4 treatment had no impact on 
neurological, cognitive, behavioral, or school-related outcomes. 
Neither the PREMAG study nor the ACTOMgSO4 showed any 
effect on cerebral palsy at 2 years, likely because of limited sample 
sizes. Only the larger BEAM trial and meta-analyses reported 
reductions in cerebral palsy at 2 years. These long-term follow-up 
studies detected no harmful effects after antenatal MgSO4 treat-
ment, although they were not designed for this purpose.

iMPLeMenTATiOn OF MAGneSiUM in 
neUROPROTeCTive PROTOCOLS 
wORLDwiDe

In France, in 2015, only 60% of tertiary maternity hospitals used 
MgSO4 for fetal neuroprotection, with protocols that differed by 
maximum gestational age, possibility of retreatment, and moni-
toring (79). In Europe, in 2012, only 9 of 119 tertiary maternity 
hospitals (7.6%) used MgSO4 for fetal neuroprotection (34). Lack 
of experience and an absence of a written protocol or national 
guidelines, decision-making processes, environmental contexts, 
or beliefs about possible consequences seemed to represent 
barriers to widespread applications of MgSO4 in women at risk 
of preterm delivery (79, 80). Studies assessing MgSO4 protocol 
implementation found that nearly 70% of eligible women 
received MgSO4 before preterm delivery, and approximately 90% 
delivered within 24 h. The main reasons for not giving treatment 

were omission by the medical team and urgent delivery (81, 82). 
In an Australasian audit, the proportion of eligible women not 
receiving MgSO4 decreased significantly after publication of 
national guidelines, from 69.7% in 2010 to 26.9% in 2011, which 
was maintained in 2012 and 2013 (22.5%) (83). In Canada, a 
knowledge translation strategy (including national practice 
guidelines, online e-learning modules, educational rounds, and 
evaluation of barriers and feasibility) was associated with an 
84% increase in optimal MgSO4 use (84). To improve the rates 
of MgSO4 administration to eligible women, implementing 
educational programs could be effective.

COnCLUSiOn

Preterm birth is a major cause of death and a significant cause of 
long-term disability worldwide (85). MgSO4 is a safe and effective 
molecule that plays a key role in protecting the immature brain. 
It is a cost-effective, feasible, efficient, and safe intervention that 
contributes to the improvement of neurological outcomes. While 
MgSO4 has not been found to significantly improve cognition 
and behavior outcomes at school age, it prevents cerebral palsy 
at 2 years. Its use is now recommended by several pediatric and 
obstetrical societies, as well as the World Health Organization 
(strong recommendation based on moderate-quality evidence) 
for women at risk of imminent preterm birth before 32 WG. More 
work is needed to clarify the impact of MgSO4 on the cognitive 
outcome and efforts to improve the MgSO4 coverage of eligible 
women should be reinforced.
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