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Pathophysiological processes of stroke have revealed that the damaged brain should be 
considered as an integral structure to be protected. However, promising neuroprotective 
drugs have failed when translated to clinical trials. In this review, we evaluated previous 
studies of neuroprotection and found that unsound patient selection and evaluation 
methods, single-target treatments, etc., without cerebral revascularization may be major 
reasons of failed neuroprotective strategies. Fortunately, this may be reversed by recent 
advances that provide increased revascularization with increased availability of endovas-
cular procedures. However, the current improved effects of endovascular therapy are not 
able to match to the higher rate of revascularization, which may be ascribed to cerebral 
ischemia/reperfusion injury and lacking of neuroprotection. Accordingly, we suggest 
various research strategies to improve the lower therapeutic efficacy for ischemic stroke 
treatment: (1) multitarget neuroprotectant combinative therapy (cocktail therapy) should 
be investigated and performed based on revascularization; (2) and more efforts should be 
dedicated to shifting research emphasis to establish recirculation, increasing functional 
collateral circulation and elucidating brain–blood barrier damage mechanisms to reduce 
hemorrhagic transformation. Therefore, we propose that a comprehensive neuroprotec-
tive strategy before and after the endovascular treatment may speed progress toward 
improving neuroprotection after stroke to protect against brain injury.

Keywords: acute ischemic stroke, collateral circulation, endovascular therapy, hemorrhagic transformation, 
neuroprotection

iNTRODUCTiON

During the past two decades, significant global and regional burdens have been attributed to stroke, 
which are still increasing (1). Although good preventive measures have been taken to decrease the 
age-standardized incidence of stroke (1), the insufficient clinical therapies for patients with acute 
stroke have driven researchers to explore more promising therapeutic strategies that can be trans-
lated from bench to bedside with the goal of an ideal cure.

Neuronal injury in stroke has gradually been recognized to result from a surge in the activa-
tion of complicated pathophysiological pathways, from ischemic damage initiation to secondary 
brain injury; all these advantageous and disadvantageous events are interlinked (2, 3). Within a 
conspicuous time frame, excitotoxicity, oxidative and nitrosative stress, and inflammatory mecha-
nisms predominate at the core of ischemic brain damage (2, 4) and have prompted researchers 
to develop intervention measures to improve the neurofunctions destroyed by stroke in patients. 
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However, more than 1,000 promising preclinical therapeutic 
drugs that have aimed to salvage ischemic brain injury have 
yielded disappointing results in clinical trials (5). Numerous 
reasons have been recently discussed and explained in many 
articles and symposia, such as questioning the non-comparable 
stroke models in rodents with clinical patients and criticizing the 
design of clinical neuroprotection trials (6–8). Accordingly, the 
Stroke Therapy Academic Industry Roundtable (STAIR) recom-
mendations and some guidelines have been proposed to resolve 
these issues and have greatly improved the methodology of stroke 
trials. However, several years have passed, and there are still no 
effective therapeutic strategies that have been shown to improve 
the outcomes of stroke, which has caused stroke neurologists to 
reconsider the reasons behind the failure of the clinical trials.

Ischemic stroke is a vascular and neural disease that is caused 
by the deprivation of blood supply when arteries are occluded. 
Therefore, successful recanalization of the occluded arteries 
would deliver more neuroprotectants to salvageable brain tis-
sues. Fortunately, endovascular treatment has been the greatest 
advancement in stroke therapy in the past two decades and now 
is the new standard treatment for patients with acute ischemic 
stroke (9). This approach has created great opportunities for 
better estimating the effectiveness of neuroprotectants via 
improved recanalization that might be accomplished using this 
endovascular therapy (4, 9). However, in addition to the benefi-
ciary effects, the recanalization of the occluded arteries could 
also result in harmful effect after ischemic stroke, for example, 
the cerebral ischemia/reperfusion injuries (e.g., hemorrhagic 
transformation) (10).

This review aims to draw on lessons from the history of neu-
roprotection in acute ischemic stroke to summarize the main rea-
sons behind the failed translation of neuroprotection from bench 
to bedside in acute ischemic stroke patient and to provide some 
promising approaches for acute ischemic stroke therapy based on 
recent novel strategies of completed randomized controlled trials 
(RCTs) in patients with acute ischemic stroke. Given the limita-
tions (e.g., cerebral ischemia/reperfusion injuries) of this current 
promising endovascular treatment, this review also focuses on 
future directions for investigating the mechanisms underlying 
hemorrhagic transformation and increasing functional collateral 
circulation and recirculation.

NeUROPROTeCTiON HiSTORY

Neuroprotection has received significant attention over the 
past 30  years. For acute ischemic stroke, neuroprotection can 
be defined as strategies, applied alone or in combination, that 
directly or indirectly target the brain parenchyma with the aim 
of antagonizing the harmful molecular and cellular events caused 
by ischemia, allowing brain cells to survive and the penumbra to 
be spared (6, 11).

Neuroprotection studies gradually emerged from the 1970s to 
1990s and developed during the 2000s. From the 1990s, with the 
goal of identifying strategies to reduce neuronal injury, research-
ers began to focus on the underlying mechanisms of ischemic 
brain injury. The rapidly occurring excitotoxicity that resulted 
from energy failure caused by the disturbance of blood supply was 

intensely studied and identified as the first molecular mechanism 
of ischemic brain tissue damage. Therefore, the reduction of 
this type of neuronal death contributed to an understanding of 
many underlying mechanisms and relevant therapeutic targets 
for the treatment of acute ischemic stroke (3). Excitatory amino 
acids, N-methyl-d-aspartate receptor signaling, and calcium 
channels have been shown to accelerate neuronal cell death (6). 
Unfortunately, almost all promising agents targeting these were 
ineffective in clinical trials (5).

Apart from the rapid excitotoxicity, growing concerns about 
the subsequent increase in oxidative injury and central and 
peripheral inflammation that are involved in many aspects 
of cellular and molecular events further support the idea that 
ischemic stroke is not only a vascular disease, as many neural 
and vascular cells (e.g., microglia/macrophages, astrocytes, 
neurons, and endothelial cells) are involved in these cascades. 
This prompted the concept of a neurovascular unit defined as a 
triad consisting of endothelial cells, astrocytes, and neurons (12); 
these cells are considered to be a unique functional entity due to 
the complexity of interactions among the perivascular cell types 
(12–15) (Figure  1). The cells easily and rapidly communicate 
with each other due to the high specificity enabled by the submil-
limeter scale of the unit (16, 17). However, the micrometer scale 
of neurovascular unit would largely exclude the contributions 
of vascular cells to the pathophysiology of brain injury (12). 
Therefore, the concept of a vascular neural network was pro-
posed to encompass and combine the original concept of the 
neurovascular unit with arterial smooth muscle cells, endothelial 
cells, and perivascular nerves in cerebrovascular physiology and 
pathology (12). This new concept expanded the physical com-
ponents of the neurovascular unit to even include the venous 
system (Figure 1), which was also considered to be involved in 
the maintenance of normal brain functions (18). Both concepts 
emphasized that the brain injury caused by stroke should be con-
sidered as highly important for protection, and therapies should 
not exclusively focus on neuronal targeting. However, although 
the concept of the neurovascular unit was proposed in 2002, 
still no neuroprotectants targeting on the neurovascular unit or 
network have been used for clinical patients with acute stroke. 
For instance, disodium 2,4-disulphophenyl-N-tert-butylnitrone 
(NXY-059), a novel nitrone with free radical (can affect all cells 
of the neurovascular unit) trapping properties (19, 20), reduces 
infarct volume and motor impairment in experimental models 
of stroke in rodents (21, 22), rabbits (23), and primates (24, 25). 
However, when translated into clinical trials, the neuroprotective 
effects of NXY-059 were negative (26–28). In addition, edara-
vone, a novel free radical scavenger, has induced both potential 
neuroprotective effects by ameliorating neuronal damage and 
improved functional outcomes in ischemic stroke animal models 
(29, 30) and some clinical trials (31). Accordingly, edaravone has 
already been clinically used in some Asian countries (such as 
Japan and China) due to its potential neuroprotective effects 
although it still does not have marketing authorization in Europe 
or America.

In addition, roles of innate immune responses in the brain 
injury caused by ischemic stroke have received significant 
attention in recent years (2). For example, the peripheral innate 
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FigURe 1 | Developmental history of acute ischemic stroke. Before 1999, stroke was mainly considered a vascular disease caused by the occlusion of cerebral 
arteries, which led to neuronal injury. Since 1999, the neurovascular unit, which includes the neuron, microglia, astrocytes, and endothelial cells, was introduced to 
suggest that all the levels involved the ischemic brain damage should be considered as integrated. In 2012, the neurovascular unit was expanded to a vascular 
neural network, which emphasized more attention on the venous system and suggested maintaining recirculation after stroke.
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immune cells infiltrated into brain would also aggravate or allevi-
ate the brain injury caused ischemic stroke (32, 33). Therefore, 
targeting some of these innate immune responses (both central 
and peripheral) has led to significant improvements in neuro-
function in animal stroke models (34–36) and some pilot clinical 
trials (37, 38). These results strongly suggest that acute ischemic 
stroke is not just a disease that occurs in the brain but may also 
be a systemic disease influenced by the peripheral innate immune 
cells and some other known and unknown factors. Although 
these pilot clinical trials have shown promising neuroprotection 
against ischemic stroke, further large-scale, multicentre clinical 
trials are needed to re-evaluate the neuroprotective effects.

Furthermore, various drugs with promising multifaceted 
therapeutic targets have been demonstrated to play positive 
neuroprotective effects in animal stroke models. For instance, the 
DL-3-n-butylphthalide (NBP) may act by improving mitochon-
dria function and energy metabolism (39), decreasing oxidative 
damage and apoptosis (40), reducing inflammatory responses 
(41), and enhancing regional blood flow and angiogenesis (42) to 
protect against ischemic brain damage and to result in reduction 
of infarct volume (39, 43). Clinical trials have also shown that 
NBP can improve outcomes of patients with stroke (44, 45). In 
addition to NBP, statins (46, 47), citicoline (48), and stem cells 
(49) are also purported to have multiple mechanisms of action 
for acute ischemic stroke. Besides, some smart delivery methods, 
including TAT protein transduction, nasal delivery of peptides, 
etc., might be effective neuroprotective therapies for acute 
ischemic stroke, because they also have pleiotropic actions and do 

not depend extensively on reflow of blood flow (50–52). While, 
large randomized, double-blind, placebo-controlled studies are 
needed to assess the safety and efficacy of these multifaceted 
therapeutics in patients with acute ischemic stroke.

Although neuroprotective research has come to a difficult 
bottleneck, recent developments in endovascular treatment 
technologies may help to solve this predicament. The higher 
rates of revascularization provided by endovascular therapy can 
timely deliver blood to salvageable tissues without increasing 
symptomatic intracranial hemorrhage within 90 days compared 
to control groups (53). Therefore, endovascular treatment is now 
regarded as the new standard for patients with acute ischemic 
stroke (9, 54, 55).

Thus far, neuroprotection is still a promising option for acute 
ischemic stroke treatment although clinical trials have repeatedly 
failed. To solve this issue, many suggestions and guidelines have 
been proposed to improve outcomes. For example, the STAIR 
committee has suggested that non-human primates (NHPs) 
should be used for preclinical, translational stroke studies to 
address potential discrepancies between animals and human 
studies (56). Preclinical multicentre studies are also suggested 
to improve the translation of treatment efficacy from bench to 
bedside. However, although some studies included many of the 
STAIR guidelines, they still failed to improve the outcomes of 
patients. For example, the neuroprotective effects of NXY-059 
investigated by Green (57) were developed in accordance with 
the criteria proposed by the STAIR (56) yet still failed to achieve 
the expected efficacy (58). These unexpected findings have urged 
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scientists and clinicians to rethink and re-analyze the path toward 
stroke drug discovery.

ReASONS FOR FAiLURe OF 
NeUROPROTeCTiON

Elucidating the mechanisms at the cellular and molecular levels 
has led to the identification of many promising targets for neu-
roprotection. More than 1,000 potential neuroprotective agents 
have been announced with greater neuroprotection in stroke 
models; however, only 114 of these have been translated to the 
clinic, of which only the alteplase has been shown to improve 
patient outcome (5). The first STAIR recommendations were 
published in 1999 to promote increased rates of successful 
clinical translation. Since then, although some promising agents 
have been confirmed in stroke models of NHPs, which more 
closely resemble the physiology of humans, before undergoing 
clinical trials, ultimate proof of successful translation from bench 
to bedside in stroke research is still lacking. These continuous 
failures in clinical translation have led to pessimism regarding 
the possibility of obtaining good outcomes of neuroprotection 
after stroke. It is important to determine why neuroprotection has 
not been achieved with more than 1,000 potential drugs, while in 
the other research fields, such as cancer, several antitumor agents 
are already being used in clinical practice. Therefore, instead 
of abandoning neuroprotection as a strategy, it is important to 
rethink and re-evaluate the lessons learned from neuroprotection 
research and to focus on how we can better determine the gaps 
between animal and clinical studies.

Mismatch Between Animals and Humans
It is undeniable that most of stroke animal models have been 
young rodents aged less than 3  months, which have healthier 
and better stress resistance abilities than older rodents. In addi-
tion, many comorbidities exist in stroke patients. Therefore, the 
pathophysiological baseline of young rodents in stroke research 
is largely mismatched with stroke patients. Thus, preclinical 
randomized controlled multicentre trials (pRCTs), like the 
anti-CD49d treatment for acute brain ischemia investigated by a 
pRCT (59), have been suggested to help bridge the gap between 
experimental laboratory research and clinical trials (60–62). 
Because the preclinical studies would judge the conclusion that 
a drug “was successful” in animals, for example, an individual 
animal meta-analysis showed that NXY-059 was neuroprotective 
in experimental stroke although bias may have resulted in efficacy 
being overestimated (63). Moreover, the use of NHPs, especially 
those with a high degree of anatomic resemblance to the human 
brain, vascular supply, and collateral circulation in brain regions, 
as a major stroke model for preclinical trials to develop strategies 
may also be benefited for the clinical transformation studies (64). 
Besides, there are some aspects that may also help us to realize and 
solve the failures, for example, (1) long-term outcome measures 
in animal models is required while not just only short-term evalu-
ations; (2) behavioral tests for animal models differ in different 
researches; (3) longitudinal imaging in individual mice about the 
structural and functional plasticity of vascular neural networks 
should be added to provide complementary evidence toward 

efficacy; and (4) lacking of effective quality control system for 
animal researches, like statistical guidelines, ARRIVE guidelines, 
registration of preclinical study designs, and outcome evalua-
tions, etc. Although many articles and symposia have discussed 
this topic and have provided guidelines and suggestions to resolve 
this issue, it remains unknown how these mismatches and short-
ages influence the translational effects of stroke research.

Limitations of Current Clinical Trial 
Strategies
Almost all clinical trials have used the National Institute of 
Health stroke scale (NIHSS) scores as a major inclusion criterion 
for patients with acute ischemic stroke. Generally, the NIHSS 
score ranges from 0 to 42 (with higher scores denoting greater 
disability): a score of 0 suggests a normal neurological examina-
tion, 1 suggests negligible abnormality (65), and an NIHSS score 
of ≥8 indicates moderate neurological impairment after stroke 
(66). Most clinical trials set the NIHSS scores between 8 and 17, 
while there are some trials in which the NIHSS scores were set 
as low as 1 (67) or 2 (68). These negligible abnormalities caused 
by stroke may not respond well to neuroprotection. For example, 
an analysis of 1,733 patients with ischemic stroke administered 
blood pressure-lowering treatment revealed that there was a 
significant trend toward a better effect on functional outcome in 
patients with larger infarcts than in patients with smaller infarcts 
(lacunar infarction) (69). Moreover, we should acknowledge that 
the NIHSS score would be higher when small infarctions are 
located at the most densely populated motor fibers, which would 
result in poorer neuroprotective effects. When cerebral infarc-
tion occurs in the occipital lobe or the temporal lobe or some 
other areas that have fewer densely populated motor fibers, the 
NIHSS scores might be lower because most NIHSS parameters 
are relative to movement but do not incorporate cognition and 
other effects, and these patients would be excluded due to their 
lower NIHSS scores. Thus, various neuroprotective effects should 
be evident in some of these trials but might be counteracted 
by the negative outcomes and may result in negative results of 
neuroprotection. Therefore, the use of the NIHSS score as a major 
inclusion criterion for patients can lead to great study defects and 
shortcomings, which should be improved in future trials. The 
NIHSS content should also be amended to better reflect the actual 
conditions of stroke. In clinical practice, the Trial of Org 10172 in 
Acute Stroke Treatment (TOAST) classification (e.g., large-artery 
atherosclerosis, cardioembolism, small-vessel occlusion, stroke 
of other determined etiology, and stroke of undetermined etiol-
ogy) (70) was primarily used for acute ischemic stroke. The large-
artery atherosclerosis and cardioembolism have similar features 
on depriving cerebral blood supply with animal stroke models 
except for lacking of high risk factors and vasculopathy, while 
no clinical trials have selected the TOAST classification as their 
inclusion criteria to date, and only a few trials mentioned this in 
their data but still lack analysis of data on the neuroprotective 
effects according to the TOAST classification, such as the ICTUS 
trial (71). In addition, imaging-based patient selection, such as 
MRI-based or multimodal CT-based techniques, could provide 
better quantitative data and good visualizations for ischemic 
lesion size and location (72). Therefore, more attention should be 
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TABLe 1 | Ongoing clinical trials of neuroprotective agents combined with endovascular therapies in patients with acute ischemic stroke.

Name Sample 
size

Registration 
number

Study 
phase

Compounds endovascular  
therapy

Treatment 
window

Primary outcome estimated 
completion

SONIC 210 NCT02831088 Phase 2 Neu2000KWL 8 h mRS at 5 days, 4 and 12 weeks July 2017

100 NCT02054429 Phase 1 Insulin 8 h mRS at 90 days December 
2018

ANSTROKE 90 NCT01872884 Sevorane, 
remifentanil

Embolectomy 8 h mRS at 90 days October 2016

MAVARIC 30 NCT02912663 Phase 1 Verapamil and 
magnesium 
sulfate

Thrombectomy Number of participants with no  
symptomatic intracranial hemorrhage  
within 48 h after treatment

January 2019

ESCAPE-
NA1

1,120 NCT02930018 Phase 3 NA-1 Endovascular 
thrombectomy

12 h mRS at 90 days April 2020

SAVER-I 30 NCT02235558 Phase 1 Verapamil Intraarterial  
thrombolysis

Intracranial hemorrhage within  
24–48 h after treatment

Completed

FAMTAIS 96 NCT02956200 Phase 2 Fingolimod Alteplase bridging 
with mechanical 
thrombectomy

6 h Salvaged ischemic tissue  
index (%) within 7 days

December 
2018

KETA 50 NCT02258204 Phase 1 Ketamine Recombinant of tissue 
type plasminogen 
activator

4.5 h Cerebral infarction growth on diffusion 
weighted magnetic resonance imaging 
between admission and day 1

February 2018
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paid to patient selection within the time window by combining 
the TOAST classification and imaging-based selection to evaluate 
the lesion size and location and ischemia etiology in the future 
clinical trials.

Furthermore, most neuroprotective agents have been tested in 
middle cerebral artery occlusion models in which the occluded 
arteries were reopened to deliver the agents to the salvageable tis-
sues. However, most occluded arteries were not reopened in the 
enrolled patients with acute ischemic stroke when trials were per-
formed, which may result in less effective delivery of neuroprotec-
tive agents to salvageable brain tissues despite some of the agents 
would via the collateral circulation. Although recent advances in 
endovascular therapies resulted in higher rates of revasculariza-
tion after acute ischemic stroke, the therapeutic effects were not 
improved enough compared with the revascularization rates; 
one of the most important reasons may be revascularization 
without neuroprotection. Therefore, some promising trials were 
designed to investigate neuroprotective effects combined with 
endovascular therapy (Table 1), and better outcomes have been 
shown in a pilot study (38). However, the temporal dynamics 
of time to recanalization is also crucially important for the out-
comes of patients with acute ischemic stroke. Because the longer 
of the time to recanalization, the high risk of poorer outcomes 
of patients would have (73–76). Moreover, despite successful 
revascularization, attention should also be paid to the flow in 
cerebral microvessels. Because the cerebral ischemia reperfusion 
has been shown in multivariate analyses is a surrogate marker of 
clinical outcomes independent of recanalization (77). Although 
the direct evidence of incomplete microcirculatory reperfusion 
(IMR) is still missing both experimentally and in clinical imaging 
due to the technical limitations, clinical studies have shown that a 
state of IMR is observed in approximately one-quarter of patients 
with successful recanalization showed by the non-invasive tools 
like CT or MRI to assess vessel status and tissue reperfusion in 

patients with acute ischemic stroke (78). In addition, the no-reflow 
phenomenon of cerebral microvessels or IMR in animal stroke 
models was evidenced by the results that pericyte contraction 
impairs capillary reflow followed by complete recanalization of an 
occluded cerebral artery (79, 80). Therefore, exploring potential 
mechanisms that contribute to no-reflow phenomenon that heav-
ily preclude the delivery of blood, oxygen, and neuroprotectants 
to the salvageable brain tissue, and development of therapeutic 
approaches aiming at reducing microvascular obstructions may 
improve outcomes of patients (78).

NOveL STRATegieS FOR 
NeUROPROTeCTiON

Stroke treatment should be a comprehensive strategy that involves 
reopening the occluded artery, using neuroprotective agents, and 
recovering neurofunction. Currently, successful endovascular 
therapy within the therapeutic time windows is promising to 
ensure that neuroprotective agents are delivered to salvageable 
brain tissues to exert their protective roles after stroke. In addi-
tion, due to the complexity of the ischemic cascade, numerous 
molecular targets should be addressed together in conjunction 
to achieve better neuroprotection. Accordingly, neuroprotection 
could lead to positive results only in trials with reasonable and 
feasible designs.

Neuroprotection Before and After 
Revascularization
A foremost protective strategy is the early recanalization of the 
occluded arteries to restore flow to the ischemic brain region, 
which could successfully deliver more blood, oxygen, and 
neuroprotectants to achieve prospective efficacy. However, not 
all patients are suitable to receive vascular patency treatment 
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due to high risks of hemorrhage (9, 54). As suggested above, 
imaging-based selection could provide the exact infarct lesion 
size and locations and collateral circulation of patients (72). 
Moreover, despite investigations of the neuroprotectants of 
more than 1,000 promising agents in clinical trials for acute 
ischemic stroke, few agents have been studied in patients whose 
occluded arteries were re-opened. Although greater neuropro-
tective effects of these agents might exist, this neuroprotective 
strategy failed because these agents could not successfully 
enter the salvageable tissues. Therefore, we speculate that 
revascularization might be the first step for neuroprotective 
strategy.

However, the effectiveness of recanalization therapies 
diminishes greatly >7.3 h from stroke onset (76), and this nar-
row therapeutic time window is limited to 10% or fewer patients 
who may be suitable for recanalization therapy (81). Therefore, 
prehospital first aid and emergency nursing are also important 
for stroke treatment. The use of ambulance-based thrombolysis 
has been shown to result in increased thrombolysis rates without 
an increase in adverse events (82). In addition, as endovascular 
therapies could result in symptomatic intracranial hemorrhage 
(53), protective measures should also be taken before the 
vascular patency procedure, for example, in the ambulance, to 
reduce hemorrhagic transformation of patients. In one clinical 
trial, however, the prehospital initiation of magnesium sulfate 
(a neuroprotective agent) therapy within 2  h after the onset 
of stroke did not improve disability outcomes at 90 days (83). 
Accordingly, we anchor our hope on shortening the time from 
stroke onset to admission and endovascular therapy because 
the longer the duration of cerebral ischemia followed by reper-
fusion, the higher rate of hemorrhagic transformation (10). In 
conclusion, neuroprotection strategies should be incorporated 
into the entire process (overall protection) from the onset 
of symptoms to postpatency. Thus, we propose that future 
clinical trials should be designed with a more comprehensive 
strategy that combines overall protection with vascular patency 
treatment.

Cocktail Therapy
The damage mechanisms of cerebral ischemia injury are 
quite complex and involve several key signaling cascades of 
damaged brain tissues at different time points. For example, 
excitotoxicity occurs within several minutes and peaks within 
several hours as the first molecular mechanism that damages 
the ischemic brain. This is followed by oxidative and nitrosative 
stress and inflammation that occurs within several hours and 
is maintained at a higher level for several days after ischemia. 
These damage mechanisms sometimes work synergistically 
after cerebral ischemia. Therefore, it is difficult to foresee 
the therapeutic efficacy of neuroprotective agents used alone 
because they cannot be sufficient to suppress brain damage that 
results from different parts of the ischemic cascade. Following 
these pathophysiologic features of stroke, we propose that 
future translational trials should target multiple key molecular 
and cellular events in a sequential manner to reduce ischemia 
injury (cocktail therapy) in the acute phase (2), because some 
of the cellular and molecular events, like the appropriate 

neuroinflammation, may be benefited for the restoration of 
injured brain in the late phase of stroke (2). Although the 
use of cocktail therapy has been suggested since 2007 (84), 
there are still no reports of the clinical efficacy of this type of 
strategy. Nevertheless, we recommend that preclinical trials 
should be first conducted in large animal stroke models, such 
as NHPs, by combining failed neuroprotective drugs (e.g., 
anti-excitotoxicity  +  anti-inflammatory  +  anti-oxidant) with 
safety and tolerance tests to select the optimal combination 
of neuroprotective agents, and then, clinical trials should be 
carried out. Therefore, this cocktail therapy of neuroprotection 
combined with vascular patency may yield prospective efficacy 
for patients with acute ischemic stroke.

Recirculation
Despite the high rates of revascularization with endovascu-
lar therapy, the structural and functional alterations in the 
microvasculature might also result in the no-reflow phenom-
enon (85), as capillaries may be still crowded with entrapped 
erythrocytes, leukocytes, fibrin, and activated platelets after 
the successful reopening of the occluded cerebral arteries in 
stroke models of rodents and primates (86–88). In addition, 
pericyte contraction induced by oxidative-nitrosative stress has 
also been shown to impair capillary reflow after ischemia (79, 
80), which could be rescued by anti-oxidative-nitrosative stress 
agents by restoring pericyte dysfunction and microvascular 
patency (89). Moreover, the capillary transit time heterogeneity 
is also considered to influence the flow of cerebral microvessels 
and its metabolism, which also could hinder oxygen diffusion 
into brain tissue (90). Accordingly, more attention should 
also be paid to the no-reflow phenomenon in clinical practice 
to solve this issue. Unfortunately, there are still no clinical 
methods (i.e., imaging or ultrasound test) that can detect 
the no-reflow phenomenon in patients with ischemic stroke. 
Regardless of the lack of relative strategies, potential brain 
injury caused by the no-reflow phenomenon should not be 
ignored in clinical practice. Following the important clues of 
pericytes in regulating microvascular reflow in stroke animals, 
the exact regulating mechanisms should be investigated in both 
animals and patients subjected to ischemic stroke. In addition, 
cerebral venous systems are part of the cerebral circulation 
and can respond to acute brain injury by regulating blood flow 
disharmony (18), which means that the unimpeded flow of the 
cerebral venous system is also important for the recirculation of 
cerebral vessels, not just reperfusion. Therefore, neuroprotec-
tive agents may now hold promise for promoting recovery and 
minimizing injury when used in conjunction with recirculation 
strategies after stroke and should be extensively explored in 
future investigations and clinical trials.

Collateral Circulation
Intriguingly, good pial or leptomeningeal collateral circulation 
has been shown to extend the time window for endovascular pro-
cedures (91). For example, 40% of patients who were reperfused at 
later time points still achieved independent functional outcomes 
from endovascular therapy (92), which indicates the important 
role of collaterals in predicting favorable outcomes (93, 94). This 
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role of collaterals was also confirmed by a subgroup analysis of 
the IMS III trial, which showed that a more robust collateral 
grade was associated with better clinical outcomes (95). Good 
collateral circulation could significantly reduce the risk of symp-
tomatic intracranial hemorrhage and improve early neurological 
improvement after thrombolytic and endovascular therapies (94, 
96). Moreover, good pretreatment collateral circulation has been 
shown to be associated with superior functional outcomes at 3 
and 6  months (94). These results showed that good collateral 
circulation can enhance the tolerance of stroke. Accordingly, 
increasing the effective collateral circulation in humans who suf-
fer from high risk factors for stroke may enhance the protection 
against brain injury induced by stroke and could also provide 
more vascular channels for the delivery of neuroprotective agents 
to salvageable brain tissues after stroke.

Collateral-enhancing strategies are important ways to restore 
blood flow within ischemic regions (72, 97). Strategies that aim 
to manipulate the hemodynamics to increase brain–blood flow 
include induced hypertension (97), lying flat head position 
(98, 99), and volume expansion (100). Other strategies, such as 
hyperoxia (101), remote ischemic preconditioning (102), and 
physiological ischemic training (103), have also been shown to 
increase cerebral blood flow (CBF) in ischemic regions. Although 
these strategies that might impact collateral circulation have been 
investigated in preclinical and/or clinical studies of ischemic 
stroke, none have been applied to clinical practice. Therefore, the 
road to improving CBF in ischemic regions remains challenging.

Angiogenesis
On the other hand, enhancing angiogenesis (capillary formation 
from pre-existing vessels) and vasculogenesis (de novo capillary 
formation) to re-establish collateral circulation might also benefit 
patients who have high stroke risk factors. Treatment with vari-
ous pharmacological therapies, including the phosphodiesterase 
type 5 inhibitor sildenafil (104, 105), vascular endothelial growth 
factor-A (106, 107), has been shown to promote angiogenesis and 
vasculogenesis. Large randomized trials in patients with acute 
stroke showed negative results (65, 108), and such failures may 
be due to inadequate patient selection and a lack of assessment 
of the effects of such interventions on collateral blood vessels and 
collateral flow (72). Furthermore, more attention should be paid 
to the complication of increasing collateral circulation because 
the augmented collateral circulation may result in hemorrhagic 
transformation (109). Therefore, re-establishing effective and 
functional collateral circulation while not just promoting neo-
vascularization is crucial for the prevention of these people and 
supports the use of preventive strategies, such as antiplatelet 
drugs, to enhance functional collateral circulation. Accordingly, 
the second major question is how to promote the growth of new 
vessels into functional microvessels that are non-fragile and are 
influenced by blood pressure.

Hemorrhagic Transformation After 
Revascularization
As one of the most serious complications of revascularization, 
better intervention strategies for hemorrhagic transformation 

are still currently lacking (10, 110). Hemorrhagic transformation 
occurs in 10–40% of patients with ischemic stroke who undergo 
thrombolytic or endovascular therapy (10, 111) and contributes 
to the increase in stroke morbidity and mortality (112). It must 
be questioned why the hemorrhagic transformation occurs 
when cerebral blood is restored, while it does not occur in other 
ischemic tissues, such as ischemic heart, liver, and kidney. One of 
the major reasons is that the vascular components (e.g., pericytes, 
endothelial cells and smooth muscle cells) and their biofunctions 
differ between cerebral and periphery vasculature. Therefore, 
damaged vasculature should be the principal culprit that causes 
hemorrhagic transformation when CBF is restored. The abnor-
mally permeable blood–brain barrier that results from ischemia 
of the capillary endothelium allows the extravasation of blood 
(110). Many factors, including reactive oxygen species (113), leu-
kocytes (114), affect BBB permeability and have been evaluated 
in animal models. Although many compounds that target these 
factors have been shown to decrease hemorrhagic transformation 
in animals (115), to date, none of them have been successfully 
translated. For instance, NXY-059 showed promise in reducing 
hemorrhagic transformation in a rabbit stroke model (116), but 
it failed to reduce hemorrhagic transformation in patients with 
stroke (27).

The reasons why promising therapies for hemorrhagic trans-
formation of stroke have failed in clinical translation studies 
remains unclear. It highlights that damage to the BBB caused by 
multiple mechanisms during ischemia/reperfusion injury may 
not be sufficiently protected by pharmacological drugs alone in 
human hemorrhagic transformation. Based on revascularization 
in both animals and humans with stroke, the use of multiple 
protective drugs may be necessary to evaluate the prevention of 
hemorrhagic transformation. In addition, more effort should be 
focused on the exploration of unknown BBB damage mechanisms 
that may involve the regulatory role of pericytes, the transcytosis 
of endothelial cells, etc. An improved understanding of hemor-
rhagic transformation is essential to reduce its impact on patients 
with ischemic stroke and to improve our management ability to 
restore blood flow to the ischemic brain without inducing this 
complication (10).

CONCLUSiON

Although the road toward achieving neuroprotection is 
extremely challenging, the higher rate of revascularization of 
occluded arteries acquired by endovascular therapies provides 
more ability to deliver neuroprotectants to salvageable brain tis-
sues after ischemic stroke. As multiple molecular events involved 
in the ischemic stroke induce brain damage, a single target of 
neuroprotection will not provide the expected therapeutic effects. 
Therefore, multitarget neuroprotectants (cocktail therapy) imme-
diately administered to patients after successful revascularization 
may be promising for conquering these issues. In addition, more 
attention should be paid to enhance collateral circulation and 
prevent the no-reflow phenomena and hemorrhagic transforma-
tion after cerebral ischemia. We hope to address the following 
important strategies to provide better comprehensive treatment 
of acute ischemic stroke: prehospital first aid and emergency 
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nursing, endovascular therapy combined with cocktail neuro-
protectants usage, and the prevention of hemorrhagic transfor-
mation. A perspective that considers a comprehensive strategy 
is warranted and may speed the progress toward improving the 
neuroprotection of stroke.
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