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Repetitive transcranial magnetic stimulation (rTMS) can be used in various neurological 
disorders. However, neurobiological mechanism of rTMS is not well known. Therefore, 
in this study, we examined the global gene expression patterns depending on different 
frequencies of repetitive magnetic stimulation (rMS) in both undifferentiated and differen-
tiated Neuro-2a cells to generate a comprehensive view of the biological mechanisms. 
The Neuro-2a cells were randomly divided into three groups—the sham (no active stim-
ulation) group, the low-frequency (0.5 Hz stimulation) group, and high-frequency (10 Hz 
stimulation) group—and were stimulated 10 min for 3 days. The low- and high-frequency 
groups of rMS on Neuro-2a cells were characterized by transcriptome array. Differentially 
expressed genes were analyzed using the Database of Annotation Visualization and 
Integrated Discovery program, which yielded a Kyoto Encyclopedia of Genes and 
Genomes pathway. Amphetamine addiction pathway, circadian entrainment pathway, 
long-term potentiation (LTP) pathway, neurotrophin signaling pathway, prolactin signaling 
pathway, and cholinergic synapse pathway were significantly enriched in high-frequency 
group compared with low-frequency group. Among these pathways, LTP pathway is 
relevant to rMS, thus the genes that were involved in LTP pathway were validated by 
quantitative real-time polymerase chain reaction and western blotting. The expression 
of glutamate ionotropic receptor N-methyl d-aspartate 1, calmodulin-dependent protein 
kinase II (CaMKII) δ, and CaMKIIα was increased, and the expression of CaMKIIγ was 
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decreased in high-frequency group. These genes can activate the calcium (Ca2+)–CaMKII–
cAMP-response element-binding protein (CREB) pathway. Furthermore, high-frequency 
rMS induced phosphorylation of CREB, brain-derived neurotrophic factor (BDNF) tran-
scription via activation of Ca2+–CaMKII–CREB pathway. In conclusion, high-frequency 
rMS enhances the expression of BDNF by activating Ca2+–CaMKII–CREB pathway in the 
Neuro-2a cells. These findings may help clarify further therapeutic mechanisms of rTMS.

Keywords: repetitive magnetic stimulation, low-frequency, high-frequency, ca2+–calmodulin-dependent protein 
kinase ii–caMP-response element-binding protein pathway, brain-derived neurotrophic factor, neuro-2a cells

inTrODUcTiOn

Transcranial magnetic stimulation (TMS) is a non-invasive tool 
that allows electrical stimulation of the nervous system and 
could be an ideal treatment tool due to its ability to modify brain 
plasticity (1). TMS can generate an electric current in the central 
nervous system by making short 100 μs biphasic electromagnetic 
pulse (2, 3). When given at regular frequencies, it is termed 
repetitive transcranial magnetic stimulation (rTMS) (3).

Several studies reported that changes in rTMS frequency 
and stimulation patterns resulted in varying long-term effects 
(4, 5). High-frequency stimulation (>3 Hz) stimulated cortical 
excitability and generally resulted in an effect that share similar 
aspects with long-term potentiation (LTP). In comparision, 
low frequency stimulation (≤1 Hz) reduced cortical excit-
ability and induced a reduction in synaptic efficiency which 
were similar to long-term depression (4, 5). Various stimula-
tion parameters such as intensity, frequency, overall patterns 
of stimulation, and periods determine the functional effects 
of rTMS on cortical excitability (6, 7). However, the neural 
mechanisms related with various stimulation parameters of 
rTMS remain unclear.

rTMS is a safe, painless, and non-invasive brain stimulation 
method that has been recently gaining focus as a neurorehabili-
tation tool with therapeutic ability (8). rTMS has been used in 
various neurological diseases to provide relief and reduce chronic 
pain (9–13). Motor symptoms in patients with Parkinson’s dis-
ease and dystonia can be ameliorated by high-frequency rTMS 
treatment (14–16). In stroke patients, high-frequency rTMS can 
increase ipsilesional cortical excitability to improve paretic limb 
function (17–19). Also, high-frequency rTMS may be a promis-
ing effective and safe modality in frontal cortex for Alzheimer’s 
disease (20). Furthermore, in amyotrophic lateral sclerosis, the 
brain-derived neurotrophic factor (BDNF) production may play 
a role by regulating with neuronal activity by rTMS in primary 
motor cortex (21). However, the precise therapeutic mechanisms 
of rTMS are still unknown.

In this study, we aimed to investigate the global gene expres-
sion patterns depending on different frequencies of repetitive 
magnetic stimulation (rMS) in both undifferentiated and dif-
ferentiated Neuro-2a cells with multiple properties of neurons 
(22–25) to provide a comprehensive view of the neurobiological 
mechanisms. Achieving our goals, transcriptome analysis, to 
quantify the expression levels of individual transcripts, and 
possible comparison (26, 27), were conducted to compare the 

effect of high-frequency and low-frequency rMS in the Neuro-2a 
cells. Differentially expressed genes (DEGs) of high-frequency 
compared with low-frequency rMS were analyzed with bioinfor-
matics tool to identify relevant cellular signaling pathways and 
examine the expression level to elucidate the neurobiological 
mechanisms.

MaTerials anD MeThODs

cell cultures
Neuro-2a cells were obtained from American Type Culture 
Collection (Manassas, VA, USA). Neuro-2a cells were maintained 
in Dulbecco’s Modified Eagle Medium (DMEM; Hyclone, Logan, 
UT, USA) with 10% fetal bovine serum (FBS; Serum Source 
International, Charlotte, NC, USA) and 1% penicillin–strepto-
mycin solution (Gibco, Rockville, MD, USA) in a humidified 
atmosphere with 5% CO2 and 95% air at 37°C (Figure 1A). It has 
been reported that Neuro-2a cells are differentiated by retinoic 
acid (RA) treatment (28–30). According to our previous study 
(25), differentiated Neuro-2a cells were maintained in DMEM 
with 2% FBS and 20 µM of RA for 4 days in a humidified atmos-
phere with 5% CO2 and 95% air at 37°C (Figure 1B). Cells were 
observed under microscope and photographed using a Nikon 
Eclipse TS100 microscope (Nikon, Melville, NY, USA). Cells were 
harvested at 80% confluence using 0.25% trypsin–EDTA (Gibco). 
Cells were seeded on new plates and the growth medium was 
replaced every 2–3 days.

repetitive Magnetic stimulation
In each experiment, Neuro-2a cells were rendered quiescent 
for 6 h by the addition of DMEM without FBS in a humidified 
atmosphere with 5% CO2 and 95% air at 37°C. Then, the cells were 
replaced by the growth medium and stimulated with custom-
ized rMS (Bicon-1000Pro, Mcube Technology, Seoul, Korea) as 
indicated in our previous studies (3, 25). To clarify the design of 
the experiment, the distance between the center of the magnetic 
coil (70 mm diameter) and the culture dish was approximately 
1.0  cm. Cultured cells were divided into three groups (N  =  5 
dishes/group) as follows: the sham group (exposed to rMS but 
no active stimulation for 10  min), the low-frequency group 
(0.5 Hz stimulation for 10 min), and the high-frequency group 
(10 Hz stimulation for 10 min). All groups were stimulated over 
the course of 3 days for a duration of 10 min/day. After 3 days 
of stimulation, cells were harvested with 0.25% trypsin–EDTA 
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FigUre 1 | Experimental design and transcriptome analysis. (a) Undifferentiated Neuro-2a cells. (B) Neuro-2a cells were differentiated for 4 days with 2% fetal 
bovine serum and retinoic acid in Dulbecco’s Modified Eagle Medium. (c) A timeline of the experimental procedures. (D) A scheme of repetitive magnetic stimulation 
(rMS) treatment in Neuro-2a cells. The cultured cells were divided into the sham group, the low-frequency group, and the high-frequency groups and were each 
stimulated over 3 days. (e) Bar graphs show the number of differentially expressed genes with fold change ≥ |1.5| in the high-frequency group compared with the 
low-frequency group.

TaBle 1 | Primers used for qRT-PCR.

gene symbol Forward primer (5′ → 3′) reverse primer (5′ → 3′)

GRIN1 CAG GAT CGT CAG  
GCA AGA CA

CCA AGC AAC TGA  
GGG TCC TT

CaMKIIδ TGC ACC TGG TAG GGG  
ACG AT

GAA TAC AGG GTG GCT  
TGA TGG GT

CaMKIIα TGC TGC TCT TTC  
TCA CGC TG

TCA ATG GTG GTG  
TTG GTG CT

CaMKIIγ TTG TGC GTC TCC  
ATG ACA GT

TGT CAT GCT GGT  
GGA TGT GG

BDNF GGG TCA CAG CGG  
CAG ATA AA

ATT GCG AGT TCC  
AGT GCC TT

GAPDH CAT CAC TGC CAC CCA  
GAA GAC TG

ATG CCA GTG AGC  
TTC CCG TTC AG

GRIN1, glutamate receptor ionotropic N-methyl-d-aspartate 1; CaMKIIδ, calcium/
calmodulin-dependent protein kinase type II subunit delta; CaMKIIα, calcium/
calmodulin-dependent protein kinase II alpha; CaMKIIγ, calcium/calmodulin-dependent 
protein kinase II gamma; BDNF, brain-derived neurotrophic factor;  
GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
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(Gibco) as described earlier. The experimental scheme is shown 
in Figures 1C,D.

rna isolation
By using TRIzol reagent (Invitrogen Life Technologies, Carlsbad, 
CA, USA), RNA was isolated from the cell pellets by following the 
manufacturer’s instructions. The Nanodrop spectrophotometer 
(Thermo Fisher Scientific, Waltham, MA, USA) was used to 
confirm the quality and quantity of isolated RNA.

Transcriptome array and Data analysis
RNA sequencing between high-frequency group and low-
frequency group in Neuro-2a cells was performed by Macrogen 
Inc. (Seoul, Korea) to provide a comparison. The procedures have 
been detailed previously (31–34).

The lists of significant differentially expressed genes (DEGs) 
for the high-frequency group compared with low-frequency group 
were submitted to the Database for Annotation, Visualization, and 
Integrated Discovery (DAVID v6.8; http://david.abcc.ncifcrf.
gov/) via the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways analysis with fold change ≥ |1.5|.

Quantitative real-Time reverse 
Transcription Polymerase chain  
reaction (qrT-Pcr)
To validate transcriptome analysis results, qRT-PCR was conducted 
with the sham groups in Neuro-2a cells as control. Following the 
manufacturer’s instruction for ReverTra Ace qPCR RT Master 
Mix with gDNA Remover (Toyobo, Osaka, Japan), RNA were 
reverse-transcribed into cDNA. In a StepOnePlus Real-Time 
PCR System (Applied Biosystems, Foster City, CA, USA), the 
mRNA expression for genes of interest was validated with qPCR-
BIO SyGreen Mix Hi-ROX (PCR BIOSYSTEMS, London, UK). 
Gene expression analysis was conducted by the 2−ΔΔCt method 
(35). Primers used for qRT-PCR are listed in Table 1.

Western Blot analysis
To confirm the protein expression of calmodulin-dependent 
protein kinase II (CaMKII), phospho-cAMP response ele-
ment binding protein (p-CREB), brain-derived neurotrophic 
factor (BDNF), and ACTIN, western blot was conducted 
with the sham group in Neuro-2a cells. To isolated total 
protein, cell pellets were homogenized and dissolved using 
radioimmunoprecipitation assay buffer (Thermo Scientific) 
containing protease and phosphatase inhibitors (Abcam,  
Cambridge, MA, USA). Total proteins were quantified by the 
Quick StartTM Bradford 1× Dye Reagent (BIO-RAD, Hercules, 
CA, USA). The samples were denatured and separated by 4–12% 
Bis–Tris gels (Invitrogen, Eugene, OR, USA) in 1× NuPage MES 
SDS Running Buffer (Invitrogen). Proteins were transferred onto 
a polyvinylidene difluoride membrane (Invitrogen) by  20% 
methanol (Merck, Darmstadt, Germany) in NuPage Transfer 
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TaBle 2 | The enriched Kyoto Encyclopedia of Genes and Genomes pathways in high-frequency group compared with low-frequency group.

Term count % p-Value genes

mmu05031: Amphetamine addiction 9 0.0092 0.0009 FOS, CAMK2G, GRIN1, CAMK2D, PRKACA, FOSB, PPP3CA, CACNA1C, CAMK2A

mmu04713: Circadian entrainment 10 0.0102 0.0027 FOS, GNGT2, CAMK2G, GRIN1, CAMK2D, PER1, PRKACA, PER3, CACNA1C, 
CAMK2A

mmu04720: long-term potentiation 8 0.0082 0.0036 rPs6Ka1, caMK2g, grin1, caMK2D, PrKaca, PPP3ca, cacna1c, caMK2a
mmu04722: Neurotrophin signaling pathway 11 0.0113 0.0037 PDPK1, RPS6KA1, MAPK14, CAMK2G, PIK3CD, CAMK2D, SH2B2, SH2B1, MAPK7, 

MAP2K7, CAMK2A

mmu04917: Prolactin signaling pathway 8 0.0082 0.0063 FOS, SOCS2, MAPK14, SOCS1, PIK3CD, JAK2, STAT1, STAT3

mmu04725: Cholinergic synapse 10 0.0102 0.0070 FOS, ACHE, GNGT2, CAMK2G, PIK3CD, CAMK2D, PRKACA, JAK2, CACNA1C, 
CAMK2A

LTP pathway is relevant to rMS treatment and is shown in a bold fonts.
These pathways are statistically significant (p-value < 0.01).
FOS, FBJ osteosarcoma oncogene; CAMK2G, calcium/calmodulin-dependent protein kinase II gamma; GRIN1, glutamate receptor ionotropic N-methyl-d-aspartate 1; CAMK2D, 
calcium/calmodulin-dependent protein kinase type II subunit delta; PRKACA, protein kinase, cAMP dependent, catalytic, alpha; FOSB, FBJ osteosarcoma oncogene B; PPP3CA, 
protein phosphatase 3, catalytic subunit, alpha isoform; CACNA1C, voltage-dependent L-type calcium channel subunit alpha-1C; CAMK2A, calcium/calmodulin-dependent 
protein kinase II alpha; GNGT2, guanine nucleotide binding protein (G protein), gamma transducing activity polypeptide 2; PER1, period circadian clock 1; PER3, period circadian 
protein homolog 3; RPS6KA1, ribosomal protein S6 kinase polypeptide 1; ribosomal protein S6 kinase polypeptide 1; PDPK1, 3-phosphoinositide dependent protein kinase 1; 
MAPK14, mitogen-activated protein kinase 14; PIK3CD, phosphatidylinositol 3-kinase catalytic delta polypeptide; SH2B2, SH2B adaptor protein 2; SH2B1, SH2B adapter protein 
1 isoform 3; MAPK7, mitogen-activated protein kinase 7; MAP2K7, dual specificity mitogen-activated protein kinase kinase 7; SOCS2, suppressor of cytokine signaling 2; SOCS1, 
suppressor of cytokine signaling 1; JAK2, Janus kinase 2; STAT1, signal transducer and activator of transcription 1; STAT3, signal transducer and activator of transcription 3; ACHE, 
acetylcholinesterase precursor.
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Buffer (Invitrogen). Membranes were blocked and then incubated 
overnight at 4°C with anti-CaMKII (1:1,000 dilution, Abcam), 
anti-p-CREB (1:1,000 dilution, Santa Cruz Biotechnology), 
anti-BDNF (1:1,000 dilution, Abcam), and anti-ACTIN (1:5,000 
dilution, Santacruz) antibodies. The next day, blots were washed 
three times with 1× TBS plus Tween 20 (Biosesang, Sungnam, 
Korea) and incubated at room temperature for 1 h with horserad-
ish peroxidase-conjugated secondary antibodies (1:4,000 dilu-
tion, Santa Cruz). After the blots were washed three times with 
TBS plus Tween 20 (Biosesang), proteins were visualized with 
the following enhanced chemiluminescence detection systems: 
AmershamTM ECLTM Western Blotting Detection Reagent (GE 
Healthcare, Little Chalfont, UK) and West-Q Pico ECL solution 
(GenDEPOT, Houston, TX, USA). Quantification of relative 
protein expression using Multi Gauge (v3.0) software (Fujifilm, 
Tokyo, Japan).

statistical analysis
All data were expressed as means ± standard error of the mean 
(SEM), and all experiments were repeated at least three times with 
three technical replicates in each group. Statistical analyses were 
conducted using the Statistical Package for the Social Sciences 
(SPSS) for Windows version 23.0, IBM Corporation (Armonk, 
NY, USA). Data were analyzed with one-way analysis of vari-
ance, followed by Bonferroni’s post hoc test and with statistically 
significant p-value < 0.05.

resUlTs

gene expression Profile by Transcriptome 
analysis
To identify DEGs associated with the high-frequency group 
compared with the low-frequency group, we conducted 
transcriptome analysis by RNA sequencing. A total of 21,567 

transcripts were differentially expressed from the high-frequency 
group compared with the low-frequency group as shown in Table 
S1 in Supplementary Material. In the high-frequency group, 383 
transcripts were 1.5-fold higher and 415 transcripts were 1.5-fold 
lower compared with the low-frequency group (Figure 1E; Table 
S2 in Supplementary Material).

enriched Kegg Pathway analysis
DEGs of the high-frequency group compared with the low-
frequency group were classified based on KEGG pathways using 
the DAVID Gene Functional Classification Tool. Statistically sig-
nificant enriched KEGG pathways specific to the high-frequency 
group compared with the low-frequency group are presented in 
Table 2 (p < 0.01).

According to the previous studies, among several pathways, 
mmu04720; LTP pathway was modulated by rTMS (4, 8, 36, 37).  
Glutamate ionotropic receptor N-methyl d-aspartate 1 (GRIN1), 
CaMKIIδ, ribosomal protein S6 kinase polypeptide 1, and 
CaMKIIα were significantly upregulated in the LTP pathway. 
In addition, CaMKIIγ, protein phosphatase 3 catalytic subunit 
alpha, protein kinase cAMP dependent catalytic alpha, and 
voltage-dependent L-type calcium channel subunit alpha-1C 
were significantly downregulated in the LTP pathway. Therefore, 
we focused on the genes that are involved in the LTP pathway.

high-Frequency rMs Facilitates ca2+–
caMKii–creB Pathway
qRT-PCR and western blot were conducted with the sham groups 
in Neuro-2a cells as control to validate the RNA sequencing 
results which identified the expression of the genes that were 
involved in the LTP pathway. According to the results of qRT-
PCR, there were no significant changes in the low-frequency 
group compared with the sham group in undifferentiated 
Neuro-2a cells (Figure  2A). When the high-frequency group 
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FigUre 2 | Validation of mRNA expression and protein quantification using qRT-PCR and western blot analysis in undifferentiated Neuro-2a cells. (a) The relative 
mRNA expression of target genes was normalized by sham expression and was calculated using the 2−ΔΔCt method by qRT-PCR. All results are expressed as 
means ± SEM. (B) Western blot analysis was performed using antibodies against calmodulin-dependent protein kinase II (CaMKII), phospho-cAMP response 
element binding (p-CREB), and actin (a control). All results are expressed as means ± SEM. (c) Comparison of relative protein expression for CaMKII, p-CREB, and 
actin (a control) with Multi Guage (v3.0) software (Fujifilm). *p < 0.05, **p < 0.01, and ***p < 0.001 comparison with the sham group in undifferentiated Neuro-2a 
cells. ###p < 0.001 comparison with the low-frequency group in undifferentiated Neuro-2a cells.

5

Baek et al. High-Frequency rMS Enhances BDNF Expression

Frontiers in Neurology | www.frontiersin.org May 2018 | Volume 9 | Article 285

was compared with the sham group in undifferentiated Neuro-2a 
cells, the expression of GRIN1, CaMKIIδ, and CaMKIIα was 
significantly increased while CaMKIIγ expression was a signifi-
cantly decreased (Figure 2A). Likewise, when the high-frequency 
group was compared with the low-frequency group in undif-
ferentiated Neuro-2a cells, the expression of GRIN1, CaMKIIδ, 
and CaMKIIα was also significantly increased while CaMKIIγ 
expression was significantly decreased (Figure 2A).

In the same manner, there were not any significant changes 
in the low-frequency group compared with the sham group in 
differentiated Neuro-2a cells (Figure  3A). The expression of 
GRIN1, CaMKIIδ, and CaMKIIα was significantly increased in 
the high-frequency group compared with the sham group or low-
frequency group in differentiated Neuro-2a cells (Figure  3A). 
On the other hand, CaMKIIγ expression was a significantly 
decreased in the high-frequency group compared with either the 
sham or the low-frequency group in differentiated Neuro-2a cells 
(Figure 3A).

GRIN1, CaMKIIδ, CaMKIIα, and CaMKIIγ are involved in 
Ca2+–CaMKII signaling pathway (38, 39). Especially CaMKII acti-
vation induced CREB phosphorylation (40, 41). We hypo thesized 
that these genes, which were involved in Ca2+-CaMKII-CREB 
pathway, induce p-CREB by the activation of Ca2+–CaMKII–
CREB pathway with high-frequency rMS.

Therefore, CaMKII and p-CREB protein expression levels 
were identified by western blot analysis. The protein expression of 
the CaMKII and p-CREB was significantly increased in the high-
frequency group when compared with either the sham or the low-
frequency group in undifferentiated Neuro-2a cells, respectively 
(Figures  2B,C). Furthermore, when the high-frequency group 
was compared with the low-frequency group in undifferentiated 

Neuro-2a cells, the protein expression was statistically increased 
(Figures 2B,C).

Likewise, the protein expression of CaMKII and p-CREB was 
significantly increased in the high-frequency group compared 
with either the sham or the low-frequency group in differentiated 
Neuro-2a cells, respectively (Figures 3B,C).

These data suggest that Ca2+–CaMKII–CREB pathway is 
activated by high-frequency rMS in both undifferentiated and 
differentiated Neuro-2a cells.

high-Frequency rMs Facilitates  
BDnF expression
Recently, it was reported that the Ca2+–CaMKII–CREB pathway 
plays a vital role in BDNF transcription (41, 42). Therefore, 
we confirmed BDNF expression by qRT-PCR and western  
blotting. In the low-frequency group as compared with the sham 
group, mRNA and protein expression of BDNF were decreased 
in undifferentiated Neuro-2a cells (Figure  4). However, when 
the high-frequency group was compared with the sham group in 
undifferentiated Neuro-2a cells, mRNA and protein expression 
of BDNF significantly increased (Figure 4). Furthermore, when 
the high-frequency group was compared with the low-frequency 
group, mRNA and protein expression of BDNF were also signifi-
cantly increased in undifferentiated Neuro-2a cells (Figure 4).

In the same manner, the mRNA and protein expression of 
BDNF was significantly increased in the high-frequency group 
compared with either the sham or the low-frequency group in 
differentiated Neuro-2a cells, respectively (Figure 5).

Taken together, BDNF expression is increased by Ca2+–
CaMKII–CREB pathway activation in both undifferentiated and 
differentiated Neuro-2a cells.
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FigUre 5 | Repetitive magnetic stimulation treatment increased brain-derived neurotrophic factor (BDNF) expression in differentiated Neuro-2a cells. (a) The relative 
expression of BDNF was normalized by sham expression and was calculated using the 2−ΔΔCt method by qRT-PCR during neuronal differentiation of Neuro-2a cells. 
(B) Western blot analysis was performed using BDNF, and actin (as a control) antibodies in the Neuro-2a cells. (c) Comparison of relative protein expression for 
BDNF and actin (a control) in differentiated Neuro-2a cells with Multi Guage (v3.0) software (Fujifilm). All results are expressed as means ± SEM. ***p < 0.001 
comparison with the sham group in differentiated Neuro-2a cells. ###p < 0.001 comparison with the low-frequency group in the Neuro-2a cells.

FigUre 4 | Repetitive magnetic stimulation treatment increased brain-derived neurotrophic factor (BDNF) expression in undifferentiated Neuro-2a cells. (a) The 
relative mRNA expression of BDNF was normalized by sham expression and was calculated using the 2−ΔΔCt method by qRT-PCR. All results are expressed as 
means ± SEM. (B) Western blot analysis was performed using antibodies against BDNF, and actin (a control). (c) Comparison of relative protein expression for 
BDNF and actin (a control) with Multi Guage (v3.0) software (Fujifilm). All results are expressed as means ± SEM. ***p < 0.001 comparison with the sham group in 
undifferentiated Neuro-2a cells. ###p < 0.001 comparison with the low-frequency group in undifferentiated Neuro-2a cells.

FigUre 3 | Validation of mRNA expression and protein quantification using qRT-PCR and western blot analysis in differentiated Neuro-2a cells. (a) The relative 
expression of target genes was normalized by sham expression and was calculated using the 2−ΔΔCt method by qRT-PCR during neuronal differentiation of Neuro-2a 
cells. (B) Western blot analysis was performed with calmodulin-dependent protein kinase II (CaMKII), phospho-cAMP response element binding (p-CREB), and actin 
(as a control) antibodies in the Neuro-2a cells. (c) Comparison of relative protein expression for CaMKII, p-CREB, and actin (a control) in differentiated Neuro-2a 
cells using Multi Guage (v3.0) software (Fujifilm). All results are expressed as means ± SEM. *p < 0.05, **p < 0.01, and ***p < 0.001 comparison with the sham 
group in differentiated Neuro-2a cells. #p < 0.05 and ###p < 0.001 comparison with the low-frequency group in the Neuro-2a cells.
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DiscUssiOn

It has been established that different frequencies for rTMS 
techniques can produce different modulatory effects (5). In this 
study, we examined global gene expression patterns by different 
frequencies of rMS in both undifferentiated and differentiated 
Neuro-2a cells.

In this study, LTP pathway is a significant pathway which is 
enriched in high-frequency group compared with low-frequency 
group in undifferentiated Neuro-2a cells. With its ability to 
endure functional enhancement of synaptic connections, or 
structural modification of neuronal connectivity, LTP pathway 
is a critical process for learning and memory (43) and has been 
relevant in rTMS treatment (4, 8, 36, 37). In the previous study, 
LTP pathway was significantly increased in the high-frequency 
stimulation compared with the sham (44) and had long-lasting 
increase in synaptic efficiency as a result of the high-frequency 
stimulation of afferent fibers (36). In this study, we validated that 
the genes such as GRIN1, CaMKIIδ, CaMKIIα, and CaMKIIγ 
were involved in LTP pathway by high-frequency rMS in both 
undifferentiated and differentiated Neuro-2a cells.

GRINI, one of the subunits of the N-methyl-d-aspartate recep-
tors (NMDARs), which were part of a large multiprotein complex  
(45), was upregulated in the high-frequency rMS in both undif-
ferentiated and differentiated Neuro-2a cells. NMDARs, which 
are part of a large multiprotein complex, possess a large part in 
normal development and function, including synaptic plastic-
ity, neural development, learning, and memory (46). NMDAR 
activity mediates CaMKII translocation to the postsynaptic 
density where it is maintained through a direct interaction with 
the C-terminal tail of the NMDAR complex (47). CaMKII is a 
calmodulin-dependent protein kinase that plays a crucial role in 
learning and memory by mediating a wide variety of intercel-
lular responses (48, 49). There are four CaMKII isoform termed 
as CaMKIIα, CaMKIIβ, CaMKIIδ, and CaMKIIγ (50) that 
regulate calcium channel activity and gene expression (51–53). 
CaMKIIα, one of the major part of CaMKII, plays a critical role 
in hippocampal LTP and spatial learning (54, 55). CaMKIIγ is 
regarded one of the inhibitors of CaMKII functions (56). It also 
can regulate inhibitory synapses to lead long-term inhibitory 
synaptic plasticity (57). Taken together, Ca2+–CaMKII pathway 
is increased by high-frequency rMS in both undifferentiated and 
differentiated Neuro-2a cells.

Multiple signaling cascades are related in phosphorylation of 
CREB, including the activation of CaMKII. CaMKII has been 
implicated strongly in memory formation of various species as 
a key regulator of gene expression (41, 58–61). CREB cannot 
only be activated by various kinases through electrical activity, 
neurotransmitters, hormones, and neurotrophins, but also 
can promote the expression of many cAMP response elements 
(CREs) containing genes (62). In this study, we suggest that 
Ca2+–CaMKII–CREB pathway is activated by high-frequency 
rMS in both undifferentiated and differentiated Neuro-2a cells.

In the previous study, BDNF transcription and neurite out-
growth were increased through Ca2+–CaMKII–CREB pathway by 
ES in cultured rat postnatal dorsal root ganglion neurons (41). 
BDNF promotes neuronal survival through both inactivation of 

the elements that take role in cell death machinery and activa-
tion of the transcription factor, CREB (63). In addition, BDNF 
is a crucial protein which aids the development, differentiation, 
maintenance, and plasticity of brain function (64). It has been 
proven through several experiments that by enhancing the 
expression of glutamate neurotransmitters and BDNF, rTMS has 
the ability to regulate neuroplasticity (5, 65–67). In this study, 
BDNF expression is up-regulated via Ca2+–CaMKII–CREB 
pathway activation through high-frequency rMS in both undif-
ferentiated and differentiated Neuro-2a cells.

Our finding suggests that the LTP pathway was confirmed to 
be a relevant enriched KEGG pathway by high-frequency rMS 
in Neuro-2a cells. In addition, high-frequency rMS activated the 
Ca2+–CaMKII–CREB signaling pathway, and the expression of 
p-CREB and BDNF was increased through the Ca2+–CaMKII–
CREB signaling pathway in both undifferentiated and differenti-
ated Neuro-2a cells (Figure 6).

There are several limitations in this study. Our data are 
focused on normal condition of undifferentiated and differenti-
ated Neuro-2a cells, which are widely used in neurological and 
neurodegenerative disorders such as Alzheimer’s disease (68, 69), 

FigUre 6 | Potential therapeutic mechanisms for high-frequency repetitive 
magnetic stimulation (rMS) in both undifferentiated and differentiated 
Neuro-2a cells. The long-term potentiation pathway was confirmed to be an 
enriched relevant Kyoto Encyclopedia of Genes and Genomes pathway in 
high-frequency rMS stimulation in both undifferentiated and differentiated 
Neuro-2a cells. In addition, high-frequency rMS can activate the Ca2+–
calmodulin-dependent protein kinase II (CaMKII)–cAMP-response element-
binding protein (CREB) signaling pathway. In addition, phospho-CREB and 
brain-derived neurotrophic factor (BDNF) expression was increased via 
activation of the Ca2+–CaMKII–CREB signaling pathway in both 
undifferentiated and differentiated Neuro-2a cells. NMDAR, N-methyl-d-
aspartate receptors; CaMKII, Ca2+–calmodulin-dependent protein kinase II; 
CREB, cAMP-response element-binding protein; CRE, cAMP-response 
element; BDNF, brain-derived neurotrophic factor.
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