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There is evidence that vestibular sensory processing affects, and is affected by, higher 
cognitive processes. This is highly relevant from a clinical perspective, where there is 
evidence for cognitive impairments in patients with peripheral vestibular deficits. The 
vestibular system performs complex probabilistic computations, and we claim that 
understanding these is important for investigating interactions between vestibular 
processing and cognition. Furthermore, this will aid our understanding of patients’ 
self-motion perception and will provide useful information for clinical interventions. We 
propose that cognitive training is a promising way to alleviate the debilitating symp-
toms of patients with complete bilateral vestibular loss (BVP), who often fail to show 
improvement when relying solely on conventional treatment methods. We present a 
probabilistic model capable of processing vestibular sensory data during both passive 
and active self-motion. Crucially, in our model, knowledge from multiple sources, includ-
ing higher-level cognition, can be used to predict head motion. This is the entry point 
for cognitive interventions. Despite the loss of sensory input, the processing circuitry in 
BVP patients is still intact, and they can still perceive self-motion when the movement is 
self-generated. We provide computer simulations illustrating self-motion perception of 
BVP patients. Cognitive training may lead to more accurate and confident predictions, 
which result in decreased weighting of sensory input, and thus improved self-motion 
perception. Using our model, we show the possible impact of cognitive interventions to 
help vestibular rehabilitation in patients with BVP.

Keywords: cognitive training, bilateral vestibulopathy, bilateral vestibular loss, rehabilitation, vestibular cognition, 
computational modeling, mental imagery, self-motion perception

iNtrODUctiON

Patients with bilateral vestibulopathy suffer from a severely reduced (incomplete vestibular loss) or 
totally absent function (complete vestibular loss) of both vestibular end organs, vestibular nerves, or 
a combination thereof (1). The main symptoms of BVP are unsteadiness of gait, oscillopsia, and pos-
tural imbalance (particularly pronounced in darkness) with more pronounced symptoms and worse 
course of disease in BVP patients with complete vestibular loss. These symptoms are directly related 
to dysfunctional perception of self-motion (2, 3). There is evidence that vestibular information is 
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nested and intertwined with higher cognitive processes [see Ref. 
(4) for a review]. Accordingly, there is growing evidence for cog-
nitive impairments in vestibular patients. Deficits in visuospatial 
abilities such as mental rotation, spatial navigation, or spatial 
memory have been shown in patients with BVP (5–7), indicat-
ing a changed internal spatial representation (8). Furthermore, 
atrophy of the hippocampus is strongly correlated with impaired 
visuospatial abilities in patients with BVP (5, 9). BVP can also 
lead to cognitive impairments in non-spatial cognitive domains, 
such as problems with concentration, short-term memory, read-
ing abilities, or executive functions (5, 10–12).

Conventional treatments for patients with BVP include coun-
seling and daily intensive vestibular physical therapy, in combi-
nation with neurotological rehabilitation. The goals of vestibular 
rehabilitation therapy are to improve gaze and postural stability, 
minimize falls, decrease the sense of disequilibrium, and prevent 
an increasingly sedentary lifestyle (13). Traditional vestibular 
rehabilitation therapy includes exercises to promote alternative 
strategies for gaze stability by potentiation of the cervico-ocular 
reflex, modification of saccades (decreasing the amplitude of 
saccades/corrective saccades), increasing smooth pursuit eye 
movement or central pre-programming of eye movements [for 
a review, see Ref. (14)]. Self-motion perception can be induced 
by exposure to large-field visual stimuli (optokinetic stimula-
tion) with the goal of developing compensation by increasing 
the weight of visual cues. Recent literature suggests using covert 
saccades during head movements as rehabilitation strategy in 
patients with BVP, since elimination of oscillopsia was observed 
in BVP patients who made covert saccades (15, 16). Even though 
conventional therapies are applied to patients with BVP, recovery 
is usually incomplete (1).

A largely unexplored approach to rehabilitation is cogni-
tive training (17). The authors suggest that cognitive training 
methods can lead to reduced symptoms and improved compen-
sation for the lack of sensory signals in patients with complete 
vestibular loss. While cognitive training has not been applied to 
BVP patients, its utility for improving balancing ability has been 
shown in elderly people and people with mild cognitive impair-
ment or dementia (18, 19). The link between cognition and bal-
ancing abilities is further shown in cognitively impaired patient 
groups (20–22). Cognitive training may provide many benefits; 
it is cost-effective, and can easily be performed on a daily basis 
in the comfort of patients’ own homes. Additionally, patients do 
not depend on medication and can take action to reduce their 
symptoms, which enhances their self-efficacy. As described 
above, vestibular deafferentation has dramatic consequences for 
higher-order processing of vestibular and spatial information, 
and cognitive training might be a promising opportunity for 
treating the adverse consequences of BVP. Conventional treat-
ment attempts to reduce the reliance on abnormal vestibular 
sensory signals and improve the use of non-vestibular sensory 
signals. Cognitive training operates at a higher level of process-
ing. In this paper, we explore how cognitive training might aid 
rehabilitation of BVP patients by considering the computations 
involved in vestibular processing, the complexity of which is 
often underestimated.

A cOMPUtAtiONAL MODeL OF seNsOrY 
iNFereNce

It seems impossible for BVP patients to extract any kind of 
information about their head movements, because their ves-
tibular signals provide little or no information. However, sensory 
processing involves much more than extracting information 
from noisy and ambiguous sensory data; sensory information 
is combined with prior knowledge about the world (23). Many 
tasks, from perception (24, 25) to higher-level cognition (26), 
have been described in a Bayesian framework. Additionally, when 
timing is essential, as is the case in the vestibular system, purely 
data-driven processing would lead to time lags. Instead, the 
brain continuously makes predictions and uses the sensory data 
to correct those predictions. Decades of vestibular research have 
provided insight into the type of computations used by the brain 
(27–30). These can be described as filtering algorithms, which 
rely on probabilistic models of the dynamics of head movements 
and the sensory data. The dynamics of head movements (e.g., the 
head velocity) are represented as a latent process (process model), 
and the sensory data are represented as depending on this latent 
process (sensor model). The process model represents the brain’s 
knowledge about the laws of physics, whereas the sensor model 
represents the brain’s knowledge about sensor characteristics.

We present the computational principles using a simplified 
model of a rotation of the head about the earth-vertical (yaw) axis 
(Figure 1A, angular velocity as pink line). This velocity has to be 
inferred, using the sensory signals provided by the semicircular 
canals (SCC). The sensory signals of a healthy person (blue dots) 
are measurements of the true velocity, with added noise. In con-
trast, the sensory signals of a BVP patient (orange) cannot track 
the head velocity. Instead, they merely reflect neuronal noise. 
The velocity can result from either a passive movement, or an 
actively initiated movement. In both cases, the head velocity and 
the resulting sensory signals are identical (31). If the movement 
was self-initiated, the brain has information about the motor 
commands (e.g., an efference copy), which is used by the brain in 
order to attenuate neurons in the vestibular nuclei (32). Recently, 
Laurens and Angelaki (33) demonstrated that the probabilistic 
model used to process passive movements also applies when 
movements are self-initiated. Information about expected head 
motion must be translated into expected sensory signals, in 
order to compute prediction errors. The computations involved 
can be described as a probabilistic graphical model (Figure 1B). 
Head velocity is represented by state variables (Ω) evolving over 
time according to a process model, which represents knowledge 
about the physical laws of head movements. If the movement was 
actively generated, knowledge from the motor commands is used 
to compute the next state. The sensor model describes how the 
noisy SCC measurements arise, given the state of the head. This 
type of probabilistic graphical model can be used for various tasks 
(34). For example, imagined movement may correspond to run-
ning this model in an off-line simulation mode (35–37). In order 
to infer head velocity, a filtering algorithm performs sequential 
Bayesian inference, i.e., the brain combines prior knowledge with 
sensory data to obtain a posterior estimate. This is illustrated in 
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FigUre 1 | (A) Head velocity, shown as a pink line, during a left head turn. Sensory signals are shown in blue for a healthy person, and in orange for a BVP patient. 
(B) Probabilistic model used to perform sensory inference. The velocity Ω (pink nodes) is represented as a sequence of latent states, which need to be inferred, 
given the sensory observations (orange nodes). Additional knowledge (gray nodes, e.g., derived from motor commands or higher-level knowledge) are used in order 
to predict Ω. The model includes a binary switch S (gray node), which indicates whether or not knowledge is used (active or passive). (c) During inference, the 
current state is probabilistically predicted (1), based on the posterior from the previous time step and additional knowledge. The prediction is then updated with the 
likelihood (2), resulting in a posterior state estimate. This is repeated at every time step. (D) Simulations of a healthy person (left) and a BVP patient (right) using a 
particle filtering algorithm and the generative model shown in (B). True velocity is shown in black. Sensory observations are shown as blue (healthy) or orange (BVP 
patient) dots. Estimated velocity is shown as a pink line, along with the uncertainty in the estimate (gray dots).
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Figure 1C. First, during the prediction step (1), a prior is created 
by predicting the head velocity Ω for the current time t, based 
on its past estimate. This prediction is probabilistic; the width 
of the distribution reflects how certain the brain is in its predic-
tion. Second, in the update step (2), the sensory measurement 
(likelihood) is used to update the prior, resulting in a posterior 
estimate of Ω. If the head movement was the result of an intended 
action, then, knowledge about the head movement (e.g., efference 
copy) may be used in order to make more precise prior predic-
tions for the state Ω. A few recent studies demonstrate that the 
brain must be able to use not only knowledge derived from motor 
commands, but also from other sources; vestibular signals can be 
predicted when these do not result from active self-motion (38). 
The brain is able to construct models of head dynamics based on 
various sources of knowledge. This information may be derived 
from other sensory modalities, such as vision or proprioception, 
from memory of recent movements (38) or prior knowledge 
obtained by verbal instruction (39). A recent study demonstrated 
that higher-level prior knowledge plays an important role in 
self-motion-related perception and decision-making (40). Thus, 
prior knowledge in different forms can affect vestibular percep-
tion. Mertz et al. (41) showed that imagined self-motion either 
facilitates or impedes the ability to detect linear accelerations, 
depending on the compatibility of the directions of imagined and 
actual motion. Nigmatullina et al. (42) found effects of imagined 
self-motion at the earliest stages of vestibular processing; the 
onset of the vestibulo-ocular reflex (VOR) was shortened when 
participants imagined moving in the same direction as the sub-
sequent actual motion. Participants’ perception of self-motion 
was affected in a similar manner. Finally, there is evidence that 
the gain of the VOR depends on the distance of an imagined 
target (43). All of these findings point to the fact that vestibular 
processing must contain a great deal of flexibility and cognitive 
penetrability (44, 45), in the sense that information that is not 
directly sensorimotor in nature may affect sensory inference.

The fact that vestibular sensory processing involves a high 
degree of flexibility creates new possibilities for rehabilitation.

We illustrate this idea using a particle filtering algorithm (46, 
47) to simulate a healthy person and a BVP patient inferring their 
head velocity Ω during a 1-s leftward head turn. A particle filter 
recursively performs a sequence of computations. First, the state 
is predicted, according to a model of the process being estimated. 
This predicted state serves as the dynamic prior. Second, an 
observation is used to update the prior, resulting in a posterior 
estimate. The amount of updating that occurs depends on how 
well the sensory data were predicted, given the predicted state. 
Figure  1D shows the results of our simulations. The top row 
shows passive motion and the bottom row shows an active, self-
initiated movement. The healthy person is able to accurately infer 
the velocity in both conditions. During passive motion, when the 
trajectory cannot be predicted, the algorithm requires the sensory 
data in order to update its 1-step ahead predictions during online 
sensory inference. This means that the estimated velocity lags the 
actual velocity. During the self-initiated movement, additional 
knowledge results in predictions that follow the actual velocity 
more closely, and the lag is reduced when compared to passive 

motion. The situation is dramatically different for the BVP 
patient. During passive movement, the dynamic prior does not 
follow the actual velocity. In order for inference to be accurate, 
the brain must update the prior using the sensory signals. In BVP 
patients, the sensory signals do not provide information about 
the actual velocity. Thus, the resulting velocity estimate remains 
at zero—the BVP patient is unable to detect self-motion by means 
of vestibular information. The patient is only able to construct a 
better prior estimate of the velocity when the trajectory of motion 
is predictable. Thus, when self-motion is self-initiated, the patient 
perceives a velocity in the correct direction, but with decreased 
amplitude, compared to the true velocity. The resulting posterior 
estimate is drawn toward the data. This also qualitatively captures 
the fact that BVP patients show VOR with reduced gain (48, 49).

iMPLicAtiONs FOr BvP PAtieNts

The perception of self-motion relies on estimates obtained from 
multiple sensory modalities. The goal of most conventional 
rehabilitation methods is to enable BVP patients to increase the 
weighting of visual and somatosensory cues. In the context of 
the computational model of the vestibular system, this can be 
interpreted as enabling patients to rely less on sensory signals 
provided by the vestibular sensors and more strongly on their 
dynamic prior while performing Bayesian inference. However, 
this requires the use of some kind of knowledge to predict the 
velocity. The simulations illustrate the fact that BVP patients are 
unable to infer their head velocity during passive movements, 
due to the chronic loss of sensory input. If a probabilistic model 
with additional knowledge can be used because the movement 
is predictable, inference about head velocity can be substantially 
improved. In addition to this, the mismatch between expected 
and actual sensory signals needs to be given less weight. While the 
reweighting of sensory signals may require long-term learning 
and adaptation, the use of prior knowledge is more flexible. Thus, 
we claim that cognitive training, if it can be shown to be effective 
in BVP patients, should operate by enabling patients to improve 
vestibular sensory inference through the use of prior knowledge 
during sensory inference.

POssiBLe eFFects OF cOgNitive 
trAiNiNg ON seNsOrY iNFereNce

In the context of the probabilistic model used for sensory infer-
ence, we can envisage distinct ways in which cognitive training 
may improve vestibular sensory inference. This is illustrated in 
Figure 2A (blue boxes). In the absence of sensory signals, any 
residual ability to detect head motion depends on patients’ abil-
ity to predict their head velocity. This prediction is equivalent to 
constructing a dynamic prior prediction of head velocity, and this 
requires the following steps: (1) knowledge about head movements 
from efference copies and cognitive sources is converted into an 
expected head velocity. (2) The head velocity is predicted. (3) The 
prediction of head velocity is made, but is uncertain. In order to 
improve inference, the confidence predictions are made should be 
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FigUre 2 | (A) Suggested interventions through both conventional rehabilitation (orange box) and cognitive training (blue boxes). Most conventional rehabilitation 
strategies are targeted at reducing the influence of the sensory data, whereas cognitive training targets the inclusion of prior knowledge for sensory inference.  
(B) Improvements that may be achieved by conventional rehabilitation (left) and additional cognitive training (right). Inference is improved when abnormal sensory 
data are ignored (compare with Figure 1D, bottom right).
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increased. In Bayesian inference, this leads to a decreased weight-
ing of the sensory data. This only leads to improved inference if 
an accurate process model is used. The process model used for 
sensory inference during active movement can be used off-line in 
the service of mental simulations, i.e., to imagine self-motion (34, 
35). Indeed, there is evidence for the involvement of the vestibular 
system in spatial perspective taking tasks (50, 51). Although this 
has not previously been investigated, it is likely that the brain must 
simulate motion of the self in order to perform cognitive tasks. 
This ability may be reduced in BVP patients (6). We suggest that 
mental body rotation training may enable patients to improve 
their use of knowledge about the dynamics of head movements 

and to rehearse simulating head motion without the requirement 
of performing sensory inference. Cognitive training of head and 
body movements via mental imagery will help patients not only 
to improve their ability to predict movement and the ensuing 
sensory consequences, but also to increase their confidence in 
these predictions.

Figure 2B illustrates the results of simulating improvements 
due to conventional rehabilitation (left) and additional cognitive 
training (right). Conventional rehabilitation may enable BVP 
patients to improve their inference during a predictable move-
ment when abnormal sensory data are down-weighted (compared 
with Figure 1D, bottom right). This is achieved by increasing the 

https://www.frontiersin.org/Neurology/
https://www.frontiersin.org
https://www.frontiersin.org/Neurology/archive


6

Ellis et al. Cognitive Rehabilitation

Frontiers in Neurology | www.frontiersin.org April 2018 | Volume 9 | Article 286

width of the sensor noise distribution. The estimated amplitude 
of the movement is still attenuated. Cognitive training may enable 
patients to improve their use of knowledge derived from their 
motor system, other sensory modalities (vision, propriocep-
tion) or memory and mental imagery to make better and more 
confident prior predictions of head movements. This is achieved 
by decreasing the width of the dynamic prior and yields greater 
improvements for sensory inference. In our model, the improve-
ments due to cognitive training shown in Figure 2B (right) are 
akin to running the model in a simulation model.

During the course of rehabilitation, patients can learn to con-
struct improved models of their head movements and use these 
for sensory inference. In addition, they can learn to rely more 
on their internal estimates and thereby increasingly ignore the 
abnormal sensory data from their vestibular end organs. More 
generally, mental imagery training, and other cognitive training 
methods, for example, targeting executive functions, may help 
reduce the cognitive load that BVP patients experience (10–12). 
In order to achieve the re-weighting of the prior predictions 
while simultaneously inhibiting sensory information, training of 
inhibition could help patients with BVP. Furthermore, a training 
of selective attention could lead to better allocation of attentional 
resources. It may also be beneficial to use cognitive training in 
combination with galvanic vestibular stimulation (52). Increasing 
the sensor noise could help patients to down-weight the abnormal 
sensory data. As a result, patients would be more responsive to 
cognitive training. Cognitive processes, such as imagined self-
motion, have been shown to affect self-motion processing, a case 
in point being the study by Nigmatullina et al. (42). Even though 
our computational model was not conceived to make quantitative 

predictions, it is in line with their results. We are proposing that, 
in order to be effective, cognitive training methods should be 
designed with this computational framework in mind.

cONcLUsiON

The discussion about the consequences of BVP is largely 
dominated by focusing on the absence of vestibular sensory 
information and the use of other sensory sources, such as vision 
and proprioception. This has guided the conceptualization of 
treatments and rehabilitation. In patients with BVP, conventional 
treatments are often insufficient and there are other suitable 
entry points for interventions. Sensory processing involves prior 
knowledge about the world and this is necessary for correct 
inference of physical motion stimuli. Erroneous self-motion 
perception in BVP patients can be reduced by assigning more 
weight to prior knowledge and disregarding uninformative sen-
sory data. Cognitive training is a promising tool to rebalance the 
mechanisms underlying sensory inference in order to react to the 
chronic loss of sensory data.
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