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Recently, functional corticomuscular coupling (FCMC) between the cortex and the
contralateral muscle has been used to evaluate motor function after stroke. As we know,
the motor-control system is a closed-loop system that is regulated by complex self-
regulating and interactive mechanisms which operate in multiple spatial and temporal
scales. Multiscale analysis can represent the inherent complexity. However, previous
studies in FCMC for stroke patients mainly focused on the coupling strength in single-
time scale, without considering the changes of the inherently directional and multiscale
properties in sensorimotor systems. In this paper, a multiscale-causal model, named
multiscale transfer entropy, was used to quantify the functional connection between
electroencephalogram over the scalp and electromyogram from the flexor digitorum
superficialis (FDS) recorded simultaneously during steady-state grip task in eight stroke
patients and eight healthy controls. Our results showed that healthy controls exhibited
higher coupling when the scale reached up to about 12, and the FCMC in descending
direction was stronger at certain scales (1, 7, 12, and 14) than that in ascending direction.
Further analysis showed these multi-time scale characteristics mainly focused on the
beta1 band at scale 11 and beta2 band at scale 9, 11, 13, and 15. Compared to
controls, the multiscale properties of the FCMC for stroke were changed, the strengths
in both directions were reduced, and the gaps between the descending and ascending
directions were disappeared over all scales. Further analysis in specific bands showed
that the reduced FCMC mainly focused on the alpha2 at higher scale, beta1 and beta2
across almost the entire scales. This study about multi-scale confirms that the FCMC
between the brain and muscles is capable of complex and directional characteristics, and
these characteristics in functional connection for stroke are destroyed by the structural
lesion in the brain that might disrupt coordination, feedback, and information transmission
in efferent control and afferent feedback. The study demonstrates for the first time the
multiscale and directional characteristics of the FCMC for stroke patients, and provides a
preliminary observation for application in clinical assessment following stroke.

Keywords: functional corticomuscular coupling, multiscale, transfer entropy, stroke, information flow

Frontiers in Neurology | www.frontiersin.org May 2018 | Volume 9 | Article 2871

https://www.frontiersin.org/Neurology/
https://www.frontiersin.org/Neurology/editorialboard
https://www.frontiersin.org/Neurology/editorialboard
https://doi.org/10.3389/fneur.2018.00287
https://creativecommons.org/licenses/by/4.0/
mailto:pingx@ysu.edu.cn
mailto:xiaoli@bnu.edu.cn
https://doi.org/10.3389/fneur.2018.00287
https://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2018.00287&domain=pdf&date_stamp=2018-05-01
https://www.frontiersin.org/Journal/10.3389/fneur.2018.00287/full
https://www.frontiersin.org/Journal/10.3389/fneur.2018.00287/full
https://www.frontiersin.org/Journal/10.3389/fneur.2018.00287/full
https://www.frontiersin.org/Journal/10.3389/fneur.2018.00287/full
https://loop.frontiersin.org/people/254607
https://loop.frontiersin.org/people/260414
https://loop.frontiersin.org/people/121806
https://www.frontiersin.org/Neurology/
https://www.frontiersin.org
https://www.frontiersin.org/Neurology/archive


Chen et al. Multiscale FCMC in Stroke

1. INTRODUCTION

Motor dysfunction is a major consequence of stroke (1), and the
loss of motor function is generally considered as a result of the
impairments in neural network that controls movement. There-
fore, an effective and precise assessment on the motor functions
of stroke patients plays an important role in motor recovery.

The functional corticomuscular coupling (FCMC) between the
motor cortex and the effector muscles is considered essential for
effectivemovement control (2). Extensive studies have expounded
that cortical oscillatory drives are coupled with muscle activation
in several different frequency bands. Corticomuscular oscillations
in alpha-band (8–14Hz) have been reported during sustained
contractions (3), slow fingermovements (4, 5), and fast transitions
between two force targets (6). Beta-band oscillations (15–35Hz)
are associated with strategies for controlling and maintaining
steady-state force output (6–11). Oscillations in the gamma-band
(35–60Hz) are related to stronger muscle force production (12,
13) and dynamic force output (6, 14). These researches reveal that
the FCMC in different frequency bands plays different roles in
sensory and motor systems in healthy subjects.

Similar studies have been carried out on the stroke patients,
since Mima et al. (15) first reported that the FCMC for the
hand and forearm muscles was smaller on the affected side of
subcortical stroke patients during weak tonic contraction tasks.
Fang et al. (16), Meng et al. (17), and von Carlowitz-Ghori et al.
(18) also reported that stroke patients had significant lower FCMC
on affected sides during a steady-state force task. FCMC decrease
indicates that the impairment in the lesioned hemisphere pos-
sibly leads to the discontinuity of information transmission in
the sensory-motor systems. However, Braun et al. (19) concluded
a conversely preliminary observation that maximal FCMC in
some patients with excellent recovery were higher than that in
the healthy controls during a steady grip task, and Graziadio
et al. (20) reported that there were no FCMC differences between
stroke patients and healthy controls during rest and isometric con-
traction. The above studies without uniform conclusions mainly
focus on the functional coupling and temporal coordination,
and also indicate that the FCMC between the motor cortex and
the muscle can be considered as an assessment of motor recov-
ery. Several reports, however, point out that the FCMC possibly
conveys the central motor command (descending), but not the
sensory afferent feedback (ascending) for stroke patients suffering
from a pure motor paresis without sensory symptoms (15). The
direction-dependent information transmission between the brain
and the muscle thereby seems to be necessary to analyze inherent
mechanism for stroke.

Unfortunately, only a few studies of the FCMC in information
flow are carried out in healthy people. These researches have
shown that the cortical oscillations between the cortex and the
muscle are direction-dependent (21, 22). Witham et al. (23) found
that the FCMC strength was larger in descending pathway than
that in ascending pathway in monkey, and they (24) also revealed
that the FCMC in ascending pathway was dominated within the
whole beta-band (12–30Hz) compared with that in descending
pathway in humans. Mima et al. (25), however, reported that
the FCMC in descending direction was significantly larger at

19–30Hz band than that in the opposite direction. Although
these works indicate that the FCMC can elucidate functionally
relevant contributions of cortical oscillation to motor control and
muscle activation to sensory feedback, it is hard to centralize
uniform conclusions. These inconsistent results may be from the
applied methodologies limited to focus on the linear or nonlinear
assessment of the functional coupling, interaction strength, and
information flow. However, these methods cannot be utilized
to describe the multiscale characteristics of complex electroen-
cephalogram (EEG) and electromyogram (EMG) series, whereas
the brain function is regulated by complex self-regulating systems
that process inputs from interactingmechanismswhich operate in
multiple spatial and temporal scales (26). Therefore, it is necessary
to go into research onmethods that can analyzemore information
in motor-control system.

Transfer entropy (TE) technique (27) as a causal tool can mea-
sure the effective connectivity and capture nonlinear nature based
on information entropy without modeling the interaction. Based
on the asymmetry (reflecting directional) and transition (reflect-
ing dynamic) probabilities computation, the TE method is partic-
ularly efficient in detecting some unknown nonlinear interactions
(28) and has been applied into neuroscience (28–31). Therefore,
the TE is suitable in analyzing the functional connections between
the cortex and the contralateral muscles in sensorimotor loop
system. The measure, however, is still single-scale and may be
insufficient to describe the dynamical and multiscale character-
istics of complex EEG and EMG series. In our previous study, we
have proposedmultiscale transfer entropy (MSTE) by introducing
the coarse-graining process into the TE method (32). This study
revealed the temporal-scale characteristics in FCMC based on the
analysis between the EEG and EMG signals in healthy controls.
However, there was no similar analysis in stroke patient, though
large studies about the EEG signal for stroke have indicated a
decreased complexity of the neural activity in the brain (33–35).
Similar to the brain, we guess that the spatial and temporal scales
in the sensorimotor system may be disordered for stroke patients
due to the structural lesion in the cerebral brain.

Themain contribution of this work is the study of themultiscale
and directional characteristics of the FCMC between the cerebral
cortex and the contralateralmuscles for stroke. TheMSTEmethod
was applied to experimental data recorded while performing the
grip taskwith steady-state force in stroke patients and healthy con-
trols. Such studies can provide new insight into the dynamical and
multiscale characteristics of functional connections in coupling
strength and coupling flow after stroke and add to the understand-
ing of mechanisms underlying motor recovery. The present study
demonstrates for the first time themultiscale characteristics of the
FCMC between the brain and the contralateral muscles in both
pathways for stroke patients.

2. MATERIALS AND METHODS

2.1. Subjects
8 stroke patients who had persistent dyscoordination of the
right upper limb without sensory symptoms (Table 1; mean age,
52.6± 9.6years; range, 37–66 years; 3 male) and 8 healthy controls
(mean age, 59.4± 6.2 years; range, 53–69 years; 5 male) without
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TABLE 1 | Demographic information of stroke patients.

Patients Age Months since stroke STM for affected side Lesion site Stroke type

1 40–45 5 8 R Periventricular Ischemia
2 50–55 15 4 R Temporal lobe, external capsule Ischemia
3 36–40 6 6 L Frontal lobe, centrum semiovale, periventricular Ischemia
4 50–55 10 6 Pons Ischemia
5 46–50 12 8 R Basal ganglia Hemorrhage
6 50–55 8 9 Pons Ischemia
7 55–60 13 7 R Basal ganglia Hemorrhage
8 55–60 11 5 Pons Hemorrhage

R, right hemisphere; L, left hemisphere; STM, Shang tian min functional clinical assessment scale.

FIGURE 1 | Experimental setup. (A) Recording of electroencephalogram and electromyogram data. (B) Force profile generated by the mainpulandum during 1 trial:
the red line indicated the target force and the green line represented the exerted force. (C) The flow of the experimental task.

any history of neurological disease were enrolled in the study. The
participants were tested according to the Oldfield questionnaire
(36). All subjects participated according to the declaration of
Helsinki and gained consent and approval of the ethical review
board of YanshanUniversity. All participants have given informed
consent. They all had no previous experience with similar experi-
ments.

2.2. Data Recording and Experiment
Paradigm
2.2.1. Experimental Paradigm
During the experimental session, the subjects sat in an electrically
shielded, dimly lit room. All subjects were instructed to place
their right-hand to grip a shank which connected to a force
sensor (Figure 1A). Visual feedback on the force were provided
for the subjects via a monitor with two lines in different colors:
the red line indicated the target force (TF) and the green line
represented the exerted force (EF) by the subjects. The subjects
needed to maintain the green line tracking the red line at any time
(Figure 1B).

The total experiment mainly contained two sections as shown
in Figure 1C. First, the subjects were asked to perform the maxi-
mum voluntary contraction (MVC). Before the task, each subject
performed an isometric contraction of the right-hand grip with
maximal effort lasting 5 s and the MVC force was determined as
the peak value over the period of stable force output. To obtain
precise result, theMVCwasmeasured three times for each subject
and calculated the mean value as ˜MVC. The whole task included
four sessionswith 60 s break between each session to avoid fatigue,
and each session with 2 s ready, 50 s steady-state force output with
20% ˜MVC, and 8 s relax.

2.2.2. EEG and EMG Data Recording
During the experiments, scalp EEG and EMG signals were
recorded synchronously by 64-channel eego™ sports system (ANT
Neuro, Enschede, Netherlands) and 1-channel Trigno™ Wireless
EMG system (Delsys Inc., Natick, MA, USA). These two sets of
equipment were combined by a wireless synchronous pulse trig-
ger. EEG signals were recorded from 32 scalp positions using the
international 10–20 system and the EMG signals were recorded
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from the flexor digitorum superficialis (FDS). Before the electrode
application, the hair needed to clean and dry off, and the skin
surface was cleaned with alcohol. The EEG and EMG data were
amplified (1,000) and digitized (1,000Hz).

2.2.3. Data Preprocessing
Data analysis was carried out offline in MATLAB (R2013b, Math-
works Inc., Natick, MA, USA) environment. In order to avoid the
impact of the beginning force, the interval between 2 and 48 s
after the tone onset was chosen for further analysis. Segments
with large-amplitude artifacts in the range of 0.5–150Hz were
excluded. And the corresponding EMG and EEG signals of those
epochs were discarded, too. After visual inspection, we designed
a combined filter to remove the artifacts in raw EEG recordings.
First, mean and SD rejected outlier points. Then, an adaptive
notch filter (37) was used to remove the 50Hz the power signal,
and a high-pass filter was used to remove baseline drift. After
that, Informax-based independent component analysis (ICA) was
used to remove the electrooculogram (EOG) signals. Finally,
canonical correlation analysis was implemented to remove the
EMG signal from the EEG signal (38). A bipolar derivative (39)
was analyzed for MSTE calculation in the subsequent analysis.
Compared to EEG signals, the interferences in EMG signals were
easily removed. An adaptive notch filter was used to remove the
50Hz power signal, and a 0.5–150Hz bandpass filter was used to
remove the direct current high frequency interference. After that,
the EMGsignalswere rectified before subsequent analysis (40, 41).

2.3. Multiscale TE
2.3.1. Derivation of multiscale TE
To account for the inherent multiscale characteristics in the brain
or the muscle, a “coarse graining” process was applied. X= {x1,
x2,. . .,xi,. . ., xN} andY= {y1, y2,. . .,yi,. . ., yN} represented the pre-
processed EEG and EMG signals; {xs} and {ys} were constructed
consecutive coarse-grained time series by averaging X and Y data
points in non-overlapping windows of length, respectively. Each
element of the coarse-grained time series was calculated according
to the equations:

x(s)j = 1/s
js∑

i=(j−1)s+1

xi (1 ≤ j ≤ N/s) (1)

y(s)j = 1/s
js∑

i=(j−1)s+1

yi (1 ≤ j ≤ N/s) (2)

where s represents the scale factor, and the x(s)j and y(s)j denote the
element of the coarse-grained time series {xs} and {ys}. The length
of each coarse-grained time series is equal to the length of the
original time series N divided by s. For scale s= 1, the time series
{x1} and {y1} are the original EEG and EMG series, respectively.
Next the TEwas calculated for each coarse-grained time series {xs}
and {ys}. The TE values fromXs toYs, termedMSTEs

EEG→EMG, can
be derived from conditional entropies as follows:

MSTEs
EEG→EMG = Hs (yt+u |ynt ) − Hs (yt+u |xmt , ynt ) (3)

where t is a discrete valued time-index and u is a scalar value,
namely the information transfer delay between Xs and Ys; xmt =
(xt, · · ·, xt−m+1) and ynt = (yt, · · ·, yt−n+1) are m- and n-
dimensional delay vectors of Xs and Ys, respectively; Hs(yt+u |ynt )
is the entropy of the process Ys conditional on its past, and can be
calculated as

Hs(yt+u |ynt ) = −
∑
yt+u

p (yt+u, ynt )log2 (p (yt+u/ynt )) (4)

Hs(yt+u |xmt , ynt ) can be also calculated as

Hs (yt+u |xmt , ynt ) = −
∑
yt+u

p (yt+u, ynt , xmt )log2 (p (yt+u/ynt , xmt ))

(5)
where the formula (3) can be rewritten as

MSTEs
EEG→EMG

=
∑

yt+u,ynt ,xmt

p (yt+u, ynt , xmt )log2
p (yt+u| ynt , xmt )
p (yt+u| ynt )

=
∑

yt+u,ynt ,xmt

p (yt+u, ynt , xmt )log2
p (yt+u, ynt , xmt ) p (ynt )
p (yt+u, ynt ) p (ynt , xmt )

(6)

The MSTE from Ys to Xs can be defined as MSTEs
EMG→EEG,

and can be obtained by the same process. The MSTEs
EEG→EMG

MSTEsEEG→EMG and MSTEs
EMG→EEG MSTEsEMG→EEG can be used

to describe the information flow across the whole bands from
the EEG to EMG and from EMG to EEG, respectively. In this
paper, the MSTE values will be calculated between each pair of
EEG–EMG, and this procedure may account for the different
locations of the maximum MSTE values due to inter-individual
differences in brain morphology. For each EEG channel, only the
higher MSTE values were used for subsequent analysis.

2.3.2. Statistical Significance
To test the statistical significance of the values for MSTE at each
time scale, we used the surrogate datamethod by randomizing the
phase of the original data which can obtain by Fourier transform
(42). This will destroy the causal interaction, but guarantee the
same amplitude characteristics between the surrogate data and the
original data. For each signal Xs or Ys in each time scale, we per-
formed 10,000 times and calculated the MSTE in both directions
at each time scale, respectively. After that, the mean values across
all 10,000 times, named ˜MSTE, were calculated in each direction
at each scale. Therefore, if the MSTE values was larger than the

˜MSTE in the same direction and time scale, we can conclude there
was significant causal interaction. In the subsequent analysis, we
calculated the difference values by the MSTE values subtracting
the ˜MSTE values, and we defined as zero if the difference value
was negative.

2.4. Statistical Analysis
To investigate the differences between stroke patients and healthy
controls in both directions, three-way repeated measures analy-
sis of variance (rANOVA) (43, 44) was performed with subject
(2 levels: stroke and control) as a between-subject factor, direction
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(2 levels: descending and ascending), and time scale (20 scales)
as within-subject factors, and the MSTE value as the dependent
variable. In the case of significant subject by direction interaction,
simple effect was used to compare the subject differences on a
level of the direction or the direction differences on a level of the
subject separately for each time scale. In our study, to describe the
corticomuscular interaction in specific frequency bands, we used
the wavelet package method (45) to divide the EEG and EMG sig-
nals into sub-bands, and then reconstituted the specific frequency
bands, such as delta (1–4Hz), theta (4–8Hz), alpha1 (8–10Hz),
alpha2 (10–12Hz), beta1 (12–25Hz), beta2 (25–35Hz), gamma1
(35–45Hz), and gamma2 (45–60Hz). In each specific frequency
band, we then calculated the MSTE values. After that, in each
sub-band, we also performed three-way rANOVA with subject
(2 levels: stroke and control) as a between-subject factor, direc-
tion (2 levels: descending and ascending), and time scale (20
scales) within-subject factors. In the case of significant subject
by direction interaction, simple effect was also used to compare
the subject differences on a level of the direction or the direction
differences on a level of the subject separately for each time scale.
Greenhouse–Geisser was used to correct the degree of freedom. In
this study, an alpha of P< 0.05 was considered significant. SPSS
19.0 for windows (SPSS Inc., Chicago, IL, USA) was used for all
statistical computations.

3. RESULTS

3.1. MSTE Values for SP and HC
Figure 2 showed the MSTE values in descending and ascending
directions for both stroke patients and healthy controls as the scale
increased. Figure 2A showed the MSTE values in two directions
for each stroke patient and Figure 2B for each healthy control.
As Figure 2B was shown, for healthy controls, the interaction
strength had a gradually increasing trend even if the growth rate
was declined in both two directions as the scale s increased, and
reached a steady state when the scale reached up to 12 even if
the scale increased. Compared to the healthy controls, Figure 2A
showed that there were some commons between stroke patients
and healthy controls that the strengths also increased even if the
growth rate was declined with the scale increasing. However, there
was no steady state during the scale interval from 1 to 20, and even
a significant decline in ascending direction for stroke patient S8.
What is more, we plotted the scales where the first three higher
MSTE values located in Figure 2. As Figure 3 was shown, for
healthy controls, the scale mainly focused on about 12, except for
the ascending direction in C2 and descending direction in C8.
However, there was no regular difference in both directions for
stroke patients. Further comparison between the descending and
ascending directions showed that the MSTE values in descending

FIGURE 2 | The MSTE values in descending and ascending directions for both stroke patients and healthy controls, respectively. (A) Showed the MSTE values in
two directions for each stroke patient and (B) for each healthy control. The label “S” in (A) represented the stroke patient, and the label “C” in (B) meant the healthy
control.
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FIGURE 3 | The scales distribution where the first three higher MSTE values located for each subject. The label “S” in (A) represented the stroke patient, and the
label “C” in (B) meant the healthy control.

direction for most healthy controls were higher at the scale about
5~15 than that in ascending direction. However, we cannot find
similar differences between two directions for stroke patients,
except for S8.

3.2. MSTE Values in Each Direction for SP
vs. HC
Three-way rANOVA yielded significant main effects for sub-
ject [F(1,14)= 390.900, p= 0.000], direction [F(1,14)= 20.125,
p= 0.001], and time scale [F(8.392,117.488)= 4.424, p= 0.000],
respectively. There were also a double interaction between the
subject and the direction [F(1,14)= 10.871, p= 0.005]. However,
there was no interaction among subject, direction, and time scale
[F(7.328,102.586)= 0.351, p= 0.933]. Further statistical analysis
showed the MSTE differences in descending or ascending direc-
tion between stroke patients and healthy controls in each time
scale, respectively. Figure 4 showed the mean MSTE values across
all subjects in two directions with the time scale increasing. In this
figure, we denoted the significance with the star mark. The word
“Line 1” showed the significant level between descending and
ascending direction in each time scale for stroke patients, the “Line
2”was for healthy controls. The Line 3 andLine 4 indicated the sig-
nificant level between stroke patients and healthy controls at each
time scale in descending and ascending directions, respectively. As
this figure was shown, there was no significant difference between
descending and ascending directions for stroke patients at each
time scale. On the contrary, there were significant differences
for healthy controls at scale 1 [F(1,14)= 4.35, p= 0.031], scale 7
[F(1,14)= 5.94, p= 0.029], scale 12 [F(1,14)= 4.85, p= 0.045],
and scale 14 [F(1,14)= 6.99, p= 0.019]. This mean the MSTE
values in descending direction was significantly larger than
those in the opposite direction. Compared to healthy controls,
stroke patients lost the difference between the descending and

ascending directions. Additionally, we analyzed the differences
between the stroke patients and healthy controls in each direction.
As Line 3 was shown, healthy controls showed higher MSTE
values in descending direction compared to stroke patients at
scale 1 [F(1,14)= 9.78, p= 0.009] and high scales from 7 to 19.
Meanwhile, healthy controls also represented significantly higher
MSTE values in ascending direction compared to stroke patients
at scale 13 [F(1,14)= 6.48, p= 0.023], scale 14 [F(1,14)= 8.42,
p= 0.012], scale 16 [F(1,14)= 5.63, p= 0.033], and scale 18
[F(1,14)= 11.12, p= 0.005], respectively. These differences also
meant stroke patients had a decreased coupling in both directions
at high time scale. Additionally, we can also find that the healthy
controls had a higher MSTE values at scale 12 in both direc-
tions, which had a similar distribution as each subject showed in
Figure 2.

3.3. MSTE Values at Each Frequency Band
for SP vs. HC
To further illustrate the differences between stroke patients and
healthy controls driving from delta, theta, alpha, beta, or gamma
oscillation, we calculated theMSTE values in 8 bands (delta, theta,
alpha1, alpha2, beta1, beta2, gamma1, and gamma2) as shown in
Figure 5. There were increased trends at the alpha1, alpha2, beta1,
and beta2 bands as the scale increased, which was line with the
result for the MSTE values across the whole bands in Figure 4.
We found that there were no differences at delta, theta, alpha1,
gamma1, and gamma2 bands in two directions for stroke patients
and healthy controls. There was also no difference between
the descending and ascending directions for stroke patients at
alpha2, beta1, and beta2 bands, while some differences for healthy
controls at beta1 band at scale 11 [F(1,14)= 10.90, p= 0.008]
and beta2 band at scale 15 [F(1,14)= 8.46, p= 0.019], scale 17
[F(1,14)= 9.17, p= 0.007], scale 18 [F(1,14)= 7.32, p= 0.026],

Frontiers in Neurology | www.frontiersin.org May 2018 | Volume 9 | Article 2876

https://www.frontiersin.org/Neurology/
https://www.frontiersin.org
https://www.frontiersin.org/Neurology/archive


Chen et al. Multiscale FCMC in Stroke

FIGURE 4 | The mean MSTE values in both directions for both stroke patients and healthy controls with the time scale increasing. We denoted the significance with
the star mark. *p<0.05, **p<0.01, and ***p<0.001. The word “Line 1” showed the significant level between descending and ascending direction in each time
scale for stroke patients, the word “Line 2” was for healthy controls. The Line 3 and Line 4 indicated the significant level between stroke patients and healthy controls
at each time scales in descending and ascending directions, respectively.

and scale 19 [F(1,14)= 102.43, p= 0.000]. Unlike to the results
showed in Figure 5 at scale 1, there were no differences at scale 1
between the descending and ascending directions for healthy con-
trols at all frequency bands. Additionally, significant differences in
beta1 andbeta2 bandswere almost across the entire scales between
the stroke patients and healthy controls in both directions. This
showed that stroke patients had lower MSTE values at beta1 and
beta2 bands in both directions than healthy controls. In this figure,
we can find that the differences between the stroke patients and
healthy controls which may drive from the beta1 and beta2 band,
partly from the alpha2 band. Different from the result in Figure 4,
Figure 5 showed us the difference between stroke patients and
healthy controls almost across the entire time scales, especially for
the descending direction.

4. DISCUSSION

As far as we know, the corticomuscular coupling between the
brain and the muscles mainly refer to the coupling strength and
information flow in single time scale, except for our previous
studies (32). Compared to extensive researches on the coupling
strength, few studies involve the information flow although it is
obvious that the sensorimotor system loop is direction-dependent
(21, 22). Witham et al. (24) found that the FCMC in the ascending
direction was dominate within the whole beta band compared to
that in the descending direction in humans, despite revealed that
directed coherence being dominant in the descending direction
on monkeys (23). This difference may be due to the differences

in sensory feedback between monkeys and humans. Mima et al.
(25) reported that FCMC at the 19–30Hz band from EEG to
EMG was significantly larger than that from EMG to EEG. Our
research also supports that the EEG beta oscillations propagate
bidirectionally between the motor cortex and the corresponding
muscle (2, 24, 25, 46). However, in our study, we found that
significantly larger single scale-based FCMC in descending direc-
tion than in ascending direction, while we found no difference
at each frequency band between two directions with time scale
1. Therefore, it is hard to reach a uniform conclusion. Hence,
it remains unclear why the FCMC varies between descending
and ascending pathways. One possible explanation is that the
minor differences in structural anatomy could cause a different
projection of activity in the pathways (24). Sensory inputs from
muscle spindles ascend through spinal cord to the thalamus and
eventually reach the primary somatic sensory cortex (the afferent
pathway), and then command outputs from the motor areas in
the cerebral cortex to descend through the brain stem to motor
neurons of the spinal cord and eventually reach muscle (the
efferent pathway). These structural differences may result in the
differences between descending and ascending pathways. Another
possible influence may come from neurotransmission transition.
In contrast to sensory systems which transform physical energy
to neural signals, motor systems translate neural signals into
contractile forces to produce movements (47).

Compared to the FCMC in healthy controls, a few studies
were carried out in stroke patients. In previous studies, only
coupling strength was investigated in stroke patients. Though
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FIGURE 5 | Grand averages of the MSTE values in both descending and ascending directions for all subjects at delta, theta, alpha1, alpha2, beta1, beta2, gamma1,
and gamma2 bands, respectively. We denoted the significance with the star mark. *p<0.05, **p<0.01, and ***p<0.001. The word “Line 1” showed the significant
level between descending and ascending direction in each time scale for stroke patients, the word “Line 2” was for healthy controls. The Line 3 and Line 4 indicated
the significant level between stroke patients and healthy controls at each time scales in descending and ascending directions, respectively.

several researches have reported significantly lower corticomus-
cular coupling for the stroke-affected hand (15–18), there is no
any report that points out the difference of the information flow
for stroke patients. In our study, we explored the difference
between the stroke patients and healthy controls in both directions
and found that single scale-based interaction strength in stroke-
affected hand was weaker in descending direction than that in
healthy controls, and further analysis on the specific bands showed
that the decrease mainly drove from the beta2 band. Additionally,
we found that stroke patients exhibited no difference between the
descending and ascending directions at the whole bands even all
specific bands. These differences reveal that interaction connec-
tions between the brain and the muscles have been destroyed due
to the structural lesion in the cerebral brain. In previous studies,
the research has expounded that the reduced neural oscillation
after brain injury and theweak cortical-spinal synaptic connection
might have influence on the FCMC (17). This is the first study
referring to the information flow for stroke patients, and there are
still no recorded literatures about the information flow for stroke.

We infer the lesions in the brain which also destroy the structure
of the pathway providing an approach to transmit information
between the brain and the muscles, and decrease the ability to
mobilize and activate the related tissues and organs to participate
the task, resulting in partly information missing during the trans-
mission processing due to the reduce of the carriers. As a result, the
coupling between the brain and the muscle decreased for stroke
patients.

Up to date, certain FCMC characteristics over multiple scales
are seldom presented in previous literatures which mainly focus
on the single-time scale. The sensor-motor system, as a com-
plex and with various structures, involves multi-layer neurotrans-
mission and multi-characteristic interactions. Some researches
on EEG or EMG signals have pointed out that complex self-
regulating systems operating across multiple spatial and tempo-
ral scales can complicate EEG or EMG series at multiple scales
(26, 48–50). In our study, multiscale characteristics also exist in
sensory-motor system by analyzing the synchronous oscillations
between the cerebral cortex and the corresponding muscles. Our
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previous study have illustrated that the FCMC between the brain
cortex and the muscles are multiscale characteristics (32). In
this study, we also found healthy controls exhibiting a gradually
increasing trend with gradually declining growth rate in both two
directions as the scale s increased, and reached a steady state when
the scale reached up to 12 even if the scale increased. With respect
to why interaction strength will increase as time scale increases,
this might be related with the coordination between the brain and
the muscles in sensory-motor system, because some studies point
out that the coordination functions of the brain can be presented
on larger scales on the whole. The sensory input from muscle
receptors and the motor command input from the brain can lead
to the synchronization oscillations with different strengths and
modalities. However, there is no definite explanation for this
phenomenon.

TheMSTE values in descending directionwere higher than that
in ascending direction at scale 1, 7, 12, and 14. Further analy-
sis showed that these characteristics in multi-time scale mainly
focused on the beta1 band at scale 11 and beta2 band at scale
15, 17, 18, and 19. Our further analysis on specific bands showed
that this difference mainly focused on the beta band (beta1 and
beta2). Our results reinforce that beta rhythm is primarily rooted
in the primary motor cortex (51) and that oscillations in the beta
band (15–35Hz) are associated with controlling and maintaining
steady-state force output (6–11). Compared to healthy controls,
the FCMC characteristics in multi-time scale for stroke patients
were changed. The strengths in both directions were reduced and
the gaps between the descending and ascending directions were
narrowed over all scales. Further analysis in specific bands showed
that the reduced FCMC mainly focused on the alpha2 band at
partly high time scales, beta1 band at high time scales and beta2
band at almost all time scales in both directions. This was different
from the single scale-based result that there was no difference in
each specific band. These differencesmay drive from complexmix
of factors. As our infer in the paragraph above, the lesion in the
brain may decrease the ability to mobilize and activate the related
tissues and organs to participate the task, resulting in not only
losing partly information, but also reducing the dimensionality
and complexity of the sensorimotor system. As we see, there were
no significant multiscale characteristics for stroke patients. With
respect to why significant differences between the stroke patients
and healthy controls mainly focused on beta band, it is related
to the functions of the beta oscillation which also are illustrated
above. For stroke patients, lower stability and poorer performance
may result in the weaker coupling at beta band compared to
healthy controls. The contents between the motor performance
and the FCMC will be studied in the future work.

5. CONCLUSION

In this study, we used the MSTE model to explore the FCMC
changes of the inherent directionality and multiscale in sensori-
motor systems for stroke patients. Our results showed that the
multiscale properties of the FCMC for stroke were changed, the
strengths in both directions were reduced and the gaps between
the descending and ascending directionswere disappeared over all
scales. Further analysis in specific bands showed that the reduced
FCMC mainly focused on the alpha2 at higher scale, beta1 and
beta2, at almost whole scales. This study confirms that the FCMC
between the brain and themuscles is capable of multiscale charac-
teristics, and the changes in functional connection for recovered
stroke might result from the structural lesion that disrupt coordi-
nation, feedback, and information transmission in efferent control
and afferent feedback. The study demonstrates for the first time
the multiscale characteristics of the FCMC between the brain and
the contralateral muscle in both pathways for stroke patients.
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