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Low back pain (LBP) has a point prevalence of nearly 10% and ranks highest in global 
disease burden for years lived with disability; Parkinson’s disease (PD) ranks in the 
top 100 most disabling health conditions for years lost and years lived with disability 
(1). Recent evidence suggests that people with chronic, recurrent LBP exhibit many 
postural impairments reminiscent of a neurological postural disorder such as PD. We 
compare and contrast postural impairments associated with LBP and PD in order to 
inform treatment strategies for both conditions. The literature suggests that both LBP 
and PD associate with impaired proprioceptive function, sensory orientation during 
standing balance, anticipatory postural adjustments, automatic postural responses, and 
striatal-cortical function. Although postural impairments are similar in nature for LBP and 
PD, the postural impairments with LBP appear more specific to the trunk than for PD. 
Likewise, although both health conditions associate with altered striatal-cortical function, 
the nature of the altered neural structure or function differ for PD and LBP. Due to the 
high prevalence of LBP associated with PD, focused treatment of LBP in people with PD 
may render benefit to their postural impairments and disabilities. In addition, LBP would 
likely benefit from being considered more than just a musculoskeletal injury; as such, 
clinicians should consider including approaches that address impairments of postural 
motor control.

Keywords: Parkinson’s disease, low back pain, posture, anticipatory postural adjustment, postural response, 
balance

iNtrODUctiON

Low back pain (LBP) represents one of the most prevalent health conditions worldwide, having 
a point prevalence of nearly 10% and ranking first in global disease burden for years lived with 
disability (1). Parkinson’s disease (PD) also represents a significant health concern as the second-
most prevalent neurodegenerative disease in older adults and ranking in the top 100 most disabling 
health conditions for years lost and years lived with disability (1). Although LBP is a musculo-
skeletal condition and PD is a neurodegenerative condition, both health conditions present with 
impairments of postural control and associated alterations of central neurophysiology. For both 
conditions, these postural impairments span multiple domains of postural control, including  
(a) reduced somatosensory perception and altered somatosensory integration for balance control; 
(b) excessive axial postural tone and stiffness; (c) delayed and non-specific anticipatory postural 
adjustments (APAs) to stabilize and facilitate voluntary movement; (d) non-specific and less effectual 
automatic postural responses (APRs) to external perturbations; and (e) slowness of walking and 
other activities. Further, altered structure and function of cortex and basal ganglia is evident for 
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both health conditions. The purpose of this perspective paper is 
to compare and contrast the postural impairments and related 
changes in neurophysiology associated with LBP and PD and to 
discuss the potential implications of their shared impairments on 
the treatment strategies for both health conditions.

seNsOrY AcUitY, KiNestHesiA, AND 
DYNAMic ceNtrAL seNsOrY 
iNteGrAtiON

Any type of physical activity optimally requires accurate sensa-
tion and perception of one’s own position and movement (i.e., 
kinesthesia), and both PD and LBP associate with impaired kin-
esthesia. People with PD exhibit impaired tactile sensation and 
impaired kinesthesia to detect limb position during active motion 
as well as to detect passive limb and trunk rotation (2–8). People 
with LBP exhibit impaired two-point discrimination and can be 
unable to kinesthetically perceive their lumbar trunk based on 
body image traces (9). In contrast to the global somatosensory 
impairment exhibited by people with PD, the impaired tactile dis-
crimination of people with LBP appears to be isolated to the area 
of the LBP (9). Impaired lumbosacral repositioning accuracy has 
also been reported for people with LBP (10). Further, similar to 
the impaired detection of trunk motion exhibited by people with 
PD, people with LBP exhibit increased thresholds for detecting 
passive trunk flexion and lateral bending (11). Thus, although the 
extent of impairment may differ between people with PD versus 
LBP, both health conditions associate with impaired tactile acuity 
and kinesthesia.

The act of maintaining standing balance requires integrating 
visual, somatosensory, and vestibular inputs. The central nervous 
system must also modulate each modality’s influence on stand-
ing balance when transitioning to different sensory conditions. 
People with PD exhibit an impaired ability to limit postural sway 
during standing balance when somatosensory input is incongru-
ent with visual and/or vestibular input (12, 13). Likewise, people 
with LBP also exhibit increased postural sway under conditions 
in which somatosensory input is incongruent with the other 
modalities (14). An enhanced use of ankle proprioception and 
the ankle strategy for postural sway, rather than a flexible control 
strategy to utilize trunk proprioception and hip motion under 
challenging conditions, has also been reported for people with 
LBP (15). These results suggest that, for people with LBP, the 
postural impairment may be localized to the processing of trunk 
proprioception and trunk control, with perhaps compensation 
through enhanced afferent processing and use of the distal limbs 
for the control of standing postural sway. Thus, people with LBP 
and PD alike exhibit an impaired ability to modulate the influence 
of surface somatosensory input in order to maintain standing 
balance.

MecHANicAL cONstrAiNt OF riGiDitY

Rigidity (resistance to passive movement) is one of the cardinal 
symptoms of PD and can be evident across axial, proximal, 
and distal body segments. Although largely neural rather than 

peripheral in its generation (16), the rigidity associated with PD 
elicits a significant mechanical constraint that associates with 
impaired gait quality (17), turning (18), standing postural sway 
(19), and diminished quality of life (20). Direct measurement 
of axial rigidity by slow, passive trunk or hip rotation in stance 
demonstrates an increased rigidity with PD that correlates with 
clinical symptom scores (21) and with difficulty walking or roll-
ing over (18). Thus, rigidity is a pervasive impairment in PD that 
influences mobility, balance, and daily life.

Axial or spinal-segmental rigidity is also common in people 
with LBP, and a change in LBP corresponds with a change in axial 
rigidity, but these results are not always consistent across studies 
(22). Although not the intent of a study by Cacciatore and col-
leagues (and therefore not powered to detect group differences), 
direct measurement of axial rigidity by slow, passive trunk and 
hip rotation during standing posture has been evaluated in 
people with and without LBP (23) using the same methods as 
those of Wright et  al. (21) for people with PD. Cacciatore and 
colleagues reported nearly identical hip torques between a group 
of 8 people with LBP (mean ± SD = 3.06 ± 2.19) and a group of 
15 control subjects without LBP (3.07 ± 1.66), but a statistically 
non-significant trend for increased trunk torque (6.26  ±  3.61 
for LBP versus 5.00  ±  1.80 without LBP). Although requiring 
further study with a larger sample, the trend for increased mean 
rigidity with greater inter-individual variability in the group with 
LBP suggests that some, but not all, individuals with LBP exhibit 
axial rigidity (22). If the rigidity is evident, however, it is likely 
specific to the trunk. Therefore, although both LBP and PD have 
been associated with rigidity, this mechanical constraint is more 
consistent and pervasive for PD than for LBP.

ANticiPAtOrY POstUrAL 
ADJUstMeNts

Anticipatory postural adjustments represent learned, centrally 
programmed muscle activations of supporting body segments to 
counteract anticipated perturbing forces associated with volun-
tary movement in order to maintain posture and balance (24). 
Efficient movement thus depends upon appropriate movement-
specific timing and amplitude of APAs.

For PD, impaired APAs appear evident across multiple tasks, 
such as step initiation and arm raising. During step initiation, 
for example, people with PD exhibit prolonged and diminished 
APAs that are poorly scaled to initial mechanical constraints  
(25, 26). During arm raises, people with PD exhibit APAs that can 
be delayed beyond a time window of anticipatory control prior to 
movement-related perturbation, and these delayed postural acti-
vations are not specific to the movement (27). Thus, PD associates 
with delayed, diminished, prolonged, and unspecified APAs 
across tasks that elicit APAs from axial or distal musculature.

For LBP, the primary impairment of the APA appears to be a 
delay in activation that can extend beyond a window of anticipa-
tory control prior to movement-related perturbation (28, 29). 
Interestingly, similar to the findings on people with PD, people 
with LBP also exhibit a delayed APA that is not specific to the 
requirements of the movement (30). One notable difference, 
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however, is that the impairment is particularly limited to specific 
axial muscles and can actually be enhanced or earlier in onset at 
distal muscles (29). Thus, although delayed and contextually non-
specific APAs are shared by both PD and LBP, prolonged duration 
and generalized impairment across body segments appears more 
evident with PD than with LBP.

AUtOMAtic POstUrAL resPONses

The ability to maintain balance and posture in response to an 
externally induced postural perturbation is also essential for 
efficiency and safety during daily activity. APRs represent rapid, 
automatic, but functionally specific responses to postural pertur-
bations in order to maintain posture and balance.

For PD, the APR results in impaired stability marked by greater 
induced center-of-mass displacement and diminished corrective 
center-of-pressure displacement (31, 32). PD is also marked by 
impaired directional specificity of the APR, in which a non-
specific stiffening strategy of antagonistic muscle co-contraction 
is evident (32, 33).

People with LBP exhibit remarkably similar impairments of 
the APR as people with PD, demonstrating increased center- 
of-mass displacements (34), muscle co-contraction (35, 36), and 
impaired directional specificity of the APR (37, 38). As previ-
ously described for both quiet stance and the control of the APA, 
however, people with LBP also exhibit a redistribution of control 
for the APR via compensation at distal body segments (36, 37, 39)  
that is not evident with PD. Thus, both health conditions exhibit 
diminished stability, co-contraction, and directionally non-
speci fic APRs, but the impairment is more pervasive across body 
segments for PD, whereas the impairment appears localized to 
the trunk with compensation elsewhere for LBP.

BrADYKiNesiA

Bradykinesia is a hallmark feature of parkinsonism. For people 
with PD, bradykinesia can span movements across body seg-
ments, such as finger tapping, smiling, and gait (40–42). For PD, 
bradykinetic gait is marked by slowed gait velocity, decreased step 
length, step asymmetries, and variability, and recent studies have 
also identified altered trunk coordination (42–44).

Interestingly, people with LBP also exhibit slowed gait velocity,  
decreased step length, step asymmetries, and altered trunk 
coordination (45–47). Further, as with PD, bradykinesia is not 
isolated to gait for people with LBP, as they also exhibit slowed 
trunk motion and lifting behaviors (48, 49). Although the extent 
of bradykinesia with PD appears greater than for people with 
LBP when evaluating differences compared to matched control 
subjects, both health conditions share similar characteristics of 
bradykinesia.

AssOciAteD NeUrOPAtHOLOGY

Dysfunction of circuits involving the basal ganglia represents a 
hallmark pathophysiology associated with the development of 
motor symptoms in PD, which associates with clinical symptom 
severity, including postural instability and gait disturbance (50). 

LBP also associates with pathology of the basal ganglia. The 
transition from acute to chronic LBP associates with dimin-
ished striatal gray matter across multiple nuclei as well as with 
increased functional connectivity between prefrontal cortex 
and the nucleus accumbens; this increased connectivity also 
correlated with reported pain intensity (51). In subjects with 
established chronic LBP, however, there are many associated 
changes in neural structures and functions that do not necessarily 
resemble those of PD (52), including non-overlapping regions of 
diminished cortical gray matter and increased striatal gray matter 
(53, 54). Thus, corticostriatal pathology may affect both PD and 
LBP, but the nature of the pathology is quite different.

Beyond the existence of corticostriatal pathology, more 
specific alterations of cortical neurophysiology during postural 
tasks are evident with both PD and LBP. As determined by 
repetitive transcranial magnetic stimulation, the prolonged APA 
durations of people with PD during step initiation associate 
with the function of circuits involving the supplementary motor 
area, and the influence of stimulation at the supplementary 
motor area on APA duration appears to increase with increasing 
disease severity (26). Further, prior to initiating an APA for step 
initiation, greater amplitudes of electroencephalographic (EEG) 
preparatory cortical potentials associate with increasing disease 
severity for people with PD (55). With regard to the APR, people 
with PD exhibit enhanced preparatory EEG potentials, and the 
modulation of these potentials associates with the extent of APR 
modulation between conditions of differing perturbation ampli-
tudes (56). During walking, people with PD exhibit enhanced 
frontal lobe activity (57). In sum, the results suggest an enhanced 
influence of the cerebral cortex on postural control for people 
with PD.

People with LBP likewise exhibit evidence of an increased 
influence of the cerebral cortex on postural control. As deter-
mined by transcranial magnetic stimulation, larger areas of the 
transversus abdominus muscle’s cortical representation correlate 
with the onset delay of that muscle’s APA activation during an 
arm-raise task (58). People with LBP also exhibit increased pre-
paratory EEG potentials (29) as well as an increased topographi-
cal area of the potentials (59) prior to arm raises that require an 
APA. Amplitudes of preparatory EEG potentials have also been 
reported to correlate with APA onset time for subjects with LBP 
when performing an arm-raise task (59). With regard to the 
APR, people with LBP exhibit increased amplitudes of evoked 
EEG potentials in response to postural perturbation, and the 
amplitude of these enhanced potentials correlated with evoked 
center-of-mass displacement as well as the subjects’ reported 
pain-related disability and fear of physical activity (39). Therefore, 
people with PD and people with LBP exhibit altered cortical func-
tions that significantly correlate with their postural behavior and 
clinical symptoms, and this altered cortical function suggests an 
increased influence of the cerebral cortex on postural control for 
both health conditions.

Given the complex systems that control posture and gait (60), 
these few neuropathological similarities do not demonstrate that 
they are necessary and sufficient to produce the shared motor 
behaviors of LBP and PD. Although isolated characteristics of LBP 
could also relate to isolated characteristics of other neurological 
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conditions to suggest other mechanisms of neuropathological 
involvement, we preliminarily argue that the similarities in 
overall presentation of posture and gait between LBP and PD 
are greater than for LBP with other neurological conditions  
(e.g., cerebellar, vestibular, peripheral neuropathy, stroke), which 
differ in sensory conditions of impaired standing balance, truncal 
rigidity, the contextual specificity, scaling, and timing of APAs 
and APRs, as well as parkinsonian versus ataxic, neuropathic, or 
hemiparetic gait patterns (61–64). Therefore, relating the control 
of posture and gait of LBP to that of PD appears more robust than 
other options.

LBP cONFOUNDs PD

Based on the above sections, many shared postural impair-
ments exist for both PD and LBP. These shared impairments 
are so extensive that PD can be misdiagnosed as LBP (65). It is 
important to note, however, that LBP confounds PD, because 
LBP is often coincident with PD. In almost 30% of cases, LBP 
is an initial presenting symptom of PD (66, 67). In addition, the 
prevalence of LBP with PD is approximately 60–83% compared 
to approximately 25% in matched control subjects (68–70). Thus, 
it is possible that the postural impairments of PD are exacerbated 

by the coexistence of LBP, and LBP may be exacerbated by the 
postural impairments of PD.

iMPLicAtiONs FOr treAtMeNt

Although multidisciplinary treatment strategies are espoused for 
both PD and LBP (71, 72), the conservative physical treatment 
of postural impairment differs considerably between these two 
conditions. First, despite the prevalence of pain with PD, pain 
is rarely a focus of treatment for people with PD (69, 70). The 
treatment of motor impairment, however, is more common for 
people with PD. For example, physical therapy is utilized by about 
63% of cases with PD, and the majority of its use is focused on 
retraining gait, balance, and posture (73). In contrast, physical 
therapy is utilized by less than 20% of cases with LBP, and its use 
comprises approximately six visits that prioritize pain manage-
ment, strength, and flexibility rather than gait, balance, and 
postural training (74, 75). Treatment outcomes for LBP with this 
approach have been variable, although the use of motor control 
retraining hasn’t yet demonstrated superior treatment outcomes 
to general exercise (76). The lack of superior treatment outcomes 
for LBP with motor control retraining therapy, however, may be 
because the treatment does not adhere to principles of motor 
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rehabilitation that have been more thoroughly researched and 
considered in practice for neurological rehabilitation (77).

Therefore, despite the many shared postural impairments 
between PD and LBP, as well as the high prevalence of LBP in 
people with PD, the treatment approaches of these two health 
conditions are highly divergent. The coexistence of LBP with PD 
suggests focused management of pain, strength, and flexibility 
could potentially, at least partially, help alleviate postural impair-
ment with PD. Similarly, the shared motor impairments of LBP 
to PD suggests that the management of LBP could optimally 
include a postural motor retraining approach that is of sufficient 
focus and training exposure that motor patterns can be modified 
across multiple domains of postural control. Although important 
to substantiate mechanisms of pathology associated with LBP 
as an axial parkinsonism of postural tone and dynamic control, 
that substantiation does not preclude exploring postural motor 
retraining for LBP as a potential treatment to improve patient 
outcomes.

sUMMArY

Review of the literature indicates that both PD and LBP exhibit 
many shared impairments in postural control as well as some 
similar changes in neural pathology or function (Figure  1). 
Notably, for LBP (a) the impairments appear less pervasive 
and more localized to the trunk, (b) the impairments seem less 
consistent across individuals, and (c) despite some shared chara c-
teristics, the neural pathology is holistically of a different nature 

than for PD. Nevertheless, motor impairments seem more alike 
than different, suggesting that treatment strategies for LBP could 
benefit from those provided for PD, and treatment strategies that 
ameliorate LBP have the potential to benefit the treatment of 
motor dysfunction and lumbar pain in people with PD. Overall, 
the similarities of LBP and PD in postural impairment and 
associated neurophysiology suggest it may not be so implausible 
to consider LBP as an axial parkinsonism, rendering it the most 
prevalent parkinsonism in the world.
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