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A systematic search revealed 68 empirical studies of neurophysiological [EEG, event- 
related brain potential (ERP), fMRI, PET] variables as potential outcome predictors in 
patients with Disorders of Consciousness (diagnoses Unresponsive Wakefulness 
Syndrome [UWS] and Minimally Conscious State [MCS]). Data of 47 publications could 
be presented in a quantitative manner and systematically reviewed. Insufficient power 
and the lack of an appropriate description of patient selection each characterized about 
a half of all publications. In more than 80% studies, neurologists who evaluated the 
patients’ outcomes were familiar with the results of neurophysiological tests conducted 
before, and may, therefore, have been influenced by this knowledge. In most subsa-
mples of datasets, effect size significantly correlated with its standard error, indicating 
publication bias toward positive results. Neurophysiological data predicted the transition 
from UWS to MCS substantially better than they predicted the recovery of conscious-
ness (i.e., the transition from UWS or MCS to exit-MCS). A meta-analysis was carried 
out for predictor groups including at least three independent studies with N > 10 per 
predictor per improvement criterion (i.e., transition to MCS versus recovery). Oscillatory 
EEG responses were the only predictor group whose effect attained significance for both 
improvement criteria. Other perspective variables, whose true prognostic value should 
be explored in future studies, are sleep spindles in the EEG and the somatosensory 
cortical response N20. Contrary to what could be expected on the basis of neuroscience 
theory, the poorest prognostic effects were shown for fMRI responses to stimulation 
and for the ERP component P300. The meta-analytic results should be regarded as 
preliminary given the presence of numerous biases in the data.

Keywords: consciousness, improvement criteria, meta-analysis, minimally conscious state, neurophysiological 
markers, prognosis, publication bias, unresponsive wakefulness syndrome

…the quality of methodological reporting in the social and behavioral science research 
literature is poor. Reports are often silent or ambiguous on important methodological and 
procedural matters making it difficult for the analyst to determine what was done. The 
metaanalyst who develops elaborate and detailed methodological criteria for study selec-
tion, therefore, will most likely find that study reports do not provide sufficient information 
for those criteria to be confidently applied. [Lipsey and Wilson (1) (p. 22)]
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A systematic analysis of several published datasets can yield 
substantial new knowledge as compared with the data of each 
single experiment (2). This insight, increasingly admitted during 
the last decades, underlies the use of meta-analyses and other 
kinds of quantitative reviews that can largely overcome the sub-
jectivity and deliberateness of the “good old” narrative reviews. 
The domain of the severe Disorders of Consciousness (DoC) is, 
however, still dominated by the latter genre. Thus a brief overview 
of journal publications about brain imaging data in DoC for the 
last 5 years reveals that almost every fourth paper (exactly, 33 of 
the 137 papers) is a narrative review. Book publications further 
increase this number.

The notion DoC most usually includes two diagnostic enti-
ties: the vegetative state, or unresponsive wakefulness syndrome 
(UWS), and the minimally conscious state (MCS) (3, 4). To the 
best of our knowledge, the first systematic analysis of neurophysi-
ological data in DoC was devoted to the question whether these 
data confirm the reality of the distinction between UWS and MCS 
(5). The authors came to the conclusion that there were no reliable 
differences in terms of neurophysiological variables (mainly EEG, 
PET, and fMRI) between the two diagnoses.

Hannawi et  al. (6) concentrated on brain imaging studies 
and performed a voxel-based meta-analysis of 13 PET and fMRI 
studies in DoC patients, in which the corresponding data were 
reported. The authors identified a number of structures whose 
resting state activity was significantly decreased in patients as 
compared with healthy controls. On the other hand, they did not 
find convincing differences between UWS and MCS, which was 
in line with Liberati et al. (5). Kondziella et al. (7) came, however, 
to a different conclusion that brain connectivity data in rest and 
under passive stimulation (but not in active instruction condi-
tions) reliably differ between UWS and MCS. Unfortunately, 
inclusion criteria in this study were not completely clear; thus 
the question still remains open whether late event-related brain 
potential (ERP) components (P300, N400) can be regarded as 
indicators of cortical connectivity, and therefore, the authors 
should either include all P300 and N400 studies in their analysis 
(if they answer this question positively), or exclude all of them (if 
they answer it negatively), but instead, they included only some of 
them. The data were not checked for publication bias, that is, the 
tendency for positive results or stronger effects to get published 
more readily than negative results or weaker effects (8). The 
simplest index of this bias is a negative correlation between the 
size of the obtained effect and its reliability (9). On the other hand, 
Kondziella et al. (7) indicated a bias in patient selection. The risk 
of this bias was estimated as “high” in 81.4% of the analyzed stud-
ies and as “uncertain” in further 11.6%.

Also, Bender et  al. (10) were interested in the abilities of 
neurophysiological techniques to distinguish between UWS and 
MCS. Their meta-analysis aimed not at the presence and size of 
the effects, but at the parameters of sensitivity and specificity. 
The authors concluded “… that modern diagnostic techniques 
can already make a major contribution to the diagnostic assess-
ment of MCS.” The inspection of their empirical findings yields 
a modest support for this conclusion, because good sensitivity 
and specificity values were found only for the measures of quan-
titative EEG; ERP and fMRI measures revealed, to the contrary, 

only moderate specificity and rather low sensitivity that did not 
significantly differ from chance.

Kotchoubey (11) carried out a quantitative analysis of 61 
reports on ERPs in DoC. ERPs are the most frequently used 
neurophysiological technique in DoC, which, however, does not 
mean that they are also most useful. In general, the results of the 
analysis were rather disappointing. Most studies possessed such a 
low statistical power that their findings can at best be regarded as 
“preliminary results.” In addition, there was strong evidence for a 
publication bias toward positive findings.

However, there were good news. The above-mentioned deficits 
mainly concerned the studies where ERPs were compared between 
UWS and MCS, which largely concurs with the conclusions of 
Liberati et al. (5). The negative tendencies were substantially less 
expressed in the literature about the relationship between ERP 
and the prognosis of DoC outcome. Furthermore, the power of 
the prognostic studies correlated positively, and the effect sizes 
(ESs) correlated negatively, with the rank of journals where the 
data were reported. This indicated that weaker but more reliable 
effects could be published more successfully in top-ranking jour-
nals than strong but less reliable ones.

Like all areas in which there is no golden diagnostic standard, 
meta-analyses of novel diagnostic tests in the domain of DoC 
have a strong circular component. The expensive neurophysi-
ological techniques are developed to complement imperfect 
clinical methods and to increase the diagnostic precision; but 
in a meta-analysis, these novel techniques are evaluated on the 
basis of the same (presumably imprecise) diagnostic criteria 
that these methods should improve! The lack of the golden diag-
nostic standard makes another strategy more preferable, i.e., a 
search for the measurements most reliably related to prognosis. 
The above-cited findings, that prognostic studies in DoC appear 
to have a higher quality than diagnostic studies, are in line with 
this view.

The aim of the present study was a systematic analysis of all 
publications relating any functional brain data recorded in UWS 
and MCS patients to their outcome several weeks or months after 
the measurement. Data using only anatomical brain measure-
ments were not included in the present analysis. Each of the 
analyzed publications will hereafter be designated as “record.” The 
term “dataset” will, in contrast, refer to any individual comparison 
between a neurophysiological variable (e.g., fMRI activation in a 
specific task) and an outcome variable (e.g., Glasgow Outcome 
Scale—Extended, or GOSE (12)). One record can, therefore, 
contain many datasets.

metHODS

Literature Search and eS calculation
A search in MEDLINE and SCOPUS was conducted on the 23 
November 2017 by using search terms ((prognos* OR predict* 
OR outcome) AND (vegetative state OR minimally conscious 
state OR unresponsive wakefulness syndrome)) AND (eeg OR 
fmri OR event related potentials OR erp OR positron emission). 
No time limits were set for the search. In addition, the system-
atic reviews cited above in the Introduction as well as recent 
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FiguRe 1 | Flow chart of the selection of records.
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informal reviews on neurophysiology of DoC, were consulted. 
Eight hundred ninety-seven peer-reviewed records published 
in English, German, or Russian, were identified. After reading 
abstracts and removing duplicates, 822 of them were rejected as 
irrelevant. Full test was sought for the other 76 records. Seven of 
them were rejected because they did not contain any outcome 
data on DoC patients, or contained outcome data already 
published elsewhere. Further exclusion criteria were (a) case 
studies or series of cases; (b) using patients’ survival, and not 
the clinical improvement, as the only prognostic criterion; (c) 
presentation of the results in such a general form that the size 
of the observed effects cannot be calculated; and (d) report-
ing the data of UWS and MCS patients together with other 
diagnoses such as coma, exit-MCS, or locked-in syndrome: on 
the basis of these criteria 22 records were rejected. Regarding 
(d), we accepted studies in which UWS and MCS data were 
reported together, but not those in which the sample included 
more than these two diagnoses and the reported data did not 
give the reader a possibility to distinguish between the differ-
ent diagnostic groups. The process of the selection of relevant 
records is shown in Figure 1.

The search resulted in 47 records containing a total of 381 
datasets. These records are summarized in Table 1. Effect size 
was calculated for each dataset (i.e., for each predictor–out-
come pair) on the basis of primary data on each individual 
patient presented in the tables of most studies, or chi-squared 
based on the same patient data, or the t-statistics. Only in one 
record, ES was calculated from a coefficient of correlation. 
All these parameters were converted into Cohen’s d following 
the methods summarized by Lenhard and Lenhard (13). If 
a resulting 2 × 2 table contained a zero cell (e.g., all patients 
having a positive neurophysiological sign recovered), the blind 

application of the corresponding formulas results in d = infi-
nite; to avoid this, we added 0.5 to all cells, as recommended by 
Nakagawa and Cuthill (14). When d-values were included in 
further operations (added, averaged, etc.), they were weighted 
by inverse standard error (SE).

A big and still underestimated problem of all quantitative 
reviews is the plenty of non-reported data. Several authors 
(63–65) indicated that measured but unreported variables 
constitute one of the main sources of false positive findings 
ubiquitous in biology and psychology and thus an important 
cause of the contemporary “replication crisis” (66). When, 
and only when, it was evident for both present authors from 
the text of a paper that a neurophysiological variable was 
measured but not reported in relation to the outcome (or, 
rarely, reported as “non-significant”), the ES of this variable 
was assumed to be 0, and the SE of ES was assumed to be equal 
to the median SE calculated for the reported variables in the 
same record.

When the results presented several strongly correlated predic-
tor variables (e.g., the same EEG variable in several adjacent 
regions), they were regarded as representing the same “construct” 
(1), and the mean and standard deviation (SD) for the construct 
were calculated according to the formulas

 Mean=(M M N1 2+ ) / ;  

 
SD

SD SD
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2 1

1
2
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where M1 and M2, SD1 and SD2 are mean and SD values for two 
to-be-combined variables, respectively. (Note that the formulas 
are so simple because both variables have the same N.)
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taBLe 1 | A summary of the 47 records included in the systematic review.

Reference N (uwS/
mcS)

Follow 
up, 
months

methods Relevant measures improvement criteriaa

(15) 64/0 2 EEG, 24-h 
polysomnography

General sleep patterns
Dominant EEG rhythm: beta, theta or delta

Diagnosis MCS, or 
GOS > 2

(16) 14/4 6–38 24-h 
polysomnography

Sleep complexity, presence of different sleep stages CRS-R

(17) 10/0 36 ~14-h 
polysomnography

Sleep complexity, number of sleep spindles, presence of different sleep stages GOS

(18) 42/0 3 EEG Spectral power of resting state EEG in delta, theta, alpha1, alpha2, beta1 and 
beta2 frequency bands

LCF > 5

(19) 59/47 3 EEG EEG amplitude normality (>20 μV), dominant frequency, reactivity to forced eyes 
opening
EEG combined AFR index

CRS-R; change from 
UWS to MCS or from 
MCS to EMCS

(20) 28/0 6 EEG The same as in Ref. (19) CRS-R; change from 
UWS to MCS or from 
MCS to EMCS

(21) 12/1 3 EEG EEG normality according to Synek scale LCF
(22) 4/5 6 Auditory ERP MMN, N2 and/or P300 in control and after listening to music condition CRS-R ≥ MCS
(23) 34/0 24 Short-latency EP, 

somatosensory EP, 
EEG

BAEPs grade, EEG reactivity to passive eyes opening, pain and acoustic stimuli, 
EEG Synek index, N20 SEP grade, P300 to a patient’s own name

DRS < 22

(24) 17 12 PET FDG-PET in the resting state GOSE > 2
(25) 7/0 2–9 fMRI BOLD response to speech and noise stimulation CRS-R ≥ MCS
(26) 22/16 6 fMRI fMRI BOLD response to speech and sound stimulation CRS-R
(27) 7/4 3 fMRI fMRI BOLD response to subject’s own name CRS = MCS
(28) 3/7 6 EEG, fMRI EEG, BOLD response to language, music, active motor imagery instruction GOSE > 2
(29) 43/0 24 EEG, 

somatosensory EP
EEG classified according to Synek scale
N20 SEP grade

CRS-R ≥ MCS 

(30) 14/0 3 EEG Resting state EEG Index of Structural Synchrony (amplitude, length, instability, 
number of functional connections in Alpha, Beta1, Beta2 bands)

LCF = MCS

(31) 8/0 24 Auditory ERP N2, P300 Recovery of awareness 
but no standardized 
assessment

(32) 20/0 NA Auditory and visual 
ERP, SPECT

Auditory MMN, N100, N200, P300; visual EP present/absent; resting state brain 
metabolism assessed by SPECT

GOS > 2

(33) 75/38 4 Somatosensory EP N20 CRS scores of ≥ 23
(34) 56/0 12 EEG, 

somatosensory 
EP, 24-h 
polysomnography

EEG reactivity to noxious stimulation, N20, sleep spindles in 24-h EEG
All predictors scored as absent or present

GOS > 2 or transition 
UWS to MCS

(35) 10/0 3 Somatosensory EP N20 grade and latency Recovery of awareness 
but no standardized 
assessment

(36) 1/4 3 fMRI fMRI default mode network normality Level of consciousness 
according to the Multi-
Society Task Force on 
PVS

(37, 38) 24/19 6 Auditory ERP, EEG MMN, N400, EEG dominant background activity DRS ≥ MCS
(39) 6/5 12 EEG, fMRI EEG reactivity to warm water stimulation, fMRI activation to thermal stimulation GOS > 2 or transition 

from UWS to MCS
(40) 12/10 1, 2, 3, 

6, 9, 12
Auditory ERP P300 CRS-R ≥ MCS

(41) 50/0 5 EEG EEG normality according to Synek scale, EEG reactivity to pain stimulation Regaining consciousness 
according to GOS, LCF

(42) 23/0 6 fMRI fMRI BOLD response to speech (adapted affective speech) GOS > 2 or transition 
from UWS to MCS

(43) 11/0 6 Polysomnography REM sleep characteristics Recovery of awareness 
but no standardized 
assessment

(44) 6/2 3 Auditory ERP MMN to subject’s own name stimuli, N100 CRS-R
(45) 6/5 3 PET PET global GABA A receptor binding CRS-R
(46) 52/0 3 fMRI fMRI resting state connectivity GOS > 2
(47) 5/0 0.5–2 EEG-TMS TMS-evoked cortical responses CRS-R

(Continued)
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Reference N (uwS/
mcS)

Follow 
up, 
months

methods Relevant measures improvement criteriaa

(48) 38/0 6 EEG Resting state EEG Approximate Entropy, EEG reactivity (stimulation protocol is not 
described)

GOSE > 2

(49) 56/0 12 EEG Spectral power in Delta, Alpha, Theta, Beta, Gamma frequency bands CRS-R = MCS
(50) 71/0 1.5 EEG, auditory ERP 92 measures including: CNV, MMN, P1, P3a, P3b; normalized and absolute 

spectral power of delta, theta, alpha, beta, gamma rhythms; permutation entropy, 
Komolgorov–Chaitin Complexity; phase lag index (PLI), spectral entropy, imaginary 
coherence and weighted symbolic mutual information (wSMI) in different frequency 
bands

CRS-R

(51) 18/51 12 PET, fMRI Resting state FDG-PET, BOLD response to active motor and visuospatial imagery 
tasks

GOSE > 2

(52) 53/39 24 Auditory ERP N400, P300 CRS-R = EMCS
(53) 9/0 2–54 PET Resting state FDG-PET Recovery of awareness 

but no standardized 
assessment

(54) 10/12 1–6 fMRI BOLD response to active motor and visuospatial imagery tasks CRS-R; change from 
UWS to MCS, or MCS 
to EMCS

(55) 39/25 12 fMRI fMRI BOLD response to subject’s own name CRS-R
(56) 6/5 6 Auditory ERP MMN, P300 to subject’s own name CRS-R
(57) 10/0 24 Auditory ERP MMN LoC > 6
(58) 10/0 24 Auditory ERP N200, N350, P300 in active and passive paradigms LoC > 6
(59) 11/0 26–36 Visual ERP N2, N3, P2 amplitude and latency, P2–P3 peak to peak magnitudes of VEP LoC > 6
(60) 10/8 1–150 EEG, 24-h 

polysomnography
Permutation entropy, alpha-to-theta ratio, density of slow waves, high-to-low 
frequencies ratio, density of sleep spindles

GOSE > 2 or CRS-R

(61) 21/0 6 Short-latency 
EP, EEG, 
somatosensory EP

BAEP, N20 SEP grade, EEG normality, approximate entropy (ApEn), cross-
approximate entropy, Lempel–Ziv complexity to pain, auditory and music 
stimulation in comparison with eyes-closed condition

GOS > 2

(62) 36/0 12 (after 
injury)

Somatosensory 
ERP

N20, P25, N20–N25 SEP grade and amplitude GCS ≥ MCS

N (UWS/MCS) means the number of UWS and MCS patients whose outcome and neurophysiological data were available. In the case of different number of patients available for 
different neurophysiological measurements, only the largest number is reported; it may be less than the total number of patients in the study.
aIf GOS(E), CRS-R, LCF mentioned with no additional description, it was possible to calculate improvement criteria either way.
NA, not available, AFR index, Amplitude/Frequency/Reactivity index; UWS, unresponsive wakefulness syndrome; MCS, minimally conscious state; EMCS, Exit form MCS; GOS(E), 
Glasgow Outcome Scale (Extended), GCS, Glasgow Coma Scale; DRS, Disability Rating Scale; LCF, levels of cognitive functioning scale; LoC, Level of Consciousness Scale; SEP, 
somatosensory evoked potentials; BAEP, brain stem auditory evoked potentials; dwPLI, debiased weighted phase lag index; SPECT, single-photon emission computed tomography; 
CRS-R, Coma Recovery Scale-Revised.

taBLe 1 | Continued
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Outcome criteria
The category “bad outcome” for UWS and MCS patients pre-
sumed remaining in the same condition. Deaths were included 
in this category only if it was clear that a patient died as a direct 
consequence of the brain lesion, otherwise excluded from the 
analysis. The category “good outcome” has, on the other hand, 
two different definitions: minimal clinical improvement or 
regaining full consciousness.1 For MCS, both criteria are the 
same, because their minimal improvement implies the transition 
to Exit-MCS. But this is not true for UWS, because their minimal 
improvement means only the transition to MCS. As shown in 
Section “Results,” the two different improvement criteria of UWS 
yield different results.

Avantaggiato et al. (17) analyzed a group of DoC patients con-
taining children and adolescents; because the authors presented 

1 Practically, “full consciousness” is defined as reliable communication or functional 
use of objects. In the following, when we speak about “regaining of consciousness” 
we shall mean these two abilities (at least one of them) and not just minimal signs 
of consciousness presented also in the MCS.

individual data of each patient, we selected the results for patients 
>13 years only. The category “good prognosis” for MCS implied 
the recovery of consciousness. For UWS, however, it might 
include either the recovery of consciousness or the transition into 
MCS. All 381 datasets were included in the systematic review.

Quality assessment
Quality of the records was estimated on the basis of the QUADAS 
criteria (67) that have been tailored, as recommended in the 
original publication, for the specific research field. Because 
Kondziella et  al. (7) expressed concerns about possible bias in 
patient selection, we recorded whether a publication included 
a patient flow chart, and whether it described explicit exclusion 
criteria for UWS and MCS patients or simply mentioned that all 
patients admitted in the clinics for a particular time period were 
investigated. We also marked the records in which obviously 
more neurophysiological data were collected than reported in 
the analysis of outcome prediction. Another quality index was 
the use of the Coma Recovery Scale-Revised (CRS-R (68)) for 
DoC diagnostics, because this scale, though not being golden 
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standard, possesses substantially better psychometric qualities 
than all other instruments for the assessment of DoC (69). In 
addition, the impact factor (IF) of the publishing journal was 
included as an indirect quality criterion, because the data indicate 
high correlation between the IF and the informal reputation of 
the corresponding journal among neurologists (70).

meta-analysis
Two additional inclusion criteria for meta-analyses were (1) at 
least three independent records reporting the same predictor 
variable or variables related to the same construct and (2) each 
of these records includes at least 10 patients. The criteria can be 
regarded as very liberal because, first, only three records and 
only 10 patients (who further should be subdivided into at least 
two groups) are rather low numbers, and second, the notion of 
construct is rather vague and permits to include into one group, 
for example, studies of P300 to simple tones and to patients’ own 
names, thus increasing heterogeneity. On the basis of these crite-
ria, 319 datasets were excluded (of course, this number would be 
larger if the criteria were more conservative). The remaining 62 
datasets finally entered the meta-analysis.

We used a random-effects meta-analysis with restricted 
maximum-likelihood (REML) estimator for pooling ESs. We 
assessed the level of heterogeneity between studies with a standard 
Q-test statistic as well as by I2 calculation (71). Heterogeneity was 
regarded as significant when p < 0.05 or I2 > 50%. Potential pub-
lication bias for individual predictors was assessed with the Egger 
test for Funnel plot asymmetry and represented graphically with 
Begg’s funnel plots of the ES versus its SE. Additionally, Rosenthal 
fail-safe test was also applied. All meta-analyses were performed 
using R package “metafor” (72) using inverted standard errors as 
weighting parameter.

ReSuLtS

Quality of Reporting
None of the 47 records presented a flow chart depicting patient 
selection. The authors of 20 records (42.6%) explicitly state that 
they included all patients within some exactly described time 
period. Nine reports (19.1%) depicted at least some inclusion 
and/or exclusion criteria. In the remaining 18 records, patient 
selection was not described.

Most selected records present their data either for each indi-
vidual patient or as mean ± SD (or SE) for each relevant group 
(e.g., recovered versus non-recovered). Three records present 
data only in a general form (e.g., as correlations). Five records 
(10.6%) mention the size of some effects.

CRS-R was used for the diagnosis of UWS and MCS in 29 
records (61.7%); other studies employed Disability Rating Scale, 
Glasgow Coma Scale, or other less powerful instruments.

Quite surprisingly, only two records explicitly state that the 
neurologists who assessed the outcome were blinded to the neu-
rophysiological data collected before. In six records, blindness 
of the outcome might be assumed because neurophysiological 
examination and outcome diagnostics were performed in dif-
ferent institutions. These eight records (17%) were combined 

into one “blind” group. In the majority of the records (83%), the 
outcome was diagnosed with knowledge of the neurophysiologi-
cal findings.

The median time between the measurement and the outcome 
assessment was 6  months, mean minimal time per record was 
9 months (range 1–36 months), and the mean maximal time per 
record 16 months (range 1.5–150 months). In 42 records (89%), 
this interval was same for all the examined patients. Seven records 
used broad variable intervals for different patients (1–6, 1–30, 
2–9, 6–38, 10–150, 26–36, and 24–144 months). One publication 
does not report the measurement–outcome interval.

The mean total sample was 31.11  ±  3.66 patients, with a 
median of 21 patients and a range of 5–123 patients. Eight 
records included <10 patients, 14 records had between 10 and 
19 patients. Adding the case studies filtered out at the previous 
stage, we come to the result that about a half of all prognostic 
studies included <20 patients. The records that did not describe 
patient selection included significantly less patients (means 14.1 
versus 43.0, t  =  5.11, p  <  0.001) than records describing their 
selection process.

The median IF of the publishing journals was 3.87, range 
from 0 to 44. IF did not differ between the records with correctly 
versus incorrectly described patient selection. We hypothesized 
that studies with more patients (thus having higher power) are 
published in more prestigious journals, but the corresponding 
correlation was not significant (Spearman’s ρ = 0.26, p = 0.078). 
However, studies employing CRS-R were published in journals 
with higher IF than studies that did not use this scale: p < 0.001, 
Mann–Whitney test. A few studies with blind outcome assess-
ment included larger sample sizes than studies without outcome 
blindness (t = 2.35, p = 0.023) and were also published in more 
prestigious journals (p = 0.046, Mann–Whitney test).

Notably, we did not find a significant relationship between 
any of the variables and the time elapsed from the neuro-
physiological measurement till the assessment of the outcome. 
Non-weighted ES correlated with the mean time between 
neurophysiological measurement and outcome assessment with 
Spearman’s ρ = −0.09, with minimal time per study ρ = −0.18, 
with maximal time per study ρ = −0.07 (all nonsignificant). For 
weighted ES, the corresponding correlations were 0.03, −0.06, 
and −0.11, respectively (all nonsignificant). Likewise, correla-
tions of the time interval with the SD of ES (as a measure of its 
reliability) were all between 0.00 and 0.03, and correlations of 
the time interval with sample size were between 0.00 and 0.06, 
all non-significant.

Also, the year of publication did not correlate with any other 
measures. The bibliographic literature gives a reason to expect 
that later publications might have large samples or smaller ESs 
than earlier (73). Although the corresponding correlations 
were in the expected direction, they did not reach significance 
(year/N: Spearman’s ρ  =  0.12; year/ES: ρ  =  −0.08). Also, the 
correlation between publication year and IF was close to 0 
(ρ = 0.03).

Publication Bias
The inverted SE (1/SE) was taken as a measure of the reli-
ability of an ES. Across all datasets, the rank-order correlation 
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FiguRe 2 | Negative correlations between effect size (ES) and its reliability, 
estimated by the inverted standard error (1/SE), for all individual datasets [(a): 
Spearman’s ρ = −0.22, p < 0.001], datasets included in the meta-analysis 
[(B): ρ = −0.47, p < 0.001], and for mean ESs per record [(c): ρ = −0.41, 
p = 0.004]. The regression lines are presented for illustration only, not for 
quantitative analysis.
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between ES and its 1/SE was weak but significant (ρ = −0.22, 
k =  381, p <  0.001). The result might be biased because dif-
ferent records contribute disproportionally to the whole mass 
of data. However, the positive correlation between the ES and 
its SE became even stronger when calculated for the selected 
subset of datasets included in the meta-analysis (ρ  =  −0.47, 
k  =  62, p  <  0.001), as well as for the ESs averaged for each 
record (ρ = −0.41, k = 47, p = 0.004). The results are shown 
in Figure 2.

Note that the first analysis (across all datasets) overestimates 
the contribution of the records reporting many datasets. The last 
analysis (across averaged ES), to the contrary, may overestimate 
the contribution of the records presenting few or only one dataset. 
Despite this contrary bias, very similar results were obtained. To 
sum up, these data show a trend to selective publication of strong 
but unreliable effects. How serious the bias is in respect of each 
particular predictor variable will be discussed below.

uwS and mcS
Thirteen of the 381 datasets included only MCS samples, 248 
datasets included only UWS patients, and the remaining datasets 
included both diagnostic groups of DoC patients.

While the main issue of the present study was outcome 
prediction on the basis of neurophysiological data, we also 
asked the question whether the outcome can be predicted sim-
ply from the diagnosis. Many authors of the reviewed articles 
also asked this question and answered it negatively. However, 
a meta-analysis of the combined data from the records where 
both diagnosis and prognosis could be followed revealed that 
MCS patients recovered consciousness significantly more fre-
quently than UWS patients (Figure 3): mean ES = 0.84, 95% CI 
from 0.61 to 1.06. On the other hand, if the positive outcome of 
UWS patients is defined as any minimal improvement, i.e., the 
transition to the MCS, the diagnosis loses its predictory value 
(Figure 4).

Because we found that the improvement criterion for UWS 
(transition to the MCS versus recovery of full consciousness, 
that is, exit-MCS) can play a role in the calculation of predic-
tion effects, we compared weighted mean ES for the neuro-
physiological variables in three conditions: (i) prediction of 
the recovery of consciousness for MCS patients; (ii) prediction 
of the recovery of consciousness for UWS patients; and (iii) 
prediction of the transition to MCS for UWS patients. A one-
way ANOVA across these three groups resulted in a highly sig-
nificant effect: F(2,294) = 23.11, p < 0.001. The result does not 
change when we limit the analysis by only those datasets that 
will later enter the meta-analysis [F(2,60) = 19.88, p < 0.001], 
or when we exclude all mixed datasets [F(2,86)  =  12.08, 
p  <  0.001]. Independently of the method of calculation, the 
mean weighted ES for the groups (i) and (ii) (i.e., different 
diagnoses, the same improvement criterion) were very similar 
and varied—dependent on the selected data—between 0.41 
and 0.48. The mean weighted ES for the group (iii) was about 
three times larger (between 1.40 and 1.68) and differed sig-
nificantly from both of them, although the groups (iii) and (ii) 
included patients with the same diagnosis and some datasets 
involved in these two groups might even include some of the 
same patients. To sum up, neurophysiological methods are 
significantly more successful in prediction of the transition 
from UWS to MCS than in prediction of the recovery of full 
consciousness.

meta-analysis of Predictory constructs
According to the above results, we performed the meta-analysis 
separately for (a) prediction of any clinical improvement (for 
which UWS patients means at least transition to the MCS), and 
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FiguRe 4 | The results of the meta-analysis for prediction of the outcome from the diagnosis. The criterion of improvement was “minimal improvement,” that is for 
UWS patients, it was the transition to MCS, and for MCS patients, at least the transition to Exit-MCS. As can be seen, with this improvement criterion the diagnosis 
does not predict outcome. The rest is the same as in Figure 3.

FiguRe 3 | The results of the meta-analysis for prediction of the outcome from the diagnosis. The criterion of improvement for all patients was recovery of full 
consciousness. Q, the corresponding p-value and I2 are estimates of between-study heterogeneity; symbols ■ stay for the estimates of effect size (ES) in each 
single study, with the size of the symbol being proportional to the precision of the estimate. Error bars indicate the 95% confidence intervals of ES. The diamond ♦ is 
the estimate of the overall effect, the edges of the diamond represent the 95% confidence interval limits; CI, confidence interval; UWS and MCS, sample size of 
UWS and MCS patients in individual studies; N_UWS and N_MCS, overall sample size of the two patient groups. The resulting ES was tested for significance using 
z-criterion; the values of z and the corresponding p are given at the end of the lower left line.
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(b) prediction of the recovery of full consciousness. Sixty-two 
datasets comprising a total of 1,919 patients were analyzed. They 
involved the following potential predictors:

 1. EEG reactivity to “passive” stimulation (i.e., without an 
active instruction). Hypothesis: stronger EEG oscillatory 
responses = > better prognosis.

 2. EEG entropy indices. Hypothesis: higher EEG entropy = > bet-
ter prognosis.

 3. EEG dominant oscillatory activity. Hypothesis: back-
ground activity closer to the alpha frequency = > better 
prognosis.

 4. EEG Synek score (74) is frequently used in the intensive care 
medicine for the prognosis of the outcome of acute coma. 
Hypothesis: higher score = > better prognosis.

 5. fMRI BOLD response to passive (auditory or nociceptive) 
stimulation. Hypothesis: stronger response  =  >  better 
prognosis.

 6. Resting state PET or SPECT metabolism. Hypothesis: closer 
to normal brain metabolism = > better prognosis.

 7. N20 component of somatosensory evoked potentials (SSEP). 
Hypothesis: normal N20 = > better prognosis.

 8. Auditory Mismatch Negativity (MMN) to a change in ongo-
ing acoustic stimulation. Hypothesis: larger MMN = > better 
prognosis.

 9. Auditory P300 as an index of complex processing in cortico-
subcortical networks. Hypothesis: larger amplitude or shorter 
latency = > better prognosis.

 10. Spindle activity as an index of information processing in 
sleep (75). Hypothesis: presence of sleep spindles = > better 
prognosis.

The findings are summarized in Figures 5 and 6 and presented 
in more detail in Figures S1 and S2 and Tables S2 and S3 in 
Supplementary Material.

Only oscillatory EEG responses to passive stimulation appear 
to be reliably related to both prognostic criteria (i.e., minimal 
clinical improvement and the recovery of full consciousness). 
The included datasets are highly homogenous and yield a highly 
significant mean ES of 1.45 on a sample of 99 patients. Another 
prediction variable that significantly predicted the recovery of 
consciousness was brain metabolism assessed by PET/SPECT. 
It attained a mean ES of 1.40 on a sample of 106 patients. The 
prognostic value of the MMN, P300, EEG entropy variables, and 
fMRI responses to passive stimulation was not significant and 
characterized by strong heterogeneity of the primary datasets.2

More promising results have been obtained in relation to the 
minimal improvement criterion. In addition to the EEG reactiv-
ity, significant effects are found for the MMN and sleep spindles. 
Formally positive results are obtained for the SSEP component 
N20 and the background EEG frequency, but the data are too 
heterogeneous to make a conclusion.

2 The ES in Wijnen et al. (57) strongly differs from all other effects in the MMN 
group. After removing this result, the MMN data become completely homogenous 
(I2 = 0).

DiScuSSiON

Although the Section “Limitation” is frequently placed at the 
end of Discussion, we believe that particularly the discussion 
of meta-analytic data is useful to begin with limitations. One 
important limitation is that of the present work as such. As 
the manuscript was prepared for a special issue, we did not 
systematically address the authors of the original publications 
but relied solely on the published data including supplementary 
information. Although we believe that personal contact with the 
authors may have enhanced our knowledge, at the first step we 
did not use this strategy because it might have caused consider-
able delays.

Other limitations of the meta-analysis are rather related to 
the limitations of the primary literature. A quantitative review 
can overcome some limitations of the reviewed studies, e.g., their 
small size (thus, it can reveal a consistent and significant effect on 
the basis of several inconsistent and non-significant ones), but it 
cannot remove the biases implied in its empirical basis.

To begin with the least, the quality of data reporting is far 
from the present-day standard. While Fritz et  al. (76) bristled 
that only 42% of empirical psychological studies report the size 
of their effects, in the present sample ES was mentioned only in 
five records (10.6%). Presenting a patient flow chart is already a 
standard in many fields of clinical research but fully unknown in 
the domain of DoC. About a half of the reviewed records neither 
describe inclusion and exclusion criteria nor even make a simple 
statement that all patients admitted to the hospital during some 
period were included. Thus, the concern of Kondziella et al. (7) 
about possible bias in patient selection seems to be justified.

The majority of the reviewed studies employed a univariate 
approach, i.e., each predictor was separately compared with the 
target variable. Of course, this is a serious limitation because we 
know that the values of a regression strongly depend on the other 
predictor variables included or excluded in/from the equation. 
Thus, a neurophysiological variable (e.g., P300), which appears 
useless as a single predictor, might reveal its effect in a particular 
combination with other predictors. A few groups have recently 
attempted to overcome this limitation and employed a multivari-
ate approach to outcome prediction in DoC (24, 50). This seems 
to be a perspective line of research, but now the number of such 
records is still too low to undertake a separate meta-analysis of 
these data.

The negative correlation between the description of patient 
selection and the number of patients suggests that selection bias 
might be particularly strong in small-size studies. Although the 
sample size in prognostic studies is on average larger than in 
studies comparing UWS and MCS, we found, together with 
single case studies, 33 records with less than 20 patients, which 
implies that even in the case of the equal distribution at least one 
of the outcome groups (recovered or non-recovered) includes 
<10 patients. Particularly, the studies with the total N  <  10 
result in huge confidence intervals making any reliable conclu-
sion impossible. Of course, small or even single case studies 
may have sense at the very beginning of the research process, 
when nothing is known about an investigated phenomenon 
whatsoever. However, in such a case, one can expect an increase 
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of sample sizes with the year of publication, but this correlation 
was not significant.

Strong negative effects of underpowered studies on the qual-
ity of the reported data have thoroughly been discussed in the 
literature in general (63, 77, 78) and specifically in neuroscience 
(79, 80). Positive findings of tiny studies can only result from 

chance or selective data report. Our data show a consistent and 
significant correlation between the size of a prognostic effect and 
its standard error, indicating that stronger effects are less reliable. 
The correlation even withstood the removal of all datasets with 
<10 patients. As these small samples yield particularly large 
SE, the variability of SE was severely restricted, which might be 
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FiguRe 6 | The results of the meta-analysis for prediction of the outcome from neurophysiological variables. The criterion of improvement for UWS patients was the 
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expected to reduce the correlation coefficient. This was, however, 
not the case (Figure 2).

Another important limitation of nearly all studies was the lack 
of outcome blindness. Only two groups of authors clearly indi-
cated that the diagnosis of the outcome was performed by neu-
rologists without the knowledge of predictor values. One might 
argue that the diagnosis of recovery of consciousness (based on 
the criteria of consistent communication and functional use of 
objects) is quite easy and can hardly be biased by neurophysi-
ological data. Even if this argument is true for exit-MCS, it is obvi-
ously false for the other broadly used improvement criterion of 
UWS patients, namely the transition to MCS. As the differential 
diagnostics between UWS and MCS is notoriously difficult (81), 
any information about positive or negative neurophysiological 
findings could influence the diagnostic decision. If this influence 
really takes place, we can expect much stronger correlation of 
neurophysiological indices with the transition to MCS than with 
the transition to exit-MCS, because the latter diagnosis is easier 
and thus less affected by additional information.

Exactly this was true. When the improvement criterion for 
both diagnostic groups (UWS and MCS) was the transition to 
exit-MCS, the weighted average ES (in terms of Cohen’s d) was 
rather moderate, in any case slightly smaller than 0.5. But the 
transition of UWS patients to MCS (which is quite difficult from 
the diagnostic point of view) was strongly related to the neuro-
physiological findings, with the weighted average ES being >1.4.

A potentially strong but still underestimated bias is related to 
unreported predictor variables. In most of the reviewed records, 
outcome prediction was not the main aim of the study, but rather 
a by-product of other analyses. Particularly, in such studies 
(though not only in these), many variables could be measured 
but not really reported. Sometimes, many variables are used in 
a UWS/MCS comparison but not even mentioned in relation to 
prognosis, although one may suppose that they were also com-
pared with the follow-up data. Less frequently prognostic effects 
are referred to as “lacking” or “non-significant” without further 
quantification. Simmons et al. (65) suggest a very simple solution 
of the problem: whenever authors list their variables, they should 
add a short word “only.” We tried to counteract this false positive 
effect by assigning the value of 0 to the effects of obviously omit-
ted variables (with its SE being assumed as the median SE of the 
reported variables). However, this method is not only imprecise 
but can also be biased, first, because the real number of such omit-
ted variables may be much larger than a reader can guess, and 
second, because negative effects (i.e., those which run against the 
starting hypothesis, such as better neurophysiological responses 
in non-recovered patients) can be omitted more frequently than 
positive effects.

With this in mind, we understand that the data of meta-
analyses should be taken with great caution. Nevertheless, 
we believe that a glance on the meta-analytic results can be 
of interest. First, the analysis was strongly complicated by the 
high variability of the primary records. Very small number of 
studies using exactly the same predictor and the same improve-
ment criterion enforced us to combine similar methods, which 
resulted in high heterogeneity indices such as I2. Poor prognostic 
features of the characteristics of fMRI reactivity might partially 

be attributed to this group of studies including fMRI responses 
to very different stimulations from pain to music. For the same 
reason, we excluded some possible predictors (e.g., responses to 
active behavioral instructions; ERP N400 component) that were 
employed in two records only.

Second, the empirical contribution of predictors does not 
necessarily follow their general theoretical value defined by basic 
neuroscience. This is quite demonstrative in the case of P300, one 
of the most useful and most widely employed indices in neurosci-
ence whose effect in the prediction of the outcome turned out to 
be virtually 0. One might speculate that P300 is not immediately 
related to consciousness (37), but, rather, to a more specific func-
tion such as working memory. Another possible reason may be 
the extreme difficulty of the separation between different P300 
subcomponents (P3a and P3b) in the target population (38). 
The subcomponents are usually distinguished by topography 
and responses to active instruction, but most DoC patients 
have changed ERP topography and do not respond to instruc-
tion. If the results of this preliminary analysis should be used to 
determine which lines of research should not be recommended 
for future studies, P300 is the first candidate for such a negative 
recommendation. Also, the importance of the (highly expensive) 
fMRI predictors might similarly be overestimated on the basis of 
their theoretical importance.

Oscillatory EEG responses to stimulation showed, to the con-
trary, most promising effects, which agree well with the results of 
Bender et al. (10) obtained on the basis of different data.

Although EEG reactivity was measured to very different stimuli 
[e.g., to passive (23) or forced eyes opening (19, 20), to pain (34, 
41), to warm water (39), and no description was given by Sarà 
et al. (48)] and the definition of reactivity substantially varied, the 
results are very homogenous across the reports. Moreover, this 
was the only group of predictor variables whose predictive value 
was significant for both improvement criteria (transition from 
UWS to MCS and the recovery of consciousness). Publication 
bias was also presented in these data, but it was less strong than 
for many other predictors (see Tables S2 and S3 in Supplementary 
Material).

Other perspective variables are brain metabolism (estimated 
by means of PET or SPECT) and the presence of sleep spindles 
in the EEG. Recent sleep data indicate a vital importance of 
spindles in information processing during sleep, which affects 
numerous cognitive processes in the subsequent wakefulness (75, 
82, 83). DoC belongs to rare medical conditions characterized by 
severe deficits, or even complete absence, of sleep spindles, also 
in patients with relatively preserved sleep structure (84, 85). We 
believe that the role of sleep spindles in the outcome prediction 
in DoC should be explored in future work.

Both MMN and SSEP are proven outcome predictors for 
acute coma (86, 87). However, their value for the chronic DoC 
remains unclear. The present findings indicate their prognostic 
effects for the transition from UWS to MCS but not for recovery 
of consciousness.

The data further show that the predictive value of the auxiliary 
(e.g., neurophysiological) variables should be compared with 
the values of clinical variables. In the currently reviewed data, 
MCS patients had about 4.5 times better chances (if we take the 
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lower limit of the 95% CI, three times better chances) to regain 
consciousness than UWS patients. It is true that we analyzed 
only records implementing the neurophysiological approach and 
missed similar data in the other publications not using neuro-
physiological variables. Nevertheless, the effect is very strong and, 
as far as we can judge, not strongly biased (as it was not a desired 
effect). This indicates the necessity to integrate neurophysiologi-
cal and clinical predictors within a multivariate approach in fur-
ther studies. This integration could be more productive in both 
diagnostic and prognostic respects than the attempts to oppose 
different classes of variables to each other.

These considerations can only be conceived of as preliminary. 
It should be stressed that all biasing factors discussed above act 
in the same direction, potentially increasing the number of false 
positive results. The general critique of Brok et al. (64) remains 
valid also for the current study: as long as the original studies 
do not present all information, meta-analyses can only try to 
diminish, but not abolish the positive bias. If we want to eliminate 
the bias, (i) small-size studies should be avoided (for prediction 
studies, groups of recovered/non-recovered should include at 
least 20 patients each); (ii) a flow chart should make evident the 
procedure of patient selection; (iii) neurologists assessing the 
target variable (i.e., change of the diagnosis) should be completely 
blinded regardless the values of neurophysiological predictors; 
(iv) the full list of measured variables including all potential 
predictors should be presented from the beginning of a report 
(in a Methods section); (v) the intervals (a) between the accident 
and the neurophysiological measurement, and (b) between this 
measurement and the follow-up assessment should be specified; 

finally, (vi) all positive and negative (e.g., non-significant rela-
tionships) results should be described in the same quantitative 
manner, either including the size of all effects, or permitting to 
calculate this size (e.g., mean and SD for the recovered and non-
recovered groups).

Therefore, the numbers presented in Figures 5 and 6 and in the 
Supplementary Materials can now be regarded, not as estimates of 
real effects, but rather, as upper limits of these effects. The current 
state of affairs is yet far away from the level at which any practical 
recommendation can be given except the recommendation to be 
highly careful with interpretations.
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