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Nicotine has been shown to modulate neuroplasticity, cognition, and learning processes 
in smokers and non-smokers. A possible mechanism for its effect on learning and 
memory formation is its impact on long-term depression and long-term potentiation 
(LTP). Nicotine abstinence in smokers is often correlated with impaired cognitive per-
formance. As neuroplasticity is closely connected to learning and memory formation, 
we aimed to explore the effect of nicotine spray administration in deprived smokers on 
paired-associative stimulation (PAS25)-induced neuroplasticity and on performance of 
the serial reaction time task (SRTT), a sequential motor learning paradigm. Deprived 
smokers (n = 12) under placebo medication displayed reduced excitatory neuroplasticity 
induced by PAS25. Plasticity was restored by nicotine spray administration. Likewise, 
SRTT-performance improved after nicotine spray administration compared to placebo 
administration (n  =  19). The results indicate a restitutional effect of nicotine spray in 
deprived smokers on both: LTP-like neuroplasticity and motor learning. These results 
present a possible explanation for persistence of nicotine addiction and probability of 
relapse.

Keywords: neuroplasticity, nicotine, non-invasive brain stimulation, cognition, smokers

inTrODUcTiOn

Nicotine is the main psychoactive component of tobacco and responsible for its addictive properties 
(1). It modifies brain physiology via its interaction with nicotinic acetylcholine receptors (nAChR) 
(2). Especially, the alpha7- and the alpha4beta2-receptors are of major importance for brain physiol-
ogy and cognition. Studies in animals and humans have shown improvements in attention, working, 
and episodic memory induced via application of nicotine (3–5). The physiological foundation of 
these functional effects of nicotine is still unclear but might be linked to calcium-channel properties 
of respective nAChRs. Intracellular Ca2+ concentration is relevant for the induction and modulation 
of neuroplasticity (6–8), including long-term potentiation (LTP) (9). Most studies exploring physi-
ological and cognitive effects of nicotine so far have been performed in cell and animal models. With 
non-invasive brain stimulation techniques like transcranial direct current stimulation (tDCS) and 
paired associative stimulation (PAS), cortical neuroplasticity can be examined in humans (10–12). 
Both protocols induce NMDA-receptor and calcium channel-dependent plasticity that are similar 
to long-term depression and LTP (13–15). As tDCS non-selectively affects neuronal populations, it 
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Table 1 | Subject data.

Paired associative 
stimulation

serial reaction  
time task

statistics

Number of subjects 12 19 n.a.
Gendera 5 f/7 m 9 f/10 m p = 0.756
Ageb 26.1 ± 2.6 26.4 ± 2.9 p = 0.821
Fagerstrømb 2.9 ± 1.3 3.4 ± 1.8 p = 0.410
Cigarettesb 15.5 ± 3.6 14.3 ± 4.7 p = 0.517
Durationb 8.0 ± 2.3 7.7 ± 2.2 p = 0.798

Table 1 describes the subject data in terms of age, gender, Fagerstrøm nicotine 
dependency scale, cigarettes per day, and duration of nicotine addiction. There were 
no significant differences between both groups.
f, female; m, male; n.a., not applicable; p, p-value.
aChi2-test.
bPaired t-test.
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is referred to as non-focal plasticity inducing technique (16, 17), 
while PAS affects specifically activated synapses between sensory 
and motor neurons and thus induces a more focal, synapse-specific 
neuroplasticity (18). Its timing-specificity is furthermore related 
to spike timing-dependent plasticity, an animal slice model of 
plasticity thought to be closely related to memory formation (19). 
Former studies of our group have examined the effect of nicotine 
patch on LTP-like focal and non-focal neuroplasticity in deprived 
smokers. During nicotine deprivation, focal and non-focal excita-
tory plasticity was abolished, while nicotine patch administration 
partially increased motor cortex excitability to motor-evoked 
potential (MEP)-levels of non-smoking subjects (20–22). Thus in 
smokers, administration of nicotine patch restores compromised 
LTP-like plasticity. Regarding cognitive effects of nicotine, our 
earlier studies have shown that nicotine patch administration in 
deprived smokers has likewise restitutional effects of working 
memory performance, implicit motor learning, and attentional 
processes (23, 24). Nicotine patch and nicotine spray differ in 
terms of pharmacokinetics. Transdermal patches contain a large 
quantity of nicotine that has a membrane-limited delivery rate 
and can thus sustain stable nicotine levels over extended periods 
of time (25). Nicotine spray on the other hand has a sharp rise 
and a slower decline in plasma levels, thus mimicking the pattern 
associated with smoking a cigarette (26). With those differences in 
mind, we aimed to investigate the effect of nicotine spray on PAS-
25 induced LTP-like motor cortex plasticity and Serial Reaction 
Time Task (SRTT) performance in deprived smokers. We chose 
the SRTT task, because it is a well-introduced instrument to 
explore motor learning in humans (27), which involves the 
primary motor cortex (28) and can distinguish between general 
motor skill learning (GMS) and sequence specific learning (SS) 
(29). GMS learning hereby indicates the acquisition of general 
performance, while SS indicates the learning of the repeated 
motor sequence. Given the fact that learning functions are closely 
linked to LTP-like plasticity, both neuroplasticity and cognitive 
performance were tested. Based on the pharmacology and plasma 
levels reached with both application forms (nicotine spray and 
nicotine patch) (8–9 ng/ml), we hypothesized that nicotine spray 
is able to restore lacking LTP-like plasticity in deprived smokers 
and improves motor learning, similar to the impact of nicotine 
patch on brain physiology and cognitive performance.

MaTerials anD MeThODs

subjects
Altogether, 31 healthy smokers participated and completed this 
study (12 in the PAS-25 experiment and 19 in the SRTT task). 
Table 1 displays the demographic characteristics of the subjects 
in terms of age, gender, and Fagerstrøm scale for nicotine 
dependence (30). Participants were recruited among students of 
the University of Goettingen and gave written informed consent 
prior to participation in the study. All participants had to be 
abstinent from nicotine 6 h prior to the experiments. Exclusion 
criteria, as obtained in a clinical interview and medical examina-
tion, were cardiac pacemaker, metal implants in the head, age 
younger than 18 and older than 50 years, current intake of any 

medication, current or history of neurological, psychiatric or 
medical disease, pregnancy or breastfeeding, current or previous 
drug (other than nicotine) or alcohol abuse and participation 
in other trials during the past 8  weeks. The experiments were 
approved by the Local Ethics Committee and conformed to the 
principles laid down in the Declaration of Helsinki. Allocations 
of the subjects to the respective experimental conditions as well 
as order of sessions were randomized.

Paired associative stimulation
Twelve subjects participated in the PAS experiment (PAS-25). 
Hereby, a peripheral electrical pulse over the right ulnar nerve 
at wrist level was delivered by a Digitimer D185 multipulse 
stimulator (Digitimer, Welwyn Garden City, UK) and followed 
by a single transcranial magnetic stimulation (TMS) pulse over 
the motor cortex representation of the abductor digiti minimi 
muscle (ADM). The peripheral nerve stimulation was set to an 
intensity of 300% above sensory perceptual threshold; the applied 
TMS-pulse to a stimulator output resulting in MEPs amplitudes 
of approximately 1  mV (“baseline intensity,” see description 
in Section “Assessing Motor Cortex Excitability”). The paired 
pulses were repeated 90 times at a frequency of 0.05  Hz. The 
interstimulus interval of 25 ms, which was applied in this study, 
induces excitatory long-lasting excitability changes (12, 31). The 
participants were instructed to count the number of pulses they 
received at their wrist throughout the whole stimulation duration 
to guarantee sufficient attention to the procedure, which has been 
shown to be crucial to obtain the intended effects (32). The PAS 
protocol was combined with either nicotine or placebo spray for 
each subject in different experimental sessions.

assessing Motor cortex excitability
Transcranial magnetic stimulation-elicited MEPs were recorded 
to measure excitability changes of the representional motor corti-
cal area of the right ADM. Single pulse TMS was conducted by a 
Magstim 200 magnetic stimulator (Magstim Company, Whitland, 
Dyfed, UK) at a frequency of 0.25 Hz with a figure of eight-shaped 
coil (diameter of one winding 70 mm; peak magnetic field, 2.2 T). 
The coil was held tangentially to the scalp at an angle of 45° to the 
sagittal plane with a coil handle pointing laterally and posterior. 
This induced a posterior–anterior current flow in the brain at an 
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FigUre 1 | Displays original motor-evoked potential (MEP)-recordings of a smoking individual after administration of nicotine spray (baseline) and then directly after 
the PAS25-protocoll (t0). PAS25 enhances the transcranial magnetic stimulation-induced MEP-amplitudes as measured by the peak to peak amplitude and read off 
on the y-axis (MEP-values). mV, millivolt; t0, first timepoint after PAS25-protocoll.
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angle that optimally activates the corticospinal system monosyn-
aptically (33). Surface EMG was recorded from the right ADM 
with Ag–AgCl electrodes in a belly tendon montage. The optimal 
position was defined as the site where stimulation resulted 
consistently in the largest MEPs and then marked with black 
ink. The signals were amplified and filtered with a time constant 
of 10  ms and a low-pass filter of 2.5  kHz, then digitized at an 
analog-to-digital rate of 5 kHz, and further relayed into a labora-
tory computer using the Signal software and CED 1401 hardware 
(Cambridge Electronic Design). The intensity was adjusted to 
elicit, on average, baseline MEPs of 1 mV peak-to-peak ampli-
tude, and was kept constant for the post-intervention stimulation 
(see also Figure 1). Changes of the mean MEP amplitude over 
time reflect alterations of motor cortex excitability.

serial reaction Time Task
Nineteen subjects participated in the SRTT experiment. 
Participants were seated in front of a computer monitor at 
eye level and asked to respond to a visual cue as quickly and 
accurately as possible by pressing the appropriate button on a 
keyboard. A response pad with four buttons (numbered 1–4) 
was placed in front of the subjects, and they were instructed to 
push each button with a different finger of the right hand (index 
finger for button 1, middle finger for button 2, ring finger for 
button 3, and little finger for button 4). A dot appeared in one 
of four positions, horizontally spaced on a computer screen. 
Participants were instructed to press the key corresponding to the 
position of the dot as fast as possible (Figure 2A). The learning 
test consisted of 8 blocks of 120 trials in each block. In blocks 

1 and 6, the sequence of dots followed a pseudorandom order; 
here, dots were presented equally frequently in each position and 
never in the same position in two subsequent trials. In blocks 
2 to 5 as well as in blocks 7 and 8, the same 12-trial sequence 
of dot positions was repeated 10 times (e.g., abadbcdacbdc; see 
also Figure 2B). Sequence-specific (SS) as well as general motor 
skill learning (GMS) results in improved performance during the 
whole course of the task, as mentioned above (24, 34). Differences 
in performance between block 5 and random block 6 represent a 
measure of sequence-specific motor learning only, because GMS 
is equivalent in both blocks (35). Subjects were not told about the 
repeating sequence but asked after the last block of each session 
if they were aware of a repeating sequence. Four versions of SRTT 
were generated and applied in a randomized order, so that every 
subject encountered each version only once to exclude interfer-
ence effects. Performance level was evaluated via reaction time 
(RT) and error rates (ER) of each subject and in each condition.

Pharmacological intervention
PAS25-induced excitability changes and SRTT-performance were 
measured in different groups of participants. Twelve subjects 
participated in the PAS25- and nineteen subjects in the SRTT-
experiment. Two sessions were carried out for each subject in both 
groups in randomized order. Inhalative nicotine spray contained 
either nicotine (10  mg/ml) or inactive placebo. The nicotinic 
nasal spray was administered in a cumulative dose of 1 mg nico-
tine (Nicorette® Nasal Spray, McNeil Products, UK) to all subjects 
in combination with either the PAS25 intervention or SRTT 
performance. The rise time of nicotine by nasal spray in venous 
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FigUre 2 | (a) Displays the setup of the serial reaction time task (SRTT). On a computer screen (*) the elements of the sequence (abadbcdacbdc) are shown 
consecutively and appear as dots at a specific position. A dot at the second position of the screen means that the corresponding second button on the pad needs 
to be pushed [gray filled box with the letter (B)]. The dot at the third position means that the subject has to push the third button (C), etc. (b) shows the specific 
SRTT-procedure. The procedure consists of 8 blocks. Block 1 and 6 (gray) replay a random order of dots (pseudorandomized sequence). Hereby, the dots are 
presented equally frequently in each position and never in the same position in two subsequent trials. In blocks 2–5 and 7–8, the same sequence of 12 dot 
positions is repeated 10 times (white squares). The black line signifies task routine [decrease of reaction time (RT), GMS], the dotted gray line shows the sequence 
learning curve. The difference between the task routine curve and the sequence learning curve determines the sequence learning effect (RT difference between 
block 5 and 6, SS).
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blood levels is close to nicotine blood levels delivered by cigarettes 
(36) with plasma peak levels after 5–10 min. Interventions (SRTT 
and PAS) were performed after 10 min to obtain effects of peak 
dose concentration. Side effects were coughing, sneezing, throat 
irritation, and dizziness, as described in prior clinical trials (37). 
Symptoms subsided rapidly within minutes.

course of the experiment
Paired Associative Stimulation
Subjects were seated comfortably in a reclined chair with head 
and armrests and were asked to relax completely. The EMG 
electrodes were placed at the right ADM as described in the 
Section “Assessing Motor Cortex Excitability.” The exact posi-
tion was marked with a pen. Then TMS was applied over the 
left representional area of the right ADM to determine the spot 
with the consistently highest MEPs in the resting ADM. This spot 
was also marked with a waterproof pen. TMS-intensity was set 
to elicit MEP amplitudes of 1 mA (S1mV). Twenty MEPs were 
recorded at this stimulus intensity and the mean was calculated 
and determined as baseline. Then nicotine nasal spray, or respec-
tive placebo spray was administered. 10  min later, after side 
effects like coughing and sneezing had subsided, and nicotine 
peak-dose concentration was achieved, MEP-amplitudes were 
controlled and adjusted if necessary. Then the PAS25-protocol 
was administered, followed by immediate recording of at least 
20 MEPs at the time points of 0, 5, 10, 15, 20, 25, 30, 60, 90, and 
120 min after intervention (Figure 1). Sessions were conducted 

in randomized order and with a minimal intersession interval 
of 1 week.

Serial Reaction Time Task
Before the beginning of SRTT performance, a short introduc-
tion and practice session was carried out with all participants 
to explain the rationale of task performance. Therefore, a test 
SRTT (programmed only for this reason) with one block was 
performed by the subjects before conduction of the main experi-
ment. As in the PAS experiment, nicotine nasal spray or placebo 
spray respectively was then administered, and after 10  min, 
SRTT performance (as described in the Section “Serial Reaction 
Time Task”) was conducted. For course of experiments, see also 
Figure 3.

Data analysis and statistics
PAS25
First, individual means of the 20 MEP amplitudes recorded at 
each time point were calculated. The post-intervention mean 
MEP amplitudes from each subject were then normalized to 
the respective individual mean baseline MEP-amplitude (quo-
tient of post- versus pre-intervention MEP amplitude). The 
normalized mean MEP amplitudes from all subjects were then 
pooled together and the grand average across subjects for each 
time bin was calculated. A repeated measurement ANOVA was 
performed on the normalized data using MEP amplitude as the 
dependent variable (including all time points up to 120  min 
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FigUre 3 | Shows the experimental setup of the serial reaction time task (SRTT) and the PAS-25 experiment. Subjects received either placebo or nicotine spray 
(PLC/NIC) in randomized order. After 10 min, the SRTT/PAS-25 protocol started. For the PAS-25 measurements, the MEP-baseline values were determined before 
and after drug administration, and then again monitored for up to 120 min post intervention. r = random stimuli; s = sequence stimuli; numbers 1–8 refer to the 
different blocks; MEP, motor-evoked potentials.
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after stimulation). Drug (nicotine versus placebo), time points 
were included as within-subjects factors. The Mauchy test was 
performed to test for sphericity, and the Greenhouse–Geisser 
correction applied when necessary. Conditional on significant 
results of the ANOVA, we performed exploratory post hoc com-
parisons using Student’s t-tests (paired, two tailed, p < 0.05, not 
adjusted for multiple comparisons) to compare the MEP ampli-
tude before and after the interventional brain stimulation in each 
condition and between drug conditions (nicotine/placebo) for 
each time point. A p-value of 0.05 was considered significant for 
all statistical analysis. Significances of differences in demographic 
factors were tested by one-way ANOVA and chi-square test for 
gender. Baseline MEP amplitudes and the maximum stimulator 
output percentage (% MSO) were analyzed before and after the 
interventional drug administration (nicotine spray and placebo) 
and between drug conditions (Student’s t-test, paired, two-tailed, 
p < 0.05). All data are expressed as mean ± SEM.

Serial Reaction Time Task
In each trial, RT was recorded from the appearance of the dot 
until the first button was pressed. To avoid artifacts, RTs <200 ms 
and above 3 SDs from the overall mean were excluded from 
further analysis, also the RTs of the incorrect responses. Mean 
RT was calculated for each participant, block, and medication 
condition separately. Furthermore, the SD of response times for 
each subject in every block was calculated as an index of variabil-
ity of response times. Additionally, for each block, subject, and 
medication condition, the number of incorrect responses (error 
rates; ER) was calculated. Statistical analysis (SPSS version 24.0) 
was performed with a repeated measurement ANOVA separately 
for absolute RT-values, variability, and ERs [within subject fac-
tors: condition (nicotine spray versus placebo spray) and time 
bin (blocks 1–8)]. The Mauchly Test was performed to test for 
sphericity and the Greenhouse–Geisser correction applied when 

necessary. RT differences between block 5 (pseudo randomized 
order of cues) and block 6 with a randomized order of dots were 
calculated for all groups and conditions separately (d5-6). This 
difference is defined as mostly pure index of sequential motor 
learning (SS), because task routine (GMS) level between block 
5 and 6 is thought to be stable (14). A repeated measurement 
ANOVA for this RT difference (block 5 and 6) was further 
calculated [within subject factor: CONDITION (nicotine spray 
versus placebo spray)]. Conditional on significant results of 
the ANOVAs, we performed exploratory post hoc comparisons 
using Student’s t-tests (paired, two-tailed, p < 0.05, not adjusted 
for multiple comparisons), where we compared the respective 
differences between placebo and nicotine conditions separately 
(ER, absolute RTs, d5-6, variability) for each block. A level of 
significance <0.05 was considered significant for all statistical 
analysis. Based on the results of the respective t-tests, Cohen’s d 
as measures of effect sizes was calculated (see Table 2).

resUlTs

All subjects tolerated the experiments and the pharmacological 
intervention well. Sneezing and coughing after inhalation of 
nicotine spray occurred in 28 of 31 subjects, but subsided quickly 
without interfering with the interventions. No significant group 
differences were found in terms of age, gender, and TMS-intensity 
to elicit an MEP of 1 mV (S1mV) before and after administration 
of nicotine spray (see Tables 1 and 3).

effect of nicotine spray on Pas-25 
induced excitatory Plasticity in smokers
The repeated measurement ANOVA revealed a significant main 
effect of the within-subject factor “condition” (nicotine vs. pla-
cebo) but no significant interaction condition x time point (see 
also Table 4). As shown by the exploratory post hoc t-tests, smokers 
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Table 2 | Cohen’s d (paired t-test).

serial reaction time task (srTT) condition block T-value no. correlation in r cohen’s d

plc vs. nicotine RT 1 2.626 19 0.767 0.41
plc vs. nicotine RT 2 2.487 19 0.78 0.39
plc vs. nicotine RT 3 2.29 19 0.687 0.42
plc vs. nicotine RT 4 2.522 19 0.672 0.47
plc vs. nicotine RT 5 4.066 19 0.732 0.69
plc vs. nicotine RT 6 2.818 19 0.53 0.63
plc vs. nicotine RT 7 2.665 19 0.796 0.39
plc vs. nicotine RT 8 3.671 19 0.828 0.49

SRTT plc vs. nicotine Errors 1 0.21 19 0.823 0.03
plc vs. nicotine Errors 2 2.167 19 0.573 0.46
plc vs. nicotine Errors 3 2.082 19 0.561 0.45
plc vs. nicotine Errors 4 1.117 19 0.589 0.23
plc vs. nicotine Errors 5 −0.427 19 0.503 −0.10
plc vs. nicotine Errors 6 0.158 19 0.227 0.50
plc vs. nicotine Errors 7 1.563 19 0.698 0.28
plc vs. nicotine Errors 8 0.653 19 0.337 0.17

Paired associative stimulation plc vs. nicotine Timepoint t0 −3.003 12 0.457 −0.90
plc vs. nicotine Timepoint t5 −3.326 12 0.307 −1.13
plc vs. nicotine Timepoint t10 −2.617 12 0.371 −0.85
plc vs. nicotine Timepoint t15 −1.178 12 0.320 −0.38
plc vs. nicotine Timepoint t20 −1.395 12 0.299 −0.48
plc vs. nicotine Timepoint t25 −0.574 12 0.177 −0.21
plc vs. nicotine Timepoint t30 −1.184 12 0.248 −0.42
plc vs. nicotine Timepoint t60 −1.872 12 −0.534 −0.95
plc vs. nicotine Timepoint t90 −0.282 12 −0.374 −0.14
plc vs. nicotine Timepoint t120 −1.538 12 0.005 −0.63

Table 4 | ANOVA for SRTT/PAS-25.

Test Parameters conditions (dfn, dfD) F-value p-Value

SRTT Absolute RT Conditions (1, 18) 13.979 0.002*
Block (7, 126) 16.549 0.001*
Condition × block (7, 126) 0.832 0.562

Errors Conditions (1, 18) 1.333 0.263
Block (7, 126) 3.648 0.001*
Condition × block (7, 126) 1.401 0.211

Variability Conditions (1, 18) 2.121 0.163
Block (7, 126) 2.607 0.015*
Condition × block (7, 126) 0.890 0.517

PAS-25 Motor-evoked 
potential-
amplitudes

Condition (1, 11) 11.607 0.006*

Time points (10, 110) 1.691 0.092
Condition × time 
points

(10, 110) 1.490 0.152

Table 4 displays the F-value, the p-Value, and degrees of freedom of the repeated 
measurement ANOVA fort he SRTT and PAS-25 measurements. The ANOVA of 
the SRTT is divided in the different parameters: absolute RT, errors, and variability. 
Significant results (p < 0.05) are printed in bold and marked with *.
dfN, numerator degree of freedom; dfD, demonitator degrees of freedom; SRTT, serial 
reaction time task; RT, reaction time.

Table 3 | Comparison of transcranial magnetic stimulation (TMS)-parameters.

stimulation condition TMs Parameter baseline 1 baseline 2

PAS 25 Spraya Motor-evoked 
potential (MEP)

1.01 1.04

MSO% 47 47.83
Placeboa MEP 1.06 1.058

MSO% 46.5 45.41

Table 3 lists the mean MEP-amplitudes (MEP in millivolts) and mean stimulation output 
(MSO in %) before and after nicotine spray or placebo spray administration. There were 
no significant differences between both groups (before and after) and both conditions 
(nicotine spray versus placebo spray).
aStudent’s t-test, paired, two-tailed, p < 0.05.
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p = 0.02] and “condition” [F(7, 126) = 16.549; p < 0.001] (see 
also Table 4). Post hoc paired sample, two-tailed t-tests (placebo 
versus nicotine spray) revealed that the absolute RT of smokers 
after nicotine spray administration were significantly lower com-
pared to the placebo administration in all blocks (Figure  5A). 
Implicit motor learning (or sequential skill learning; SS) that is 
evaluated by comparing the RT differences between block 5 and 
6 (paired sample, two-tailed t-test), did not improve significantly 

in a nicotine-deprived state after placebo drug administration 
did not show excitability alterations after the PAS-25 stimulation 
protocol. However, administration of nicotine spray partially 
re-established excitatory excitability changes after PAS-25 stimu-
lation. Post interventional MEP amplitudes were significantly 
enhanced compared to baseline MEPs for the time bins 0, 5, 10, 
20, 30, and 60 min after PAS (see Figure 4). The MEP amplitudes 
between the placebo and the nicotine spray conditions differed 
significantly for minutes 0, 5, and 10, which further indicate an 
enhancement of cortical excitability in deprived smokers after 
nicotine spray and PAS25-protocoll.

effect of nicotine spray on srTT-
Performance in smokers
The repeated measurement ANOVA for absolute RT with the fac-
tors block and condition (placebo versus nicotine spray) resulted 
in significant results for the main factor “block” [F(1, 18) = 13.979; 
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FigUre 4 | Displays the nicotinergic impact on paired associative stimulation (PAS)-induced excitatory neuroplasticity. Shown are graphs with motor-evoked 
potential (MEP)-standardized values on the y-axis plotted against different time points poststimulation on the x-axis. In smokers under placebo medication, PAS-25 
did not enhance MEP amplitudes, while administration of nicotine spray leads to facilitatory after-effects lasting for up to 60 min after plasticity induction. Filled 
symbols indicate statistically significant deviations from baseline and asterisks indicate significant differences between the placebo medication and nicotine 
conditions (Student’s t-test, paired, two-tailed, p < 0.05). Abbreviations: BL, baseline; plc, placebo; spray, nicotine spray; error bars, SEM.
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between both pharmacological conditions (p  <  0.582). For 
error rates and variability, the repeated measurement ANOVA 
revealed significant results for the main factor “block” [ER: F(7, 
126) = 3.648; p < 0.001; variability F(7, 126) = 2.607; p = 0.015] 
due to a reduced number of errors and less variability during 
performance in the later blocks, but no significant main effect of 
nicotine or interactions (Figure 5B).

DiscUssiOn

The results of the present study reveal that restitution of nicotine 
deprivation with nicotine spray in smokers has a prominent and 
rapid effect on PAS-25 induced excitatory neuroplasticity and 
SRTT performance. In smokers, nicotine deprivation prevents 
the induction of enhanced motor-cortex excitability measured 
by single pulse TMS and MEP-values, while administration of 
nicotine spray leads to enhanced MEP-values similar to MEP-
values of non-smokers after PAS-25 (20, 21), and suggests hereby 
a restitutional effect of nicotine on LTP-like plasticity. In terms of 
SRTT-performance, administration of nicotine spray improved 
RTs in deprived smokers independent from the respective 
sequence condition, while error rates remain stable. Our data are 
in principal accordance with earlier studies of our group that have 
investigated the effects of long acting nicotine administration 
(nicotine patch) on PAS-induced excitability changes, memory, 
attention, and implicit motor learning in smokers (23). Similar to 
nicotine spray, nicotine patch administration was likewise able to 
restitute PAS-25 induced MEP-enhancements in deprived smok-
ers (20). With regard to SRTT-performance, nicotine patch had a 
stronger impact on motor learning than nicotine spray. Nicotine 
patch not only improved RTs in general (in all blocks) but also 

the difference in RTs between block 5 and 6, which indicates a 
sequence specific learning effect (24).

Proposed Mechanism of the restitutional 
nicotinic effects on Pas-25-induced 
neuroplasticity and srTT Performance
Glutamatergic plasticity, as accomplished by PAS, is thought 
to depend on the enhancement of intracellular calcium levels. 
Nicotine, as an agonist of nAChRs with calcium channel properties 
(both, α7 and α4β2 receptors), can increase intracellular calcium 
levels and transmitter release (38, 39). It has further been shown 
that chronic nicotine consumption can lead to desensitization of 
nAChRs in different areas of the brain (40, 41) and that the dura-
tion of the desensitization depends on the duration of nicotine 
exposure (42). Nicotine deprivation in chronic smokers might 
thus lead to a state with deficient calcium influx that does not 
exceed threshold levels necessary to enhance motor cortex excit-
ability/LTP-like plasticity after PAS application. Re-application of 
nicotine with administration of nicotine spray might override the 
respective receptor desensitization and increase intracellular cal-
cium influx to sufficient calcium levels that re-establish LTP-like 
neuroplasticity. In terms of cognitive data, our study is in principle 
accordance with earlier studies, which have shown deteriorated 
cognitive functions in nicotine-deprived smokers (23, 43).  
A partial restitution of cognitive performance was hereby achieved 
by re-administration of nicotine via nicotine patch. The effect of 
nicotine spray in our study was restricted to general motor skill 
learning alone, which is the main difference to an earlier study 
of our group, in which nicotine patch also improved sequence 
specific learning (24). Referring to these pro-cognitive nicotinic 
effects in deprived smokers, experiments in animals have already 
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FigUre 5 | (a) Displays serial reaction time task performance after placebo and nicotine spray administration. Depicted are the absolute reaction times (RTs) (and 
SEs) and error rates (b) (summation) for both conditions. Block 1 and 6 present random stimuli, the remaining blocks contain the repeated sequence. Smokers 
during nicotine withdrawal under placebo spray administration display slower RTs in all blocks as compared to those in the nicotine spray condition. Abbreviations: 
ms, milliseconds; plc, placebo; spray, nicotine spray; *, significant differences in RTs between placebo spray and nicotine spray.
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shown that hippocampal-dependent learning is influenced by 
nicotine based on the modulation of kinases and transcription 
factors (44). Nicotinic desensitization and/or upregulation of 
different AChRs may further alter learning processes (40, 45). 
The differences between nicotine spray and patch on motor 
learning might be due to the fact that pharmacokinetics between 
both applications differs. The dosages of nicotine spray and patch 
were chosen to induce comparable nicotinic blood levels [8–9 ng/
ml (26, 46)]; still, nicotine administered by nicotine spray rises 
quickly and induces its peak plasma level after 10 min (36), while 
nicotine patch results in a slow rise in blood levels and reaches its 

maximum after approximately 6 h (47). The prolonged presence 
of nicotine in case of patch application might thus explain the 
partially different effects of both applications.

Enhanced MEP-amplitudes after PAS-25 mimic LTP-like 
plasticity in transmitter-/receptor-involvement and time-course. 
LTP seems to be closely connected to memory function and 
cognitive performance. For these reasons, we draw a preliminary 
link between neurophysiologic and cognitive data obtained 
in this study and suggested that a relevant cause of nicotinic 
effects in deprived smokers on cognition might be the alteration 
of synaptic plasticity/activity and expression of LTP. Impaired 
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