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Myotonic dystrophy type 1 (DM1) and 2 (DM2) are autosomal dominant degenerative 
neuromuscular disorders characterized by progressive skeletal muscle weakness, 
atrophy, and myotonia with progeroid features. Although both DM1 and DM2 are 
characterized by skeletal muscle dysfunction and also share other clinical features, 
the diseases differ in the muscle groups that are affected. In DM1, distal muscles are 
mainly affected, whereas in DM2 problems are mostly found in proximal muscles. In 
addition, manifestation in DM1 is generally more severe, with possible congenital or 
childhood-onset of disease and prominent CNS involvement. DM1 and DM2 are caused 
by expansion of (CTG•CAG)n and (CCTG•CAGG)n repeats in the 3′ non-coding region 
of DMPK and in intron 1 of CNBP, respectively, and in overlapping antisense genes. 
This critical review will focus on the pleiotropic problems that occur during development, 
growth, regeneration, and aging of skeletal muscle in patients who inherited these 
expansions. The current best-accepted idea is that most muscle symptoms can be 
explained by pathomechanistic effects of repeat expansion on RNA-mediated pathways. 
However, aberrations in DNA replication and transcription of the DM loci or in protein 
translation and proteome homeostasis could also affect the control of proliferation and 
differentiation of muscle progenitor cells or the maintenance and physiological integrity 
of muscle fibers during a patient’s lifetime. Here, we will discuss these molecular and 
cellular processes and summarize current knowledge about the role of embryonic and 
adult muscle-resident stem cells in growth, homeostasis, regeneration, and premature 
aging of healthy and diseased muscle tissue. Of particular interest is that also progenitor 
cells from extramuscular sources, such as pericytes and mesoangioblasts, can partici-
pate in myogenic differentiation. We will examine the potential of all these types of cells 
in the application of regenerative medicine for muscular dystrophies and evaluate new 
possibilities for their use in future therapy of DM.

Keywords: myotonic dystrophy, myogenesis, mesoangioblast, myoblast, muscle stem cell, pericyte, proteotoxicity, 
RNA toxicity

iNTRODUCTiON

Skeletal muscle formation, growth, and maintenance in vertebrates are dynamic processes in terms 
of tissue differentiation, remodeling, repair, and regeneration. During the different phases of life, 
muscle may suffer due to injury or disease, causing weakness, pain, or paralysis, which may be even 
fatal. Muscle problems may be acute or short-lived, like during an infection, or be long-lasting, as 
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in chronic disorders. Patients with inherited myopathy or mus-
cular dystrophy, a heterogeneous group of disorders for which 
disease etiology is rooted in the genetically abnormal pathways 
that control formation and physiological integrity of skeletal 
muscle, commonly experience progressive muscle weakness and 
atrophy (i.e., loss of muscle mass). As a result, physical strength 
and independence are lost, which causes substantial morbidity 
over decades. For the development of novel therapies to halt or 
reverse progression of muscle problems, validated classification 
criteria for differential clinical diagnosis and detailed preclini-
cal knowledge about what is going wrong at the molecular and 
genetic level are a prerequisite. Unfortunately, the current states 
of clinical and fundamental understanding—and hence the 
prospects for treatment—vary enormously between individual 
myopathies and dystrophies.

This review is meant to bring new background knowledge 
for myotonic dystrophy (DM). DM is one of the most prevalent 
and probably also one of the most difficult to understand genetic 
disorders, due to its heterogeneity and its highly complex and 
variable clinical manifestation and molecular etiology. DM is the 
collective name for a disease with two genetic subtypes, DM1 
(OMIM #160900) and DM2 (OMIM #602668). In fact, the clas-
sification as a skeletal muscle dystrophy is only partially correct, 
as the disease also has neuromuscular character and cardiac, CNS 
and endocrine problems are commonly involved as well (1–3). 
Here, we will only briefly recapitulate the history of clinical and 
molecular research in DM as multiple comprehensive reviews 
have been published on this subject (1, 2, 4, 5). The focus here is 
on a (re)examination of studies related to the molecular and histo-
morphological problems that occur during growth, maintenance, 
and aging of skeletal muscles in patients with DM. Findings in 
animal model studies are included only if they faithfully reflect 
the muscular pathophysiology in DM patients (6–8).

The main waves of myogenesis occur during embryonic devel-
opment and growth, when myoblasts undergo cell cycle arrest and 
fuse to form the multinucleated myotubes that ultimately become 
the mature myofibers (9–11). Later, regenerative myogenesis 
serves in muscle turnover and to replace damaged or diseased 
muscle (10). Relevance of embryonic and adult stem cells for each 
of the distinct phases of myogenesis for the manifestation of DM 
will be examined. We will also describe so-called non-somite 
skeletal myogenesis through involvement of mesoangioblasts 
(MABs) and pericytes (PCs) as muscle progenitor cells, and 
speculate about the importance of this process for DM. Finally, 
we will discuss possibilities to use these progenitor cells in future 
therapeutic strategies.

MYOTONiC DYSTROPHY

Clinical Features and Genetic Causes
A number of clinical and molecular characteristics are shared 
between DM1 and DM2, but the differences prevail and render 
them distinct disorders.

Myotonic Dystrophy Type 1
Myotonic dystrophy type 1, or Steinert’s disease, shows the 
highest prevalence, ranging between 0.5 and 18 cases per 

100,000 individuals among different ethnic populations (12–14). 
Progressive muscle weakness and atrophy of the distal muscles 
together with myotonia are consistent features. Multiple other 
organs in the body can also be affected, causing combinations 
of symptoms. For example, heart failure due to conduction 
problems, insulin resistance, excessive sleepiness, intellectual 
disability or mental problems, and cognitive deficits are common 
symptoms (15–18). Anticipation is typical for DM1, which means 
that disease problems become more severe and occur earlier in 
successive generations in families. Nowadays, five partially over-
lapping clinical subtypes of DM1 are recognized, based on the 
occurrence and onset of the main symptoms: congenital (cDM), 
infantile, juvenile, adult, and late-onset/asymptomatic DM1 (19). 
This classification is not only important for patient care but also 
for the design of clinical trials (2). For a fair interpretation of the 
literature cited in this review, it is important to note that in studies 
that appeared before the recent redefinition and refinement of 
disease classes, authors mostly only discriminated between cDM 
and adult-onset DM1.

The sole known molecular cause of DM1 is the expansion 
of a (CTG•CAG)n sequence on chromosome 19q13 in the last 
exon of DMPK (20, 21) (Figure  1). In DM1 families, when 
expanded to a length above (CTG)37, the repeat is unstable 
and has a tendency to grow somatically and intergeneration-
ally (22, 23). Thus, repeat expansion forms the basis for the 
anticipation phenotype, whereby a longer repeat correlates 
with more severe symptoms and an earlier disease onset. An 
expanded DMPK repeat is mostly an uninterrupted (CTG)n 
sequence of variable length. However, additional sequence 
variations such as CCG and CGG triplets in the 3′ end or 
immediate flanking DNA, or non-CTG replacements within 
the repeat have been found. These alterations are generally 
associated with milder disease manifestation and symptomatic 
variation in families or seem to occur somatically in certain 
tissues (24–26).

From the normal and mutant DMPK alleles multiple alterna-
tively spliced transcripts are produced, all of which contain the 
(CUG)n repeat sequence in their 3′ untranslated region (UTR) (27). 
In addition, there is a partial overlap with an antisense-oriented 
gene, named DM1-AS, which encodes variant (CAG)n transcripts 
with characteristics of long non-coding RNA (lncRNA) (28).

Myotonic Dystrophy Type 2
Formerly known as proximal myotonic myopathy and proximal 
myotonic dystrophy, DM2 was discovered in a group of patients 
with clinical features that were slightly different from those in 
DM1 (29, 30). Prevalence for DM2 varies strongly by popula-
tion, but is less well known than for DM1, since the mild DM2 
phenotype often goes undiagnosed (5). As mutations have been 
predominantly identified in Caucasians in Northern Europe 
and this population also has the most registered DM2 patients  
(31, 32), prevalence of DM2 and DM1 may be quite similar in 
countries in this region (33). Although the myotonic dystrophies 
share a number of clinical symptoms, there are distinct differ-
ences (34, 35) (Table 1). For DM2 no congenital manifestation is 
known and diagnosis is always late, when patients have reached 
adult age. Myotonia is less evident and myotonia of grip often 
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FiGURe 1 | Distinct molecular mechanisms contribute to pathology in myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (DM2). (1) Expanded 
(CTG)n and (CCTG)n repeats in DMPK and CNBP, or the complementary repeats in the antisense genes (not shown), can cause cellular stress by (1) promoting 
DNA replication fork stalling and R-loop formation. Expression of repeat-containing sense and antisense RNAs results in (2) sequestration of members of the 
MBNL protein family, leading to mRNA missplicing, alternative polyadenylation, microRNA (miRNA) deregulation, and transcription deregulation. In addition, (3) 
CELF1 gets hyperphosphorylated and stabilized, resulting in mRNA missplicing and dysregulation of mRNA stability and translation. (4) Formation of abnormal 
RNA-protein condensates by repeat RNA and RNA-binding proteins (RBPs) may alter the intracellular distribution fate and biological activity of RBPs. (5) 
Repeat-associated non-ATG (RAN) translation of the repeats may result in the production of toxic polymeric polypeptides, which perturb cellular proteostasis.

TAble 1 | Similarities and differences in genetic, clinical, and histopathological features of myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (DM2).

DM1 DM2 Reference

Main features
Affected gene, chromosome DMPK; 19q13.3 CNBP; 3q21 (20, 32)
Repeat expansion (CTG)n (CCTG)n (20, 37)
Anticipation Always present Exceptional (38)
Age of onset Any age Adulthood (19)
Congenital form Yes No (19)

Muscle symptoms
Predominant muscle weakness Distal Proximal (39)
Predominantly affected muscle fibers Type 1 Type 2 (40–42)

Histopathological findings
Fiber atrophy Type 1 fibers (not always present) Subgroup of highly atrophic type 2 fibers (always present) (30)
Nuclear clump fibers In end stage only Scattered at early stage (43)
Sarcoplasmic masses Frequent in distal muscles Extremely rare (43)
Ring fibers Frequent May occur (43)
Internal nuclei Massive in distal muscle Variable, mainly in type 2 fibers (43)
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has a jerky quality (36). Proximal muscles are most prominently 
affected in DM2 and weakness and wasting of facial muscles and 
limbs is generally mild (29, 30, 36).

Similar to DM1, only one underlying cause of disease has been 
identified for DM2: all patients carry an expansion of a (CCTG)n 
repeat in intron 1 of CNBP (previously known as ZNF9) on chro-
mosome 3q21 (29, 30) (Figure 1). The repeat is part of a complex 
(TG)n(TCTG)n(CCTG)n motif in which the (CCTG)n repeat is 

often interrupted and consists of up to 26 units in healthy individu-
als. In patients the (CCTG)n repeat is usually uninterrupted and 
contains 75–11,000 quadruplets (36). The DM2 repeat is extremely 
unstable and has a tendency to expand somatically, causing length 
increase and cell-to-cell heterogeneity during a patient’s life. 
Interestingly, by contrast to the behavior of the (CTG•CAG)n 
repeat in DM1, the (CCTG•CAGG)n repeat has the tendency to 
contract intergenerationally (44). The correlation between repeat 
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length and disease severity is less strong than in DM1 patients and 
anticipation is less evident (1, 38).

Molecular Mechanisms involved in the 
etiology of DM1 and DM2
Several molecular mechanisms are thought to contribute to 
the muscular pathogenesis of DM throughout all phases of 
development and maintenance (Figure  1). Similarities with 
other neurological disorders that are caused by microsatellite 
expansions have already been comprehensively reviewed (4, 8, 
18, 45, 46). Here, we aim to accentuate the relationships between 
the molecular and cellular levels at which problems caused by 
the repeat expansions may occur. The emphasis is biased toward 
the pathobiology of DM1, based on a longer history of study, its 
seemingly bigger variability and complexity of manifestation, and 
the broader availability of patient materials, and cell and animal 
models.

Problems at the Chromatin Level
The first level at which repeat expansion may contribute to 
disease is at the chromatin level. The (CTG•CAG)n repeat in 
DM1 is situated within the 3′ UTR of DMPK, within the over-
lapping antisense DM1-AS gene and in the promoter of SIX5 
(formerly known as DMAHP). These genes lie in the center of a 
gene-rich region of chromosome 19, spanning also DMWD (47, 
48), RSHL1, and SYMPLEKIN, within a chromatin loop that is 
flanked by nuclear matrix attachment regions (49). Two binding 
sites for the transcriptional repressor CTCF with an insulator 
role in regulation of transcription and chromatin architecture are 
within this loop, flanking the repeat area. Already soon after the 
discovery of the repeat, Otten and Tapscott demonstrated that 
long (CTG•CAG)n repeats are strong nucleosome positioning 
elements (50). Extreme repeat expansion as in cDM leads to the 
occlusion of adjacent DNase hypersensitive sites and concomitant 
changes in local DNA methylation in the surrounding CG-rich 
region (51–53), rendering the chromatin more heterochromatic 
and inaccessible. In turn, this process has cis-effects on gene activ-
ity in the immediate vicinity, including DMPK, DM1-AS, and 
SIX5 and perhaps other neighboring genes. To our knowledge, 
no similar studies of epigenetic changes after repeat expansion in 
CNBP (DM2) exist. Clearly, more work is needed to understand 
the biological effects that DNA methylation, histone modification 
and other chromatin changes due to repeat expansion in the DM1 
locus have on muscle progenitor cells.

Problems at the DNA Level: Stalled Replication Forks 
and R-Loops
Numerous studies have addressed DNA instability of expanded 
(CTG•CAG)n and (CCTG•CAGG)n repeats. The influence 
of oxidative damage and mismatch-repair and recombination 
pathways for DNA repair on repeat instability have already been 
thoroughly discussed (54–56). Less attention has been focused on 
the types of cell stress that large repeats may have at the DNA level 
and their consequences for loss of cell viability.

DNA polymerase stalling and replication fork arrest seem to 
be frequent events when unusually large repeat sequences in the 
genome have to be replicated in S-phase (57). Cells have adequate 

repair systems to resolve problems with DNA replication fork pro-
cessivity, either directly when proceeding through the cell cycle or 
later when they arrive at so-called DNA replication checkpoints 
(58). Different rescue systems exist in which Chk1 and γH2AX 
phosphorylation and p53 activation are crucial for the on-site 
response (58). Stalling at sites in eu- and heterochromatin may 
even require differential composition of the repair machinery 
that is recruited. For transcribed repeats, as in the DM1 and 
DM2 loci, there is an additional complication. Here the threat 
comes from the formation of so-called R-loops (59). R-loops 
are triple-stranded RNA-DNA structures formed by duplex 
formation between the template strand and the transcribed RNA, 
leaving the non-template strand unpaired. R-loop formation may 
influence DNA methylation and transcriptional activity in its 
immediate vicinity. Persistent presence of unresolved R-loops or 
structures wherein stalled DNA forks and R-loops coincide may 
affect cellular fitness and arrest the cell cycle. The associated stress 
may even cause cell death.

An elegant study indeed showed that transcription of a 
(CTG•CAG)n repeat, as in the DM1 locus, may cause convergent 
repeat instability and apoptosis (60). Against this background, it 
is tempting to speculate that proliferating cells in which DMPK 
and/or DM1-AS are expressed are vulnerable to the danger of 
formation of stalled replication forks and R-loops. Specifically, 
this holds for all mesodermal derivatives and embryonic and 
adult muscle stem cells [muscle-resident stem cells (MuSCs); see 
below]. An identical pathogenic cascade may be possible in DM2, 
since CNBP is most highly expressed in muscle (61). There is 
evidence for bidirectional transcription across the locus (62) and 
unpaired (CCT/UG)n or (CAGG)n repeats may form abnormal 
hairpin structures (63).

Misregulation of RNA Processing and Translation
By far the most intensely studied aspects of DM’s etiology are 
the pleiotropic problems caused by the production of repeat-
expanded transcripts. Intranuclear residence of repeat transcripts 
causes trans effects, which culminate in abnormal processing of 
many other RNAs in the cell’s transcriptome (64).

Probably right after transcription, the repeats in RNAs of 
DMPK and CNBP (and the corresponding antisense genes) form 
stable hairpins that alter activities of two antagonistic protein 
families, the MBNL (Muscleblind) and CELF proteins. MBNL 
proteins bind anomalously across the repeat hairpin, leading them 
to become sequestered in nuclear aggregates, which are visualized 
as so-called foci under the microscope (65–71). Various other 
RNA-binding proteins (RBPs) such as hnRNP F, H, DDX5, -6, 
-17, and Staufen, some of which have intrinsically unstructured 
domains, are engaged in the nuclear aggregates as well (71–74). 
CELF1, formerly called CUGBP1, binds at the base of the hairpin 
and becomes hyperphosphorylated.

Altogether, these events result in an imbalance in cellular 
ribostasis and proteostasis, associated with depletion and a shift 
in the distribution of MBNL family members and an increase 
and redistribution of CELF1 protein. The end result is a cell 
type and cell state dependent whole-transcriptome effect on 
alternative splicing (75–78), alternative polyadenylation (79, 80), 
and nucleocytoplasmic transport of other transcripts for which 
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MBNL1-3 or CELF1 play a role in RNA processing. Changes in 
mRNA half-life may also occur, as CELF1 has been identified 
as a key regulator of RNA decay or translational silencing in 
muscle cells (81). In turn, the changes in the transcriptome have 
widespread trans-acting effects on the production and makeup of 
multiple proteins (82–86). Some cell-stage effects of MBNL1-3, 
CELF1, and other ribonucleoprotein (RNP) anomalies will be 
discussed in more detail below, in the context of embryonic or 
regenerative myogenesis.

Missplicing may have the most obvious links with the 
myopathy in DM. For instance, abnormal splicing of ClC1 is 
sufficient to cause myotonia (87). Missplicing of the muscle-
specific genes BIN1, TNNT3, RYR1, TTN, LDB3, and SERCA1 
is linked to impaired muscle function (88). Aberrant splicing of 
the insulin receptor, highly expressed in skeletal muscle, results 
in reduced responsiveness to insulin, another contributing factor 
to skeletal muscle dysfunction (89–91). Furthermore, alternative 
splicing of CACNA1S, a calcium channel that controls skeletal 
muscle excitation-contraction coupling, is markedly repressed in 
DM1 and DM2 (92). Combined with splicing alterations in the 
machineries for voltage-induced Ca2+ release and for release and 
uptake of Ca2+ in the ER/SR store (RyR1 and SERCA1), this may 
lead to chronic Ca2+ overload, activate ER stress (93), or become a 
cause of excitotoxicity. These long-term physiological abnormali-
ties may induce premature senescence and contribute to muscle 
degeneration in DM.

Not all splicing abnormalities are congruent in DM1 and DM2 
muscles. For instance, TNNT3 is more often misspliced in DM2 
than in DM1, and NCAM1 missplicing can be found more in 
nuclear clump fibers of DM2 patients (1, 94, 95). Furthermore, 
in muscle tissue of DM2 patients, NEDD4 was found to be dis-
rupted. NEDD4 is an E3 ubiquitin ligase for PTEN, an important 
regulator of the AKT signaling pathway for protection against 
cellular stress. The PTEN protein level is upregulated in DM2 
muscle tissue and PTEN accumulations can be found in nuclear 
clump 2a fibers in DM2 muscle (96).

For DM2, there may be also a direct effect on ribostasis and 
proteostasis. Repeat expansion in CNBP may cause pausing of 
transcription or retardation of splicing of its pre-mRNA, resulting 
in a reduction of mature CNBP mRNA and the CNBP protein 
product. Initial studies on this topic yielded conflicting results, 
as some groups found unaltered levels of CNBP RNA and protein 
levels in cells and tissues from DM2 patients, whereas later studies 
showed a clear inhibitory effect of an expanded (CCTG)n repeat 
(97). Studies on heterozygous knockout mice for CNBP brought 
further support for the idea that haploinsufficiency may be 
involved in myopathy in DM2 (98). The CNBP protein has a role 
in the regulation of translation through binding to the 5′ UTRs of 
terminal oligopyrimidine tract mRNAs. For example, the produc-
tion of RPS17, poly(A)-binding protein 1, and elongation factors 
eEF1A and eEF2 are controlled by this mechanism (99).

Also other types of problems at the translational level may play 
a role in the distinct manifestation of DM1 and DM2. Differential 
involvement of CELF1 may herein be a key issue. CELF1 can act 
by relieving secondary structures on a subset of target RNAs that 
exhibit G-rich sequence stretches with a high-degree of secondary 
structure, thereby promoting their translatability. Furthermore, if 

(hyper)phosphorylated, CELF1 may form a multisubunit com-
plex with eukaryotic initiation factor eIF2 and other translation 
initiation factors, promoting the translation of protein products 
from alternative start codons in mRNAs that bear an IRES motif 
(100, 101). Importantly, the different effects of CELF1 on the 
translation of target mRNAs depend on its phosphorylation status 
and on the overall level of available protein, which is controlled in 
accordance with the stage of myogenic differentiation. Although 
there is no consensus about the fate of CELF1 in DM1 and DM2 
muscles, evidence points to a situation in which the available 
level and thus binding of CELF1 to mRNAs is reduced in DM2. 
By contrast to the situation in DM1, its phosphorylation status 
appears unaltered in DM2. When taken combined, these stud-
ies support the idea that, superimposed on aberrancies in RNA 
splicing and polyadenylation, aberrancies in protein translation 
might have distinct roles in eliciting muscle dysfunction in both 
forms of DM (99, 102).

RNP Condensates: Is Phase Separation of Repeat 
RNA Causing Cell Stress?
Revolutionary work on polymer physical properties of macro-
molecular assemblies that undergo liquid-to-gel phase transition 
and concentration into microscale structures have led to the idea 
that formation of abnormal condensates by repeat transcripts 
and RBPs may also be involved in repeat RNA toxicity in DM 
(103–105). Jain and Vale have recently provided evidence that 
poly-CUG RNA and also poly-CAG RNA, which both can engage 
in multivalent intra- and intermolecular reactions, can undergo 
phase separation in vitro (106). They also showed that (CUG)n 
RNA forms small phase-separated gel inclusions in cells.

More basic studies into the thermodynamics of phase transition 
have revealed that the threshold concentration at which nano-
sized biomolecular RNP condensates are formed are determined 
by various parameters, including the type, stoichiometry and 
local concentration of available RNA, and protein constituents 
and their folding or solubility properties. Most of these stud-
ies have been focused on phase transition under conditions 
with high concentrations of RNA and protein. Future research 
must thus reveal the requirements for RNA-protein condensate 
assembly and phase transition in patient cells with endogenous 
levels of expanded RNAs. Most importantly, the question must 
be answered whether the occurrence of abnormal repeat RNP gel 
inclusions containing DMPK, DM1-AS, or CNBP mRNA with 
abnormal repeat length could by itself be a trigger for stress.

Repeat-Associated Non-ATG (RAN) Translation
Since its discovery in 2011, RAN translation has been linked to 
proteome abnormalities in multiple repeat-expansion disorders 
(107). RAN translation of expanded triplet or quadruplet repeats 
can occur in all reading frames, resulting in the production of 
homopolymeric (DM1) or poly-tetrapeptide (DM2) proteins (62, 
108, 109). In DM1, polyglutamine nuclear aggregates have been 
identified in myoblasts, skeletal muscle and peripheral blood 
leukocytes of patients, and in DM1 mouse tissue (108). In DM2, 
RAN translation across the (CCUG)n and antisense (CAGG)n 
repeats produces toxic poly-LPAC in neurons, astrocytes, and glia 
cells, while poly-QAGR proteins accumulate in white matter (62). 
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FiGURe 2 | Abnormalities in skeletal muscle myogenesis in myotonic dystrophy (DM). For myotonic dystrophy type 1 (DM1), five clinical subtypes have been 
identified (19), while for myotonic dystrophy type 2 (DM2) only the adult-onset manifestation is known. The myogenic process in skeletal muscle is divided in two 
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A discontinuous bar indicates decreased life expectancy.
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Whether these findings can be extrapolated to DM2 muscle is an 
open question.

Many other unanswered questions remain about the produc-
tion and relevance of RAN products in DM. How does an intronic 
RNA segment that is normally retained in the nucleoplasm 
and—without repeat gets quickly degraded—become accessible 
for the ribosome machinery? A similar question can be asked 
for DM1, since also expanded DMPK and DM1-AS RNAs are 
mainly retained within the nucleus, unavailable for assembly of 
ribosomes and subsequent translation (28). Nuclear translation 
is a process that has been demonstrated to occur (110, 111), but 
at this moment we do not know whether this could be involved. 
Another possibility is that the initiation of RAN translation 
occurs only after the onset of prometaphase in cycling cells, so 
when ribosome subunits are accessible because nucleoplasm and 
cytosol can mix. Indeed, at mitotic entry, cap-independent trans-
lation acquires a dominant role in expression regulation (112). 
Once polymeric proteins have been produced by RAN transla-
tion, they may—alike prion proteins—have a seeding effect in 
triggering abnormal protein aggregation and condensation and 
cause imbalance in the cellular proteome (62, 107). This may 
come at a considerable fitness cost for the cell in which it occurs.

Cellular Mechanisms involved in the 
etiology of DM1 and DM2
Quantitative and Qualitative Aspects Do Matter
Any of the molecular disease pathways discussed above could 
contribute to the myopathy during the different phases of life of 
patients with DM (Figure 2). However, one should realize that 
their involvement at the cellular level may differ dramatically 
with the stage of development and with the type of myofiber that 
is formed during muscle growth, regeneration, and aging. For 
example, stalling of replication forks at the (CTG•CAG)n and 
(CCTG•CAGG)n repeats may not be major threats in quiescent 
cells, but danger may increase once cells start proliferating. 
Similarly, reciprocal coupling does exist between the stage and 
type of differentiation and the mode and extend of alternative 

splicing in individual muscle progenitor cells or myofibers. The 
level of DMPK and CNBP transcripts, splicing factors, or their 
mRNA targets do, however, vary during muscle differentiation 
and maturation. So in muscle cells from cDM, DM1, or DM2 
patients the complex changes in stoichiometric ratios between 
MBNL1-3, CELF1, and other RBPs, and the DMPK or CNBP 
RNA molecules that take place during natural development are 
superimposed by variable toxic changes caused by abnormal 
RBP-repeat RNA interactions (Figure 1).

New supportive evidence for a mutual relationship between 
differentiation abnormalities and repeat expansion effects was 
obtained by our group in a study of isogenic CRISPR/Cas9-edited 
DM1 muscle cells with and without (CTG•CAG)2600 repeat 
(113). Monitoring of the molecular causes and cellular effect at 
the individual cell level, during in  vitro myocyte–myotube dif-
ferentiation and maturation in culture should thus become pos-
sible. Answering the chicken-egg question whether the impaired 
differentiation and regeneration events or the RNA processing 
abnormalities and associated cell stress were first in initiating 
the pathology in DM muscle tissue is not easy. Heterogeneity in 
cell type composition and developmental stage in the muscle cell 
population is here the confounding factor. In the next sections, we 
will try to provide background information on aspects of normal 
myogenesis and the cellular pathology and histopathology of DM 
muscle, to come closer to the root of this problem.

Muscle Fiber Type and Developmental-Stage 
Dependent Manifestation of Disease
Within human skeletal muscle there are different categories of 
fiber types, defined by myosin heavy chain (MyHC) isoform 
expression and metabolic activity (114). Individual fibers are 
characterized as one type of slow-twitch fiber (type 1) and three 
types of fast-twitch fibers [type 2a, 2c, and 2x/d (also referred to 
as 2b)] (115). Type 1 and 2a fibers are oxidative, whereas type 2c 
and 2x/d fibers are primarily glycolytic. Type 2 fibers generally 
produce higher forces and fatigue more quickly than type 1 fibers 
(116). Walled off from the main part of the muscle in the muscle 
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spindle, highly specialized fibers, known as intrafusal fibers, can 
be found. These fibers serve as specialized stretch receptors that 
allow the perception and coordination of limb movement.

Most muscles in the human body are built as a mixture of type 1 
and 2 fibers, but between individuals there are marked differences 
in muscle composition and size. Fiber type content and distribu-
tion is thereby coupled to aspects of physical performance, such 
as endurance and strength. Hence, there is also differential asso-
ciation with disease risk or states between individuals, as skeletal 
muscle fiber subtypes respond differently to (patho)physiological 
signals, which include atrophy signals. The ratio of type 1 and 
2 fibers within a muscle is altered in muscular disorders when 
atrophy of one of the two types occurs. Several signaling pathways 
for muscle atrophy are known, mostly related to abnormalities 
in protein degradation (117). However, the selectivity of fiber 
type atrophy remains an unresolved issue (118, 119). For DM, 
the fiber type specificity of manifestation is a topic that deserves 
new attention, especially since revolutionary methodologies for 
transcriptome, proteome, and microscopy analyses at the single 
cell level have become available.

Skeletal muscles from all DM patients have a distinct histo-
pathological phenotype, but biopsies show conspicuous differences 
between DM1 and DM2 patients (Table 1). The distal muscles 
mainly affected in adult DM1 show predominant loss of type 1 
fibers (120), whereas the predominantly affected proximal mus-
cles in DM2 show mostly type 2 fiber atrophy (39). Furthermore, 
an increased variation of fiber diameter and prominent central 
nuclei with chromatin clumps are present in DM1, normally 
observed in constantly regenerating muscle with immature fibers 
(39, 43, 121, 122). Another differential observation is the higher 
frequency of nuclear clump fibers in DM2. Nuclear clump fib-
ers are typically observed in denervated muscles and have been 
termed “denervation-like” when observed in DM2 muscle, since 
other neuropathic alterations were not detected (123). Generally, 
the alterations seen in muscle of DM2 patients are rather mild and 
have a heterogeneous character (122). Muscle pathology in DM1 
patients has a more typical appearance. However, histological 
reports, especially of older DM1 studies, may sometimes have a 
misleading message as researchers usually only draw a distinction 
between muscles of individuals with cDM and the adult-onset 
form of disease. Details about graded differences in pathology 
between muscles from patients with childhood, juvenile, adult, 
and late-onset/asymptomatic DM1 are not well known.

Already early on it was recognized that cDM is associated 
with a much broader spectrum of morpho-anatomical muscle 
problems, with type 1 fiber preponderance and hypotrophy 
and common occurrence of type 2b fiber deficiency (52, 124). 
Undifferentiated thin fibers and an increase in satellite cells at 
birth indicate immature muscle fiber growth and delayed muscle 
fiber differentiation (125, 126). Also, outside the body in in vitro 
culture the differentiation and maturation capacity of progeni-
tor cells from embryonic muscle of cDM patients was found to 
be defective (127). The percentage of myoblasts fusing to form 
myotubes was reduced, the myotube morphology was abnormal, 
and only immature MyHC protein isoforms were expressed, pri-
marily the embryonic isoform. Also conspicuous aberrancies in 
intrafusal fiber and muscle spindle presence or morphology were 

reported. These latter features and the specific fiber type effects 
may point to additional abnormalities in innervation, motor unit 
formation, or neurotrophic signaling during the later phases of 
embryonic development and early prenatal muscle maturation 
(128–130) (Figure 2).

HOw HeAlTHY AND DM MUSCleS ARe 
bUilT AND MAiNTAiNeD

Myogenesis During early embryogenesis
The skeletal muscles of limb and torso and head muscles in 
vertebrates derive from the paraxial and prechordal mesoderm 
layers in the early embryo. The myogenic process starts when the 
paraxial mesoderm forms multiple somites, which then further 
specialize and form the dermomyotome. First, a large proportion 
of stem cells in the somites and later in the forming limb buds 
undergo frequent mitosis, under influence of factors such as 
IGF-1 and PDGF. The proliferating progenitor cells derived from 
the embryonic mesenchyme of the somite then undergo different 
phases of myotome development. This process starts with pro-
grammed maturation accompanied by adoption of skeletal mus-
cle fate and withdrawal from the cell cycle, giving rise to a layer 
of non-proliferating myoblasts that form the primary myotome 
beneath the dermomyotome (131, 132). When more and more 
cells are progressively added and start to fuse to already com-
mitted myoblasts (myocytes) that already reside in the myotome 
this leads to the formation of the first myofibers and the onset 
of embryonic muscle growth (133). The following sections will 
describe the different steps on the road to maturation of skeletal 
muscles before and after birth.

Cell Cycle Exit During Myogenesis
During all stages of contribution to muscle formation and regen-
eration, myoblasts first need to stop their proliferation process by 
exiting the cell cycle (134). This occurs by activation of cyclin-
dependent kinase (cdk) inhibitor p21 and retinoblastoma protein 
(Rb), a downstream target of p21. p21 is also partially responsible 
for the decreased Cdk1 activity observed in differentiating cells 
(135–137). Formation of Rb–E2F complexes is necessary for 
maintenance of inhibition of cell cycle progression and for cell 
cycle withdrawal (138). The role of CELF1 in this regulatory 
circuit is considered an important link to myogenic problems in 
DM.

Phosphorylation of CELF1 regulates its intracellular localiza-
tion and activity. Normally, CELF1 is phosphorylated by AKT 
and cyclin D3/cdk4 at Ser28 and Ser302, respectively. This post-
translational modification is crucial for myogenic progression. 
Induction of AKT activity is otherwise involved in the suppression 
of apoptosis during myogenesis (139). In DM1 myoblasts, CELF1 
appears to become hyperphosphorylated by AKT (140), whereas 
in myotubes, CELF1 phosphorylation by cyclin D3/cdk4 seems to 
be reduced (141). Alterations in the activity of GSK3β influence 
the activity in the cyclin D3-CDK4 phosphorylation signaling 
pathway from upstream. The abnormalities in phosphorylation 
status compromise CELF1’s role as a translational regulator of a 
specific population of mRNAs. As an end effect, the changes lead 
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to an increase of cyclin D1, an important regulator of prolifera-
tion of myoblasts, and to a reduction of p21 in DM1 myotubes. 
Together, the changes in the AKT-CELF1-cyclin D1 and cyclin 
D3/cdk4-CELF1-p21 pathways affect the myogenic process in 
DM1 (68, 141, 142). Also the Rb–E2F repressor complex appears 
not to be formed, underscoring that impairment of cell cycle with-
drawal may have a role in both forms of DM manifestation (68). 
However, because not all pathways in which CELF1 is involved 
are similarly abnormal in DM1 and DM2, other obstructions in 
myogenic programming might be at play in DM2 as well.

Myoblast Fusion
After cell cycle arrest, the fusion of competent myoblasts to form 
multinucleated myotubes begins. Fusion is a tightly controlled 
process that involves distinct mechanistic steps, including cell–
cell interaction, recognition, and adhesion, followed by mem-
brane coalescence and merging of competent myoblasts to form 
the multinucleated myotube (143). Extracellular signals from 
adjacent tissues have an important role in the initiation of several 
of these steps. Two waves of fusion events take place to form the 
muscle. Primary myofibers that determine the shape and identity 
of muscles are formed in the first wave. Secondary myofibers align 
alongside the primary myofibers and add mass to the muscles in 
the second wave. Distinct events govern these stages for promo-
tion of differentiation and growth of muscle: first, individual 
myoblasts fuse to form nascent myotubes and then multinuclear 
myotubes are formed during subsequent fusion steps between 
myotubes and additional individual myoblasts (144–146).

The factors that trigger cell fusion (i.e., fusogens) are not 
precisely known, but numerous proteins that coordinate the 
formation of primary and secondary myotubes have been identi-
fied (144, 146–148). Myomaker, a plasma membrane, Golgi and 
organellar membrane embedded protein seems crucial (149, 
150). Its importance is illustrated by the finding that mutations 
in myomaker cause a congenital myopathy, Carey-Fineman-Ziter 
syndrome (151, 152). Other proteins that have an essential role 
in the myoblast fusion process are myomixer and myomerger. 
Myomixer, localized to the plasma membrane, associates with 
myomaker. Myomixer together with myomaker are strong 
promoters of cell fusion, driving the formation of multinucle-
ated cells from myoblasts (153). Myomerger is only expressed 
on myocytes and induces the fusogenicity, while myomaker is 
essential to make a cell fusion competent (148).

Rearrangements in the actin cytoskeleton are first involved in 
the formation of membrane protrusions between the incoming 
myoblast and the partner myoblast or myotube. Later they are 
important for pore formation and cytoarchitectural rearrange-
ments in the resulting multinuclear cell. The entire network that 
controls the actin network in cells is too complex to discuss here 
(154, 155), but one issue related to DMPK splice variants may 
be important. Tentative evidence points to a role for the kinase 
activity of DMPK, a member of the Rho kinase family, in the 
regulation of myosin light chain phosphorylation. DMPK may, 
therefore, functionally link to plasticity of the actomyosin net-
work (156, 157). DMPK is dispensable for myogenesis, as DMPK 
knockout mice are viable and make muscles with only minor 
abnormalities (156). However, the possibility that DMPK splicing 

becomes spatiotemporally deranged by presence of very long 
(CUG)n repeats and exerts a modulatory effect on actomyosin 
cytoskeleton dynamics during early and late myoblast-myotube 
fusion still exists. Tight regulation of DMPK isoform E during 
early muscle differentiation is essential for normal development 
(158) and alternative splicing causes downregulation of DMPK E 
during myoblast to myotube differentiation (159).

Generally, the muscle problems in adult DM patients are dif-
ficult to attribute to any of the distinct phases that determine the 
differentiation, fusion, or senescence or death of different types of 
muscle cells in vivo. In vitro studies on myoblast cultures of adult-
onset DM1 with intermediate expansions or DM2 patients are 
scarce. New methodology was recently published for the immor-
talization of primary satellite cells, which stimulate in vitro studies 
of differentiation capacity (86). Interestingly, DM2 satellite cells 
with (CCTG•CAGG)4000 repeats did not have a significantly 
altered myogenic capacity, confirming earlier findings (66, 160). 
By contrast, more attention has been concentrated on the study 
of embryonic or early postnatally derived muscle progenitor cells 
from cDM muscle. These cells consistently showed impaired 
myogenic potential and reduced myogenic differentiation capac-
ity during culture in vitro (66, 127, 160–164).

Transcription Factor-Induced Programming of 
Myogenic Lineages
To better understand pathological changes in muscle in DM 
patients, we will first examine the molecular processes that govern 
normal muscle development (165–168) and discuss these against 
the background of repeat expansion. The molecular cascade that 
directs the fate of somite-derived cells during developmental 
maturation is principally determined by PAX3 and PAX7. These 
transcription factors trigger the sequential expression of a group 
of highly conserved myogenic regulatory factors, collectively 
known as MRFs. MRFs contain a basic helix-loop-helix domain 
and recognize the E-box in the promoter of target genes (169). 
MYF5 and MYF6 (also known as MRF4) act as upstream regula-
tors of MYOD, perhaps the best-known member of the family. 
Co-expression of these three factors is required for myogenic 
commitment. Then a fourth factor, myogenin (MYOG) activates 
advancement to the myocyte stage and terminal differentiation of 
the muscle cell (166–168, 170). In this circuit, myogenic transcrip-
tion factors act in a complex feedback and feedforward network. 
For instance, the temporal coordination of MRF-mediated gene 
expression is achieved by allowing certain genes to be directly 
activated by an individual MRF, whereas the induction of other 
genes in later stages of differentiation by the same MRF requires 
the participation of the earlier target gene products (166). There 
is compelling evidence that the expression of various proteins in 
this MRF regulatory network, like MYOD and MYOG, is affected 
by the expansions in DM1 or DM2 (69). The involvement of RBPs 
is thereby a key event. CELF1, for example, binds and destabilizes 
MYOD mRNA via its GRE-motif, and an increase in CELF1 
activity thus has an inhibiting effect on the progress of myogenic 
differentiation (72).

Members of the SIX family of homeobox genes (SIX1, SIX2, 
SIX4, and SIX5) are among the other upstream regulators of 
MRFs. In mice, Six4 and Six5 repress Myog, whereas Six1 activates 
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it (171). Six1 and Six4 were shown to be required for Pax3 and 
MRF expression during myogenesis (172). Interestingly, SIX5 
is immediately adjacent to DMPK and its mRNA level seems 
decreased in DM1 patients (173). Six5 knockout mice, however, 
show essentially no muscle symptoms. Hence, the role and 
relevance of Six5 in DM1 muscle pathology is not very well 
established (174–179).

Once it was realized that the coordinate action of transcrip-
tional regulation and alternative splicing (plus other forms of 
RNA processing) is of key importance for myogenic development 
(72, 75, 180), also the role of isoforms of accessory transcription 
factors in impaired muscle differentiation in DM attracted further 
attention. First evidence for their significance came from a study 
of members of the MEF2 family. In vertebrates, four members of 
this family, MEF2A, -B, -C, and -D, are expressed. Although MEF2 
members do not possess own myogenic activity, they act together 
with MRFs to activate and sustain the myogenic differentiation 
program (85, 181). As discussed earlier, MBNL1, -2, and -3 are 
key factors in the missplicing in DM. In their normal role, MBNL1 
and -2 are positive regulators of muscle differentiation. MBNL3, 
on the other hand, inhibits muscle formation, by repressing adult 
mRNA splice isoforms (182–185). Lee et al. showed that MBNL3 
influences myogenesis by disrupting MEF2D splicing, by favor-
ing beta-exon exclusion (186). When the beta-including MEF2D 
isoform was expressed in a cell model, normal muscle differen-
tiation was restored. Almost coincidentally, others reported on 
splicing changes for MEF2A and -C mRNAs. Dysregulation of 
MEF2B and -D and genes that are under transcriptional control 
of these factors, mainly those involved in calcium signaling, was 
found as well (88). Likewise, CELF1 upregulates translation of 
MEF2A mRNA via direct interaction with a GC-rich element in 
the transcript, causing a delay in myogenesis. Abnormal CELF1 
upregulation thus explains the muscle maturation delay in DM1. 
For DM2 the involvement of coupled transcription-RNA pro-
cessing abnormalities has not yet been documented.

First Appearance of Committed MuSCs
During early embryogenesis, a subselection of cells from the der-
momyotome maintains proliferation and migrates directly to the 
myotome. These PAX3- and PAX7-positive cells do not express 
members of the MRF, homeobox or MEF families of transcrip-
tion factors. These cells are known as the myogenic precursors 
that form the source of the majority of satellite cells in the adult 
skeletal muscle, and as such form the subject for further discus-
sion in the next sections.

embryonic and Prenatal Phases of Muscle 
Growth
Fiber Type Specification
In most vertebrates, fibers of diverse types are recognized in the 
embryo concomitantly with the earliest time points of muscle 
appearance, before innervation (187). Interestingly, slow MyHC-
expressing fibers seem to form earlier than fast MyHC-expressing 
fibers. Hedgehog signaling is a determining mechanism required 
for muscle precursors to commit to the slow muscle fate. Later 
in development, beyond the late embryonic and fetal periods of 

prenatal development, the slow (type 1) fibers become less com-
mon and fast fibers (type 2) start to become the most abundant 
fiber type. External soluble signals, such as WNT, coming from 
tissues adjacent to the somites—i.e., the notochord and neural 
tube—plus cell–cell contacts in the embryonic niche play an 
important role in further growth of muscle and the specification 
of fiber types. Excellent reviews discuss the regulatory principles 
behind fiber specification (180, 187, 188).

The functional and architectural properties of fiber types that 
arise during embryonic and fetal muscle development are with 
the advancement of growth further modified by effects of physical 
activity, endocrine signals and muscle innervation (180, 187–189). 
This process continues further during postnatal life. For a better 
understanding of the distinct fiber type involvement in DM1 
versus DM2, it is important to reiterate here that not only type 
1 and 2 fate specification but also intrafusal fiber morphogenesis 
is under control of new combinations of transcription factors. 
Transcription factor EGR3, for example, is selectively expressed 
in sensory axon-contacted myotubes, and is a key factor for 
normal intrafusal fiber differentiation and spindle development 
(190–192). ERB2 signaling also plays an important role (193). As 
was specified above, intrafusal fiber and spindle morphology are 
clearly affected in cDM muscles.

Similar hierarchical networks determine the fast and slow 
fiber specification. Involvement of transcription factors PRDM1 
and SOX6 has already been well documented. PRDM1 acts as a 
switch that activates the slow-twitch differentiation program in 
cells by direct repression of fast-twitch specific genes and indirect 
activation of slow-twitch specific genes through limiting the 
activity of the SOX6 transcriptional repressor (188).

During the transition from the embryonic to the fetal phase of 
development, a switch occurs from basic muscle patterning (pri-
mary myogenesis) to growth and maturation of the muscle masses 
and the onset of innervation (secondary myogenesis). These two 
waves of myogenesis are mediated by distinct embryonic and 
fetal myoblasts, respectively, each characterized by differentially 
expressed genes and properties. The differentiated cells that these 
myoblasts produce later have also distinct features. Expression of 
NFIX is an important prerequisite for the continuation of coordi-
nation of fiber specification in the switch to fetal muscle growth. 
Gradual changes in the networks for transcription regulation, 
alternative splicing and polyadenylation thereby jointly control 
the differential expression of fiber type specific protein isoforms. 
Single muscle fiber proteomics studies have revealed hundreds of 
proteins that vary in level or identity between the proteomes of 
different fiber types. Among these are protein isoforms involved 
in sarcomeric architecture, contractile activity, mitochondrial 
and carbohydrate metabolism, calcium handling, and protein 
turnover (194). Differential activation of genes for fiber type spe-
cific isoforms of myosin, troponin, tropomyosin, creatine kinase, 
B-enolase and glycolytic, and mitochondrial enzymes is typical in 
this specialization (195).

Until now, not much attention was paid to differential expres-
sion of genes whose products are linked to the RNA toxicity 
mechanism in DM. To the best of our knowledge no publications 
exist on differences in expression of MBNL1-3 or CELF1 between 
fast and slow fibers. Also reports on abnormalities in expression 
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of DMPK and CNBP in individual fiber types in DM1 or DM2 
are rare. In one early report, a decrease in DMPK expression in 
type 2a muscle fibers of DM1 patients, compared with the level 
in normal controls, was mentioned (196). Wheeler et  al. have 
reported an abnormal foci count in subsynaptic nuclei and in 
nuclei of motor neurons at muscle-nerve junctions (67).

Muscle Progenitor Cells of Different Origin
During late fetal development the fiber composition of muscle is 
further defined and profound changes in the direct neighborhood 
of the muscle occur. Within the basal lamina formed around the 
muscle, the fibers are now located together with the now quies-
cent population of PAX3+/PAX7+ MuSCs, the satellite cells. At 
the end of the fetal period ~30% of myonuclei are satellite cell 
nuclei. The remaining ~70% are in the multinucleated fibers. 
Blood vessels permeate the interstitial spaces between fibers 
and nerve endings have established contact via neuromuscular 
junctions. During the transition to adulthood, the percentage of 
mononucleated cells located under the basal lamina at the muscle 
periphery declines sharply, due to recruitment for muscle growth 
and maintenance. In adult muscle, the population of satellite cells 
encompasses 2–5% of identifiable nuclei (11, 197, 198), which 
declines further during aging.

There is now compelling evidence that the skeletal muscle 
niches thus formed contain multiple types of cells, among them 
also cells with non-somitic origin, with myogenic capacity 
(Figure 3). Together with the satellite cells, the major skeletal mus-
cle progenitor/stem cell population, these cells form the reservoir 
for use in skeletal muscle repair, regeneration, and maintenance 
(Table  2). Specifically, different interstitial populations of cells 
have now been characterized, referred to as PW1+ interstitial 
cells (PICs, that express PW1/PEG3) and β4-integrin+ cell (199). 
Other progenitor cells, MABs and PCs, are located in the fetal or 
postnatal muscle vasculature, respectively. PCs express alkaline 
phosphatase (ALP), but lack myogenic and endothelial markers 
(200). Using lineage tracing, it has been shown that most of these 
non-satellite cells are not derived from the somite, as do the true 
PAX3+/PAX7+ satellite cells. The vessel-derived progenitors can 
be traced back to Pax3+ progenitors of the paraxial mesoderm 
(201, 202). Both the muscle-resident satellite cells and the PCs 
contribute to muscle growth during prenatal and postnatal 
development.

We will next examine the role and fate of satellite cells in growth, 
renewal and regeneration of muscle. The biological significance 
of the other progenitor cells introduced above will be discussed 
further below in the context of regenerative medicine. DM 
pathobiology has only been studied in the satellite cell-derived 
myoblast population in  vitro and by histological examinations 
in vivo. No data exist on the involvement of PICs, MABs, and PCs.

Muscle Renewal and Regenerative 
Myogenesis
Skeletal muscles endure a lot throughout a lifetime. First, muscle 
tissue has to grow in size. Then it must be constantly functionally 
and structurally renewed and maintained in accordance with 
physical demand and repaired after injury or disease. The role 
of the satellite cell compartment is thereby indispensable. The 

mechanisms by which satellite cells participate in renewal and 
regeneration of muscle have overt similarities to developmental 
myogenesis. Satellite cells follow largely the same trajectory as 
somite muscle cells during development, except for their start, 
which begins in a state of mitotic quiescence. The population of 
satellite cells must also be kept in check, to maintain functionality 
and to guarantee muscle homeostasis up to high age. This necessi-
tates maintenance of a delicate balance between self-renewal and 
differentiation. In fact, evidence has accumulated showing that 
distinct satellite cell pools in anatomically defined muscles in the 
body are heterogeneous cell populations, with cells in different 
stages of development having different gene expression signatures 
(167, 199, 203–205).

Maintaining Tissue Homeostasis in Adult Muscle
In reaction to disease, injury or prolonged hypoxia, the local 
release of cytokines, growth factors, cell differentiation factors 
such as NOTCH and WNT, and other signals triggers satellite 
cells that are in a quiescent state. The muscle tissue itself and 
nearby fibroblasts and macrophages have a role in this process. 
The signaling starts a program of re-entry of satellite cells in cell 
cycle. Subsequent rounds of cell division, combined with dif-
ferentiation programming, along similar lines as in embryonic 
development, in a subset of the satellite cells produces heteroge-
neity in the population. Some satellite cells retain stemness, and 
others become myoblasts or myocytes that undergo definite 
differentiation commitment (Figure 3).

Expansion in the muscle stem cell niche assures that some 
cells can remain associated with the extracellular matrix and to 
cells in the neighborhood. This promotes polarization and allows 
different cycles of asymmetric cell division, maintaining undif-
ferentiated satellite cells, ready for reversal to quiescence (requi-
escence), and committed progeny for differentiation. Cells with 
highest expression of NUMB, an antagonist of NOTCH signaling, 
go back in quiescence for later self-renewal (206). Daughter cells 
in which p38α/β MAPK is asymmetrically activated by a so-called 
PAR complex, undergo commitment to myogenic differentiation 
(207), expand in number and form binuclear myotubes or fuse to 
existing fibers (168, 199, 203, 208).

A general repression of translation, mediated by the phos-
phorylation of translation initiation factor eIF2α, is also a key 
event in the maintenance of the quiescent state (209). The mitotic 
quiescent satellite cells express PAX7, MYF5, and CD34 and 
frequently also PAX3 (210–214). Entrance in cell cycle and pro-
gression through the myogenic lineage occurs under the control 
of MRFs. Activated satellite cells no longer express CD34 and 
start expressing MYOD. Once activated satellite cells proliferate 
and become myoblasts, PAX7 expression is downregulated, while 
MYOD and MYF5 expression remain (215). In silico modeling of 
RNA processing associated with human muscle development has 
provided strong evidence that also the expression of MBNL1, -2, 
and -3 varies during these transitions in cell state (85). In addition, 
MYOD induces the expression of p21. As mentioned earlier, p21 
blocks cell cycle progression and it is involved in the switch from 
proliferating to differentiating myoblasts, i.e., when they become 
myocytes. This switch is essential for myogenic precursor cell, 
satellite cell, function in regenerating skeletal muscle (135, 216).  
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FiGURe 3 | Skeletal muscle growth, maintenance, and repair by different myogenic progenitor cells. Satellite cells from the basal lamina of the myofiber are 
activated and undergo asymmetric and symmetric division to generate heterogeneous progeny. Some cells undergo self-renewal and return to quiescence, others 
become myoblast that will proliferate and differentiate to become myocytes, which fuse to myofibers, enabling repair and/or growth. Mesoangioblasts (MABs) can 
contribute to muscle regeneration during embryonic growth, while pericytes (PCs) are involved in postnatal muscle growth by repopulating the quiescent stem cell 
population or maybe by transforming into a myoblast. Participation in growth and/or repair or direct fusion with the myofiber probably occurs along the same 
pathways as given for satellite cells. Uncertainties in cell fate are indicated by dashed arrows. PW1+ interstitial cells (PICs) are mostly involved in perinatal growth. 
Expression signatures of differentiation markers in all different cell types are listed at the bottom.

TAble 2 | Myogenic cell types.

Cell type Abbreviation Definition

Muscle-resident stem cell MuSC Collective term for cells in (adult) skeletal muscle that can self-renew and give rise to muscle cells
Satellite cell – Muscle progenitor cell located in the adult stem cell niche under the basal lamina of the myofiber; upon muscle injury  

this cell can undergo symmetric or asymmetric cell division and produces cell progeny that undergo self-renewal or 
become myoblasts 

Myoblast – General term for a mononuclear muscle progenitor cell that can proliferate or undergo terminal myogenic differentiation
Myocyte – Quiescent differentiated myoblast that can fuse to a myotube
Myotube – Multinuclear cell formed by the sequential fusion of myoblasts/myocytes, which will develop into a mature myofiber
Myofiber – Mature multinuclear muscle cell; the smallest contractile unit of a muscle
Induced pluripotent stem cell iPSC Pluripotent stem cell generated from an adult tissue cell (often a fibroblast)
Mesoangioblast MAB Cell isolated from the embryonic microvascular wall. A MAB has the potential to self-renew and generate multiple 

types of differentiated cells
Pericyte PC Cell isolated from the microvascular wall of postnatal tissue. A PC is capable of (trans)differentiating into other cell 

types when naturally or experimentally relocated to a different tissue
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During normal healthy life, this whole cascade of steps for the 
regulation of muscle differentiation and maintenance is orches-
trated by a multitude of circulating hormones, such as IGFs, 
FGFs, TGFs, testosterone, thyroid hormones, cytokines, and 
exosome-secreted signals, which are secreted locally and appear 

in the muscle stem cell niches. Whether and how hormonal 
signaling controls viability, performance and half-life of multi-
nucleated myofibers—i.e., the bulk of muscle mass in a healthy 
individual—is still poorly understood, as attention of study thus 
far has been mainly directed toward MuSCs (208).
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Failure of Tissue Homeostasis in DM Muscle
Not much is known about the fate specification of terminally 
differentiated multinucleated myofibers in DM. One likely pos-
sibility is that the persistent abnormalities in alternative splicing, 
alternative polyadenylation, and unscheduled translation of 
aberrant transcripts lead to the production of excessive amounts 
of ectopic proteins. When combined with a bulk of proteins 
synthesized in normal accordance with the stage of muscle 
during adulthood, this will create a permanent disbalance in the 
assembly—and perhaps turnover—of multiprotein complexes in 
the fiber proteome. Production of polymeric proteins by RAN 
translation may further create proteome abnormality. Ultimately, 
such imbalance will lead to a culmination of problems and to 
proteotoxic stress alike UPS, ER stress, or other forms of stress 
mentioned in this review (217). When certain thresholds are 
exceeded, this may lead to senescence or apoptosis. Somatic 
expansion of repeat length during aging may further augment 
the stress level, causing loss of an increasing number of fibers with 
disease progression and aging.

Why pathology specifically involves type 1 fibers in distal 
muscles of adult-onset DM1 patients and type 2 fibers in proxi-
mal muscles in DM2 needs more study. The answers may not be 
found only in the mature fibers themselves. They also must be 
sought in differences between DM1 and DM2 in the fitness of 
their satellite cell pools, or in the modes of recruitment of satellite 
cells for the regeneration of damaged fibers. As addressed before, 
the relevance of the satellite cell pool becomes early apparent in 
cDM patients, who are born with an excessive number of satellite 
cells and have thin muscle fibers, typical markers for immature 
muscle fiber growth, diminished recruitment, and delayed dif-
ferentiation (125, 126). Severe disruption of RNA processing is 
the key element in the diminished capacity of muscle precursor 
cells in muscle formation in cDM, as recently demonstrated by 
combining transcriptome profiling of muscle tissue from patients 
and mouse models (85). In adult-onset DM1, the number of satel-
lite cells are increased in distal but not in proximal muscles (218). 
Late myogenic differentiation markers are not fully expressed 
(219). In cell culture, DM1 and DM2 myoblasts show a premature 
proliferative growth arrest compared with healthy myoblasts (5). 
Combined, these observations point to a situation in which the 
regenerative capacity of satellite cells induced in response to fiber 
dystrophy is constitutively impaired (36, 220).

To understand muscle wasting in greater detail, we first need 
to know whether the cellular effects of fiber dystrophy are indeed 
dominant over those of regeneration failure. Then, to deconvolute 
the complexity of DM further, molecular analyses are needed. 
First, we need to know whether failure in pools of satellite cells to 
adequately balance asymmetric and symmetric division and/or 
subsequent loss of regenerative potency after myogenic commit-
ment could be involved. Underlying mechanisms and differences 
between DM1 and DM2 muscles therein must be analyzed. Other 
studies should be concentrated on the loss of functionality, stabil-
ity, and viability of fibers in DM1 and DM2. Preferably cell- and 
lineage-tracing studies should be non-invasive and concentrated 
on the fate of individual myoblasts, myocytes and muscle fibers 
over longer periods of aging. For obvious reasons, these types of 
longitudinal analyses of individual cells are virtually impossible 

for human muscle. However, tracing of cells during development 
and maintenance in muscles of animal models of DM will also 
become challenging.

Premature Muscle Aging in DM
From a clinical perspective, various symptoms of DM1 can be 
seen as a manifestation of progeria or accelerated aging (221–
223), while aging-like symptoms are not as apparent in DM2. 
The progression of dystrophy in skeletal muscle in DM1 patients 
shows similarities with sarcopenia, i.e., age-related loss of muscle 
mass, strength, and function (5). Experimental evidence is mostly 
indirect and based on descriptive studies, wherein histopatho-
logical features such as grouped atrophy, fiber size variability, and 
central nuclei were investigated in sarcopenic and DM1 muscle 
(224). Also compelling ultrastructural and molecular evidence 
was provided, showing that alterations in RNA metabolism in 
myonuclei from DM1 patients and in aging muscle share similar-
ity (221, 222, 225).

The mechanisms underlying age-related muscle wasting and 
weakness are probably diverse and not well understood (226). A 
recent single-fiber proteomics approach showed that the senes-
cence of type 1 and 2 muscle fibers during aging in healthy donors 
is characterized by several diverging mechanisms. Differential 
adaptations in cellular carbohydrate and energy metabolism 
and the networks for protein quality control and proteostasis 
were among the most conspicuous changes in slow and fast 
fibers (194). Earlier profiling studies had pointed to a glycolytic 
to oxidative shift (227) or non-specified overall changes caused 
by aging in whole human muscles (228). The numerical loss 
and the loss of functionality of MuSCs, rather than fibers, with 
aging have attracted until now more attention, as they provide an 
explanation for the regenerative failure of aged muscle. For more 
details on the molecular and cellular findings, we refer the reader 
to comprehensive reviews on this topic (229–231).

Within the networks for muscle regeneration and main-
tenance during aging, only a few players and processes have 
been identified that bear direct relevance for DM1 and DM2 
pathophysiology. DNA repair is one important issue. Nuclei in 
resting satellite cells and in muscle fibers are highly efficient in 
DNA repair through non-homologous end joining, explain-
ing why repeat expansion predominantly occurs in these cells 
(232). Ongoing somatic expansion of the (CTG•CAG)n and 
(CCTG•CAGG)n repeats due to DNA repair in quiescent cells 
may thus be an important factor in impaired muscle regeneration 
in patients (23). Whether age-induced changes in the production 
of mitochondrial reactive oxygen species also have an effect must 
still be analyzed. Accumulation of reactive oxygen species dam-
age is a known contributing factor to repeat expansion (233, 234). 
Age-dependent changes in oxidative metabolism must, however, 
have different effects in DM1 and DM2 muscles, as the affected 
fiber types differ in both forms of disease.

The shortening of telomeres is probably not a major contribu-
tor to muscle aging, although effects on premature senescence of 
DM2 satellite cells have been suggested (220). The situation in 
DM1 is less clear. Satellite cells in cDM patients did have a higher 
telomere shortening rate, but they entered senescence before 
reaching a critical length. This argues against a determining role 
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of telomere shortening as an explanation for diminished differen-
tiation capacity in cDM muscle (218, 235).

A more likely candidate mechanism for the premature growth 
arrest in DM1 muscle precursor cells is activation of the p16Ink4a-
pathway that leads to CDK4 inhibition and cell cycle arrest. p16 
accumulates in myoblasts from DM1 patients in response to 
(CTG)n-related stress (220, 235), resulting in impaired regenera-
tion and atrophy. As mentioned, aging-like symptoms are not so 
apparent in DM2 patients and the p16 pathway appears not to 
be altered in DM2 satellite cells and fibers (220, 221). Finally, 
increased p38/MAPK signaling is a typical feature of aged satellite 
cells (236), but evidence for p38 signaling abnormalities in DM 
muscle is lacking. Also evidence for the involvement of apoptosis 
in DM muscle wasting is still limited (159, 163, 237).

An interesting test for the question how DM effects are super-
imposed on senescence of normal aging would be to study the 
effects of ablation of p16Ink4a-expressing cells in muscle of DM 
mouse models. This is possible with use of a genetic approach 
recently developed by Baker and co-workers in Van Deursen’s 
laboratory (238) and also with drug treatment (239). Any altera-
tion in muscle health in the DM mice would provide us with novel 
insight in the causative effects of expanded repeats on the viability 
of progenitor cells in muscle.

Stress Signaling in Adaptation to 
Regenerative Failure, effects of Disease, 
and Aging
Adaptation to cell-autonomous stress in muscle depends on a 
combination of intrinsic and extrinsic signaling mechanisms. 
Many intracellular pathways are known that protect cells against 
stress from for example DNA damage, proteotoxicity, and 
calcium-mediated excitotoxicity (240). Best-known are the P53, 
AKT, and NRF2 pathways, but these pathways have not yet been 
intensely studied in skeletal muscle of DM patients.

Changes in intercellular communication may also fulfill a 
central role. Many of the secreted hormones and factors that are 
exchanged between cells and orchestrate myogenesis and regen-
eration have been extensively discussed in some of the reviews 
mentioned above (208). Among these are the WNT proteins, 
HGF, FGFs, IGF-1 splice variants, myostatin, and TGF-β (241). 
Although the working mode of these secreted factors is reason-
ably well understood, it is not always clear what cell types in the 
muscle stem cell niche are in the secretory and/or the respond-
ing mode. Satellite cells from cDM patients secrete increased 
levels of prostaglandin E2 in vitro. This secretion is controlled via 
upregulation of cyclo-oxygenase 2, mPGES-1, and prostaglandin 
E2/EP4 receptors. A direct consequence of the prostaglandin E2 
upregulation is a decrease in intracellular Ca2+ and impairment 
of fusogenic capacity of the satellite cells (242). It was also shown 
that cDM muscle and primary myoblast derived thereof produce 
a higher level of IL-6, indicative for increased activity of this 
myokine signaling pathway (52).

Another conspicuous observation was that variation in the 
level of CELF1, as seen in cDM muscles, causes imbalance in the 
production of subunits for the signal recognition particle in the 
ER-secretory pathway (243). CELF1 misregulation may thus be 

coupled to changes in the secretory route for extracellular matrix 
proteins. Others confirmed that production of ECM proteins is 
indeed altered in muscle of a mouse model for DM1 (244). Taken 
together, this is compelling evidence that the hormonal and ECM 
environment of progenitor cells in the DM muscle are changed. 
There is no doubt that this will compromise the “cry-for-help” 
communication in DM muscle and its adaptive regenerative 
capacity in response to accelerated fiber decay due to repeat stress.

MicroRNAs (miRNAs) and Other Non-
Coding RNAs in Muscle Homeostasis
MicroRNAs have a critical role in cellular stress responses, dif-
ferentiation, proliferation, and apoptosis in muscle (245, 246). 
MiRNAs are short, highly conserved non-coding RNAs that 
occur in all cell types, where they regulate the stability and the 
translational efficiency of target mRNAs (247). Multiple miRNAs 
that regulate differentiation and stress adaptation of skeletal 
muscle, referred to as myomiRs, exist (248). Among them are 
miR-1, -133a, -133b, -206 (the most abundant miRNA in skeletal 
muscle), and miR-208. Expression of these miRNAs is regulated 
by transcriptional networks involving MEF2, MYOD, SRF, and 
TWIST1 (249, 250). Non-muscle specific miRNAs that regulate 
differentiation and regeneration after muscle injury are miR-181, 
-221, and -222 (251).

Myoblasts and myofibers utilize exosome-clustered extracel-
lular miRNAs as paracrine and endocrine communication signals 
to regulate homeostasis and regeneration. Extracellular myomiRs 
are elevated during perinatal muscle development and after 
exercise-induced muscle regeneration. Also in primary human 
myoblast and C2C12 cultures, these extracellular myomiRs were 
elevated and appeared to be released selectively as a consequence 
of the differentiation process (252).

Myotonic dystrophy type 1 and 2 profiling studies showed 
that deregulation of intracellular miRNA content in muscle, and 
extracellular extrusion via exosome secretion is a hallmark of 
disease. Eight miRNAs were found to be significantly deregulated 
in the serum of DM1 patients (i.e., miR-1, -27b, -133a, -133b, 
-140-3p, -206, -454, and -574) (253). Earlier work had shown 
upregulation of miR-1, -206, and -335 and downregulation of 
miR-29b, -29c, and -33 in DM1 biopsies compared with controls 
(254, 255). Moreover, cellular distribution of miR-1, -133b, and 
-206 was altered in DM1 skeletal muscles. Koutsoulidou et  al. 
demonstrated that appearance of miR-1, -133a, -133b, and -206 
in serum correlated with the progression of muscle wasting in 
DM1 patients. All four miRNAs were found encapsulated within 
exosomes in the circulation (256). Cell and animal model studies 
suggest that MBNL expression is controlled by miR-277 and -304 
(257), and miR-30-5p (258), and that this regulatory network 
could be involved in inhibition of myogenic differentiation in 
DM1. In DM2 muscle biopsies, the levels of 11 miRNAs were 
found to be significantly modulated (259). Of these, three also 
showed modulation in DM1 patients (i.e., miR-193bp, -208a, and 
-381). Expression levels of the other eight (i.e., miR-34a-5p, -34b-
3p, -34c-5p, -125b-5p, -146b-5p, -193a-3p, -221-3p, and -378a-
3p) fitted in a unique DM2 profile. The differences in miRNA 
expression profiles might contribute to the differences in muscle 
pathobiology between DM1 and DM2 (259).
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Long non-coding RNAs and circular RNAs (circRNAs) 
may also have a role as regulators of muscle homeostasis and 
gene expression (260, 261). LncRNAs are arbitrarily defined as 
RNAs >200 nts without overt protein-coding potential, of which 
at least 5,000 have been identified so far (262). CircRNAs are 
shaped as covalently closed molecules that lack 5′ and 3′ ends. 
They are expressed by a high number of genes and are highly 
conserved among species (263). Although little is known about 
the function of these RNA species, it has been shown that they 
can modulate gene expression by competing for miRNA or 
protein binding, or with regular mRNA production (264–267). 
Some lncRNAs are important players in muscle differentiation 
(268, 269) and involved in the pathomechanisms for Duchenne 
muscular dystrophy (270) and facioscapulohumeral muscular 
dystrophy (271). Malat1, one of the most abundant lncRNAs, 
was recently found to slow down myogenic differentiation in 
mice by interference with MyoD-binding loci and formation 
of a repressive histone-methylation complex. After the onset of 
differentiation, miR-181 targets Malat1 RNA for breakdown to 
release the repression (272). Our group has published evidence 
that DM1-AS transcripts belong to the class of lncRNAs. After 
alternative splicing and alternative polyadenylation, different 
(CAG)n repeat containing DM1-AS RNA isoforms are produced. 
Like many other lncRNAs, DM1-AS RNA is expressed at very 
low copy numbers per cell, in parallel with (CUG)n-containing 
DMPK mRNA (273). It remains to be seen whether expanded 
DM1-AS transcripts have an effect on DM1 myopathy, either 
in isolation or together with expanded DMPK transcripts. No 
circRNAs that are possibly linked to DM have so far been identi-
fied, but considering the fast developments, we might soon hear 
more from this field of research.

ReGeNeRATive MeDiCiNe FOR DM: 
PROGeNiTOR CellS AS SOURCe FOR 
MUSCle HeAliNG

Use of MuSCs
The satellite cells, the adult MuSCs located between the basal 
lamina and the sarcolemma of the multinucleated myofibers, 
form the main pool of progenitors for skeletal muscle regenera-
tion in vivo (Table 2). A large body of research has been devoted 
to the isolation, propagation, and genome tailoring of these cells, 
as they are the most logical candidates for use in future cell-based 
therapies, capable of restoring tissue homeostasis, and enhancing 
muscle repair in patients with myopathies.

Identification and Isolation of MuSCs
For an ex vivo approach to gene therapy of DM in coupling with 
muscle cell transplantation the availability of sufficient quantities 
of MuSCs is a prerequisite. Use of these cells for regenerative 
medicine in DM, whereby different groups of skeletal muscles 
are differentially affected, will not be simple. Indeed, although 
all satellite cells should be considered remnants of embryonic 
development prepared to recapitulate muscle development in the 
event of muscle damage (197), it is only a fraction of this hetero-
geneous population that fully preserves the self-renewal potential 

and myogenic capacity, when brought in in  vitro culture. This 
seemingly stochastic nature of fate adoption, which is associated 
with a high-degree of heterogeneity and plasticity of the satellite 
cell population in the natural environment of the muscle (203), is 
a complicating factor during the period that they regain prolifera-
tive activity as myoblasts.

Another complicating factor is that MuSCs have the same 
embryonic origin as the muscle in which they reside. Most skel-
etal muscles of the trunk and limb are derived from somites, but 
head muscles originate from cranial mesoderm. These distinct 
origins specify distinct genetic programs (274), which may be 
permanently associated with the intrinsic properties of MuSCs 
(275). More study is thus needed to verify whether the distinct 
origin is also a determining and retained factor for capacity to 
participate in regeneration of muscles in different locations of the 
body, or whether differences are smoothened out upon mainte-
nance of cells in in vitro culture. Lastly, aging of the donor seems 
to render the MuSC pool increasingly dysfunctional, as MuSCs 
progressively lose their potency due to cell death and terminal 
differentiation. Hence, aging forms an extra problem in cases 
where the patient’s own progenitor cells must be used for cell 
therapy to circumvent immunological problems, and especially 
so in patients with late-onset genetic myopathies like in DM2 or 
certain cases of DM1.

Skuk and colleagues came up with three properties that cells 
used for repair of damaged and replacement of lost muscle fibers 
should have: (i) ability to fuse with pre-existing myofibers, (ii) 
ability to form new myofibers, and (iii) ability to produce myo-
genically committed stem cells (276). This means that the MuSC’s 
capacity to participate in all aspects of muscle homeostasis must 
be maintained during expansion ex vivo. Novel strategies for 
satellite cell culture and preservation of self-renewal capacity 
before transplantation into muscle have now become available. 
Cell culture on pliable soft hydrogel matrices, in combination 
with pharmacological inhibition of p38/MAPK signaling (277) 
or culture on natural biopolymeric films (278) simulate the 
conditions of the muscle stem cell niche and help to preserve 
MuSC quiescence and enhance their self-renewal capacity. Also 
modulation of PAX7 expression may thereby be of help (279).

Transplantation of MuSCs: Preclinical Studies Only
Currently, the use of MuSCs in cell-based therapies is almost 
impossible. As demonstrated in animal model studies, MuSCs 
cannot be delivered systematically to all muscles in the body (280). 
Upon intravenous delivery they accumulate in the lung, liver, 
spleen, and kidney but not in skeletal muscle. One of the largest 
technical hurdles that limit the feasibility of MuSC transplanta-
tion is, therefore, associated with the route of administration, i.e., 
intramuscular injection (Figure 4). Initial trials aiming to regen-
erate skeletal muscle by local injection of donor myoblasts failed 
due to their poor survival and limited ability to migrate more 
than a few millimeters away from the site of injection (281–283). 
Upon engraftment, these satellite-derived myoblasts could not 
efficiently repopulate the satellite cell niche, and therefore were 
not able to contribute significantly to muscle regeneration (284, 
285). Future work is necessary to find out whether some of these 
issues might be overcome by increasing the numbers of engrafted 
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(200, 296). Their isolation can be accomplished by using explant 
culture methodology (297, 298), eventually in combination with 
enzymatic dissociation and FACS for surface markers (200, 299). 
PCs with skeletal myogenic potential can be distinguished by 
expression of ALP (200, 300) and new biomarkers for thera-
peutic potency, like PW1/Peg3, a regulator of myogenic ability 
and migration capacity in PCs, MABs and satellite cells, have 
recently been identified (301). Expression of PW1/Peg3 is high 
in both MABs and PCs and its level of expression correlates with 
their progenitor cell competence. Moreover, lack of PW1/Peg3 
expression abrogates the cells ability to cross the vessel wall and 
to engraft into damaged myofibers through the modulation of 
the junctional adhesion molecule. PCs and MABs are expandable 
in vitro as a relatively homogeneous population and transducible 
with viral vectors for genomic editing.

Engraftment of PCs and MABs
Pericytes and MABs are able to systemically reach the target tis-
sue, where they engraft and differentiate toward the myogenic 
lineage (Figure 4). One possible complication, however, is that 
adequate measures are necessary to ensure that myogenic com-
mitment of these vessel-derived progenitor cells is appropriately 
stimulated, while adipose and fibrogenic commitment must be 
avoided. Several recent publications have implicated a role for 
a PC subtype in fibro-adipose infiltration of tissues (299, 302). 
Consistent with age-dependent changes in regeneration capac-
ity seen before, this property seems to be more present in PCs 
isolated from aged individuals. PCs failed to differentiate or 
participate in myofiber repair following injury, but contributed 
to enhanced fibrous tissue deposition within the interstitial space 
in aged muscle (299, 303–305). Further work is thus necessary to 
see whether PCs and MABs are truly the ideal candidates for use 
in regenerative medicine in DM patients.

Translational studies in the GRMD dog model of myopathy 
demonstrated that ex vivo cultivated PCs can indeed adopt 
myogenic fate when exposed to injury factors in  vivo and are 
able to directly differentiate into skeletal muscle or replenish the 
SC pool via activation of Pax7, Myf5, or MyoD at the onset of 
differentiation (200). For the GRMD model “a remarkable clinical 
amelioration and preservation of active motility” was seen (306). 
The first human clinical study with PCs was published in 2015, 
investigating primarily the safety of intra-arterial transplanta-
tion of HLA-matched donor cells. This exploratory clinical 
trial was performed in five Duchenne patients, in combination 
with immunosuppressive therapy. Clinical laboratory and MRI 
analysis revealed that the study was relatively safe. Unfortunately, 
the effects of the cellular therapy on muscle function were 
inconclusive.

Although the possibility for systemic administration is one of 
the strongest arguments for preference of vessel-associated pro-
genitor cells over satellite cells, there is also concern, as blood flow 
in the artery of microvasculature downstream of the injection site 
might get disrupted (307). Moreover, a fraction of the injected 
cells might become trapped in filter organs decreasing the amount 
of cells available for engraftment into dystrophic muscle (200). 
Modification to improve homing to damaged muscles (308) or 
altering cell surface (309) needs to be studied in more detail to 

cells, or by better preservation of their stemness during in vitro 
propagation as discussed above.

Further work on MuSCs in culture is, therefore, necessary. 
For application in basal and translational research in DM, 
immortalized myoblast cell lines are available. These lines have 
preserved the molecular hallmarks of disease, including splicing 
abnormalities and repeat RNA-MBNL foci (86) and were gener-
ated by lentiviral-mediated expression of the catalytic subunit 
of the human telomerase (TERT) and CDK4, the natural p16 
ligand. Immortalized cells constitute an unlimited source of 
cells for evaluation of compounds with therapeutic potential. 
Immortalization per  se may not be detrimental for the ability 
of muscle progenitor cells to serve in therapeutic engraftment 
experiments in mice, as already shown earlier for these type of 
cells and for SV40-TAgts immortalized cells (286, 287). However, 
for obvious reasons use of these transformed cells for human 
studies will probably remain restricted for in vitro work.

Use of Stem Cells From Non-Muscle 
Origin
The continuous search for stem cells with potency for transdiffer-
entiation and adaptation from other sites than within the muscle 
basal lamina (288–295) has led to the identification of entirely 
unexpected cell types with muscle progenitor capacity. Among 
these are the vessel-associated MABs and PCs the best-known 
examples (Figure 3) (199).

Identification and Isolation of PCs and MABs
The participation of MABs and PCs in myogenic differentiation 
and regeneration in  vivo is still a poorly understood phenom-
enon. There is, however, compelling evidence that these cell types 
have great potential for boosting muscle repair in regenerative 
medicine. One advantage, which MABs and PCs may have, is 
that they rapidly acquire unlimited lifespan and maintenance of 
multipotency, making them ideally suitable for the generation 
of replenishable pools of transplantable cells. Skeletal muscle 
tissue itself is the most effective source for PCs with this potential 
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address these possible problems. For DM, research regarding the 
potential and use of MABs or PCs for therapy is entirely missing.

Induced Pluripotent Stem Cells (iPSCs)
Also whole new approaches toward deriving myogenic progenitor 
cells from pluripotent embryonic stem cells and iPSCs are now 
being developed (310–315). Generation of iPSCs from fibro-
blasts of DM1 and DM2 patients has been published (316–321). 
Recently, a revolutionary new method to direct human iPSCs 
to adopt muscle progenitor cell identity and create a renew-
able source of muscle progenitors for regenerative medicine was 
developed. Hicks et  al. found that the use of FACS of cells for 
two cell surface markers, ERBB3 and NGFR, and treatment with 
a TGFβ inhibitor gave an enormous enrichment for progenitors 
with regenerative potential during engraftment (322). Further 
work is necessary to verify whether simple extrapolation of these 
animal model transplantation findings to the human situation is 
possible.

Cell-based Therapy in Combination with 
Genome editing
To prevent immunological problems linked to MuSC transplan-
tation, the use of progenitor cells from HLA-matched donors or 
autologous cells from patients is strongly advisable. For DM1 and 
DM2 cells, this implicates that genome editing must be employed 
to normalize the length of the expanded repeats or the synthesis 
of the toxic RNAs must be otherwise permanently prevented. 
With the advent of gene editing tools such as ZFN, TALEN, and 
CRISPR/Cas9 this now has become a realistic goal. Specifically 
for DM1, a small number of gene editing studies have been 
published recently, all aiming at the prevention of the presence of 
toxic, expanded repeat-containing RNA.

Gao et al. inserted a poly(A) signal upstream of the expanded 
(CTG)n repeat in DMPK in iPSCs. This insertion led to prema-
ture termination of transcription and prevented production of 
(CUG)n repeat containing transcripts. As the DMPK mRNAs 
were now missing the repeat-containing 3′ end, a healthy stem-
cell pool was created (320). Cardiomyocytes derived from these 
iPSCs reverted to normal splicing for a number of pre-mRNAs 
known to be misspliced in DM1.

Pinto et al. used a deactivated Cas9 variant to impede synthesis 
of expanded (CUG)n RNA during transcription (323), while 
Batra et al. (324) used an RNA-targeting Cas9 to eliminate toxic 

expanded RNA after production. Both studies showed efficient 
elimination of cellular hallmarks of disease, but the strategies 
used seem not well suited for permanent transformation of mus-
cle progenitor cells and prevention of repeat RNA effects.

More permanent effects for use in cellular strategies may be 
expected from removal or trimming of the (CTG•CAG)n repeat 
expansion in the DM1 locus, creating permanently normalized 
DMPK/DM1-AS alleles. Our own group and others have pub-
lished that excision of the repeat (and short flanking sequences) 
can be achieved by dual CRISPR/Cas9 cleavage at either side of 
the repeat (113, 325). Repeat removal had no adverse biological 
effects on DMPK isoform production and normalized splicing 
and myogenic capacity. Notably, CRISPR/Cas9 cleavage in the 
vicinity of the repeat was associated with a risk of uncontrol-
lable DNA rearrangements across the area (113, 325). Also 
off-target alteration elsewhere in the genome is a known danger 
in the application of CRISPR/Cas9 technology. Hence, careful 
characterization and selection of cell clones with only the desired 
genome alterations should become routine steps in future cell-
based therapeutic strategies.

Use of repeat-corrected cell therapy may serve to halt the 
degenerative process, or delay or prevent the onset of disease 
when applied upon first diagnosis with DM. In parallel, more 
work will be devoted to the development of modalities for direct 
in  vivo treatment of DM, with vector-mediated gene-editing 
therapy. Finding ways for improvement of the quality of life of 
patients with DM will remain the goal of a large variety of future 
translational studies.
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