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ISCHEMIA-REPERFUSION AND ISCHEMIC PRECONDITIONING

We found the recent review paper by Chen et al. (1) on remote ischemic-preconditioning (ReIP)
fascinating. They describe ReIP as an attractive low-cost, low-risk therapy for ischemia. But why
stop there?

Ischemia-reperfusion, characterized by cascade of deleterious biochemical processes that
increase target organ/systemic injury, is involved in the pathophysiology of stroke, myocardial
infarction, and solid organ transplantation. Over 3 decades ago, investigators found that
experimentally inducing short periods of cyclical tissue ischemia confer subsequent protection
against ischemia-reperfusion-injury. This became known as Ischemic-Preconditioning (2–4). The
rationale behind ischemic-preconditioning is that these short periods of ischemia do not cause
irreversible injury, but instead induce an endogenous protective environment. Although playing
out at different time periods, the concept is reminiscent of acclimatization to high-altitude
conditions by alpinists, a process involving short term exposure to gradually increasing altitudes
that induce endogenous mechanisms optimizing oxygen metabolism and conditioning for an
eventual full-scale ascent (5).

The mechanisms involved in ischemic-preconditioning are complex. Beneficial changes in
intracellular, anti-inflammatory, antioxidant pathways, and in gene expression have all been
described (1, 3, 6). It has been shown to be protective in almost every solid organ ischemia-
reperfusion-injury model. When investigators discovered that ischemic-preconditioning in one
organ or limb could confer protection to a remote organ, this started a new era in ischemia-
reperfusion research. This phenomenon was called ReIP (1).

The mechanisms involved in ReIP are also quite complex, although many are shared with
standard ischemic-preconditioning (1). There is evidence for both humoral and neurogenic
mechanisms as being the signal carriers that mediate protection, and the precise molecular
pathways have yet to be elucidated (1, 3, 6, 7). Typical ReIP induced protection is known to
occur in an early stage (2–3 h) and a late stage lasting up to 72 h (1, 3, 6). Long-term repeated
ReIP has also been studied and shown that it can play its protective roles consistently; if applied
once-daily for an extended period, the different phases of protection can be at play simultaneously
or successively (8, 9). ReIP is less invasive (no need to access the target organs vasculature) and
could theoretically protect any organ in the body. In the brain, ReIP before a local ischemic event
is able to modulate cytokine production, maintain blood-brain barrier integrity, and promote
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the expression of protective intracellular molecules (1, 3, 6). In
humans, ReIP of a limb (usually rendered transiently ischemic
by a blood-pressure cuff) is a safe and tolerable procedure, and
large trials evaluating its efficacy in acute coronary syndromes,
heart surgery, organ transplantation, and stroke have been
published (1, 4, 6). In cardiology, results have been mixed, with
some evidence for organ-protection but inconsistent effects over
clinically relevant outcomes (10–12). In neurology, there has
been great interest in harnessing ReIP’s protective properties in
stroke research and in the elusive promise of clinically relevant
neuroprotection (1). We will introduce ReIP as preconditioning
to improve stroke outcome and introduce the opinion that the
time is right to expand ReIP trials to other neurological disorders
including MS treatment.

REIP IN NEUROLOGY: ENCOURAGING
RESULTS

A promising clinical candidate for using ReIP is acute ischemic
stroke. Conceivably, one would perform ReIP early after
stroke onset in an attempt to protect from further ischemic
injury. In an early study, investigators randomized 443 patients
with acute ischemic stroke to receive pre-hospital ReIP or
sham procedure before thrombolysis, and results showed a
trend toward less tissue infarction although overall clinical
and imaging endpoints were negative (13). In a recent, but
smaller trial, involving 26 patients with acute ischemic stroke,
ReIP showed a favorable trend toward improving clinical
outcomes at 3 months as well as an increase in the circulating
levels of a putative biomarker, heat shock protein-27 (14).
Unfortunately, definitive results on hard clinical endpoints
are lacking.

Investigators aiming to treat chronic conditions have
evaluated the clinical feasibility of long term, repeated ReIP. In
one such trial involving 68 patients, 300 days of consecutive,
bilateral arm ReIP, led to reduced stroke recurrence in patients
with intracranial artery stenosis (15). In another study, 17
patients with small-vessel ischemic disease underwent ReIP of
their upper limbs 2 times per day for 1 full year, and investigators
found improved middle cerebral artery hemodynamics and
reduced white-matter lesion volumes (16). In a similar study,
30 patients with small-vessel disease and cognitive impairment
underwent ReIP daily for a year, resulting in reduced white-
matter lesion volume and improvements in cognitive testing
(17).

In all trials, ReIP was found to be safe and tolerable,
and long-term data suggests it can be used on a daily basis
for years, and potentially in chronic, degenerative conditions.
Furthermore, since many of the proposed endogenous protective
mechanisms involved in ReIP are non-specific (antioxidant, anti-
inflammatory, immune modulating) to ischemia-reperfusion-
injury (1, 3, 6), it might prove efficacious in protecting
against non-ischemic injury as well. In support, the wide
ranging neuroprotective effects of ReIP have been demonstrated
in various rodent models of non-ischemic injury, such as
optic nerve transection (18), traumatic brain injury (19), and

ketamine-induced neuronal apoptosis (20). Could there be a role
for ReIP in the treatment of Multiple Sclerosis (MS)?

REIP IN MS: SOME
PATHOPHYSIOLOGICAL LINKS

There are two main ways ReIP could be relevant in MS.
On the one hand, MS pathophysiology might involve
ischemic/hypoxic mechanisms, and on the other, some of
the pathways beneficially modulated by ReIP could be protective
against inflammatory demyelination/neurodegeneration.
A recent review summarizes multiple lines of evidence
suggesting that there is generalized cerebral hypo-perfusion
and chronic hypoxia in patients with MS, and that this
could contribute to neurodegeneration (21). Furthermore,
the white-matter regions more commonly affected in
demyelinating disease are similar to those affected by small-
vessel disease. Oligodendrocytes are very susceptible to hypoxia
and in animal models of demyelination, demyelination is
prevented if adequate oxygenation is maintained (22). A
recent study was able to show in vivo that there is reduced
cortical microvascular oxygenation in patients with MS (23).
Nevertheless, the precise role of hypoxia/ischemia in MS remains
unknown.

There is also evidence suggesting that ReIP can modulate
some of the mechanisms involved in the pathogenesis of
Experimental Autoimmune Encephalomyelitis (EAE), the
prototypical animal model of MS. In mice studies, hind-limb
ReIP increased serum and mRNA expression of erythropoietin
(EPO) and hypoxia-inducible factor-1alpha (HIF1-alpha) in
the brain (24, 25). EPO is known to be neuroprotective in the
mouse EAE model (26), and HIF1-alpha is increased in EAE,
acting as a transcription factor for IL-17-triggered cytokine
production (27). Heat shock protein (Hsp)70 is also one of
the principal mediators of ReIP-induced neuroprotection, by
mediating chaperone-cytoprotective effects, blocking multiple
steps in the apoptosis pathway and immune-modulation (25, 28).
In EAE, Hsp70 is upregulated, and Hsp70 knockdown alters the
immune response associated with demyelination (29, 30). Other
shared mechanisms in ReIP-induced protection and in EAE
pathophysiology are the mTOR kinase (involved in regulation of
immune cell function) and nitric oxide signaling (31–33).

Studies also point toward hypoxia being associated with
EAE pathophysiology. Investigators found direct and indirect
evidence of tissue hypoxia in the spinal cord of a rat model
(34), and the cortex and cerebellum of a mouse model (35), as
well as a protective effect of oxygen therapy (34). Mice kept in
hypoxic conditions (hypoxic preconditioning) show decreased
numbers of (CD)4+ T cells and a delayed Th17-specific cytokine
response in the spinal cord after EAE induction, as well as
increased numbers of Treg cells and Interleukin (IL)-10 (36).
Another study found that hypoxic preconditioning delayed the
onset of EAE, and when hypoxic preconditioning was established
after the onset of clinical symptoms, spinal cord pathology, and
inflammation decreased (37).
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ReIP can also alter cellular and humoral immune
responses classically thought to be key regulators of MS
pathogenesis. Ischemic-preconditioning can induce an increase
in CD4(+)CD25(+)FoxP3(+) and CD4(+)CD25(+)IL-10(+)
Tregs in peripheral organs (38, 39). Tregs are essential to resolve
immune responses in EAE (40). In mouse models of stroke,
ReIP was able to modulate the populations of peripheral T and
B cells (41) and inhibit the galectin-9/Tim-3 inflammatory cell
signaling pathway, which induces cell death in lymphocytes
(42). Resident CNS cells such as microglia and astrocytes also
respond to ischemic-preconditioning by a shift in function
toward provision of trophic support and neuroprotection
(31). In fact, activation of inflammatory pathways may
be necessary for the induction of ischemic tolerance by
ReIP, eventually leading to subdued immune activation
(43).

We have summarized molecular/inflammatory pathways
involved in MS pathophysiology that appear to be modulated
by ReIP. However, other pathways involved in ReIP-induced
protection, such as autophagy, potassium channels, adenosine,
and neurogenic signals are neuroprotective (1, 3, 6), and
might also be of benefit in the context of inflammatory
demyelination/neurodegeneration.

ReIP might then stimulate an endogenously protective
milieu in the brain that could theoretically reduce inflammatory
demyelination/neurodegeneration through its non-specificity
(Figure 1A). Interestingly, there is evidence suggesting that
the brain is already attempting to use this strategy in MS.
In a pathology study on normally appearing white-matter

from patients with MS, investigators found an upregulation
of genes associated to ischemic-preconditioning mechanisms
such as HIF-1alpha, PI3K/Akt signaling among others (44).
The authors of this study suggested that these molecular
changes might reflect an adaptation of cells to the chronic
progressive pathophysiology of MS. In a model of cultured
glia treated with Th1 and Th2 cytokines, investigators
found that many of the changes in gene expression
were similar to those seen in ischemic-preconditioning
and EAE (genes related to mitochondrial function,
neurotransmission, vitamin D metabolism, and a variety of
transcription factors) (45).

Although the mechanisms involved might differ from ReIP,
an exciting area of research from where further encouragement
might be derived is the neuroprotective potential of hypoxic
preconditioning (46, 47). In a study involving patients with
chronic incomplete spinal cord injuries, a regimen of intermittent
hypoxia (short term inhalation of a low-oxygen mixture
through a breathing mask) was shown to increase volitional
strength in specific muscle groups, albeit transiently and
immediately after hypoxia (48). In a randomized, double-
blind, placebo-controlled trial, 15, 90-s exposures to hypoxia
for 5 days led to increased walking speed distances in patients
with incomplete spinal cord injury, with a sustained effect
over 2 weeks (49). A recent trial using a similar design
confirmed the benefits of repetitive intermittent hypoxia in
patients with incomplete spinal cord injury, and showed a
sustained effect over 5 weeks in walking speed and endurance
(50).

FIGURE 1 | Possible neuroprotective mechanisms of ReIP in MS and proposed intervention. (A) ReIP can modulate several of the typical pathogenic mechanisms

involved in MS. In the periphery, ReIP can alter lymphocyte populations and may also maintain blood brain barrier (BBB) permeability through reduction in matrix

metalloproteinases (MMPs) and increases in transforming growth factor beta (TGF-beta). In the central nervous system, ReIP increases the expression of hypoxia

inducible factor-1 alpha (HIF1-alpha), heat shock proteins (HSP) and erythropoietin (EPO), conferring neurons and glia protection against inflammatory insults and

apoptosis. ReIP also reduces the production of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-alpha) and increases levels of anti-inflammatory

cytokines such as interleukin (IL)-10. ReIP ameliorates oxidative stress by reducing the production of reactive oxygen species (ROS) and nitric oxide (NO). (B) Patients

with relapsing remitting MS (RRMS) or progressive forms of MS could be randomized to receive daily, chronic arm ReIP for 1–2 years or a sham procedure. Relevant

outcomes would include relapse rate for RRMS, and for all patients, measures of disability such as the expanded disability status score (EDSS), 25 foot-walking test

(25FWT), the 9-hole peg test (9HPT) and measures of cognition. MRI biomarkers looking at lesion load and atrophy as well as plausible biomarkers could be of use as

well. T, T-lymphocytes; B, B-lymphocytes; D, dendritic cell; M, microglia; N, neuron; A, astrocyte; O, oligodendrocyte; P, plasma cell; NF-κB, nuclear factor kappa-B.
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REIP: A PROPOSAL IN MS

ReIP induces protective changes in the central nervous system;
it is safe, tolerable, and can be induced for virtually indefinite
periods of time; it may also ameliorate both acute inflammatory
insults and chronic neurodegenerative processes. We suggest
that ReIP could potentially be of therapeutic value in MS
(Figure 1B). However, several issues would have to be addressed
before a trial is designed. MS is a heterogeneous disease, and
it is unclear what sub-population would be ideally suited for
a clinical trial. Long-term functional endpoints, and cognitive
measures in particular, may be realistic goals. Chronic ReIP
induced in the upper extremities, such as that described in
trials of cerebral small vessel disease for progressive-forms
of MS may be favored. ReIP could also be conceived as an
add-on therapy, with the benefit that it has no known or
theorized pharmacological interactions. Imaging biomarkers,
including white-matter lesion and brain atrophy measures
would be ideal secondary endpoints, and putative mechanistic
biomarkers such as HIF1-alpha and HSPs could be readily
analyzed.

CONCLUSION

Recent research on the underlying mechanisms of white-matter
pathology have found curious similarities between ischemic and
non-ischemic disorders (51). Furthermore, the CNS appears
to use redundant, endogenous protective mechanisms against

different types of insults. Even if the precise mechanism
involved in ReIP-induced neuroprotection remain elusive, we
are optimistic in the prospects of expanding its indications
in neurology beyond ischemic conditions. There is currently
one trial aiming to evaluate the safety and tolerability of
ReIP in patients with MS, with the aim of showing short-
term benefits on exercise tolerance (52). While we await the
results of this trial with great interest, we believe that ReIP
might be a way to harness these mechanisms to protect against
inflammatory demyelination and associated neurodegeneration.
A clinical trial will be the only way to evaluate the merits of this
proposal.
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