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A healthy lifestyle reduces the risk of cardio-vascular disease. As wheelchair-bound

individuals with spinal cord injury (SCI) are challenged in their activities, promoting and

coaching an active lifestyle is especially relevant. Although there are many commercial

activity trackers available for the able-bodied population, including those providing

feedback about energy expenditure (EE), activity trackers for the SCI population are

largely lacking, or are limited to a small set of activities performed in controlled settings.

The aims of the present study were to develop and validate an algorithm based on

inertial measurement unit (IMU) data to continuously monitor EE in wheelchair-bound

individuals with a SCI, and to establish reference activity values for a healthy lifestyle in

this population. For this purpose, EE was measured in 30 subjects each wearing four

IMUs during 12 different physical activities, randomly selected from a list of 24 activities

of daily living. The proposed algorithm consists of three parts: resting EE estimation

based on multi-linear regression, an activity classification using a k-nearest-neighbors

algorithm, and EE estimation based on artificial neural networks (ANNs). The mean

absolute estimation error for the ANN-based algorithm was 14.4% compared to indirect

calorimeter measurements. Based on reference values from the literature and the

data collected within this study, we recommend wheeling 3 km per day for a healthy

lifestyle in wheelchair-bound SCI individuals. Combining the proposed algorithm with a

recommendation for physical activity provides a powerful tool for the promotion of an

active lifestyle in the SCI population, thereby reducing the risk for secondary diseases.

Keywords: energy expenditure, spinal cord injury, inertial measurement unit, long-term activity monitoring,

wheelchair, estimation model

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2018.00478
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2018.00478&domain=pdf&date_stamp=2018-07-03
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:werner.popp@hest.ethz.ch
https://doi.org/10.3389/fneur.2018.00478
https://www.frontiersin.org/articles/10.3389/fneur.2018.00478/full
http://loop.frontiersin.org/people/341264/overview
http://loop.frontiersin.org/people/574461/overview
http://loop.frontiersin.org/people/354790/overview
http://loop.frontiersin.org/people/549399/overview
http://loop.frontiersin.org/people/514585/overview
http://loop.frontiersin.org/people/123980/overview
http://loop.frontiersin.org/people/30443/overview
http://loop.frontiersin.org/people/7408/overview


Popp et al. IMU-Based Energy Expenditure Estimation

INTRODUCTION

The life expectancy of individuals with a spinal cord injury (SCI)
has increased significantly over the last decades (1). Nowadays,
the leading causes of death are not a direct consequence
of injury-related complications (sepsis, respiratory or renal
complications) but rather related to cardiovascular disease (2,
3). Obesity, hypertension, hyperlipidemia, and diabetes have
all been identified as risk factors for cardio-vascular disease,
with a higher prevalence in the SCI population (4). Regular
physical activity has been associated with a reduction of these
risk factors in the able-bodied population, as well as in the
SCI population (5–7). Unfortunately, the SCI population is
challenged due to their limited choice of activities (8, 9), and
there is a great need to promote and coach physical activity
(10). One possible approach to promote a more active lifestyle
is to provide feedback on daily physical activity and energy
expenditure (EE).

Vanhees et al. showed that accelerometers and inertial
measurement units (IMUs) can be used as objective assessment
tools for physical activity and EE in the able-bodied population
(11). Over the past 20 years, different approaches to estimate EE
from IMU or accelerometer data have been proposed, ranging
from simple linear regression models based on activity counts
(AC) (12–14), to complex non-linear regression models based
on more advanced statistical features (15), as well as approaches
using artificial neural networks (ANNs) (16, 17). To increase
the accuracy of EE estimation, additional sensors such as heart
rate (HR) monitors to compensate for weight-loading activities
(18), or air pressure sensors to improve the estimation for
activities involving altitude changes were added (19). Despite
the improvements in the field of EE estimation based on
accelerometers and IMUs, commercially available devices show
a wide range of estimation accuracy (root mean squared error of
14–28% in EE estimation) (20). However, considering that many
individuals with SCI present different movement characteristics
due to the use of a wheelchair, the application of methods
developed in able-bodied populations will likely result in a
moderate to poor EE estimation in individuals with SCI.

Although accelerometer-based EE estimation models were
developed for subjects with SCI using a manual wheelchair (21,
22), combining accelerometer and demographic variables, these
studies focused on a restricted set of activities and were only
validated in a semi-structured environment. In a more recent
study, linear regression models for the estimation of EE became
available based on recordings of 20 different activities, with a
mean absolute error (MAE) of around 25% (23). Using methods
that are more sophisticated the quality of the EE estimation may
be improved.

The main aim of this study therefore was to develop and
validate an EE estimation model for wheelchair-bound SCI
individuals based on non-obstructive IMU recordings in a
natural setting. We included a comprehensive set of 24 different
physical activities, covering a broad range of activities of daily
living. Furthermore, the collected data formed a basis for a
recommendation that could promote a healthy lifestyle in the
wheelchair-bound SCI population.

TABLE 1 | Demographics and assessment scores of the included participants.

Variables Values

No of participants 30

Age (years) 45.4 ± 11.4 (27–74)

Weight (kg) 74.3 ± 17.1 (45.6–116.8)

Height (m) 1.76 ± 0.09 (1.54–2.03)

Reported hours of sport/week 2.5 ± 2.9 (0.0–10.0)

SEX

Male 27

Female 3

INJURY LEVEL

C3–C8 11

T1–L1 19

AIS SCORE: TOTAL (PARAPLEGIC/TETRAPLEGIC)

A 17 (14/3)

B 7 (4/3)

C 3 (1/2)

D 3 (0/3)

Age, height, weight, and reported hours of sports/week are presented as mean ±

standard deviation (range).

METHODS

Subjects
Thirty chronic SCI subjects (age 45.4± 11.4 years, 11 tetraplegics,
19 paraplegics) who rely on a wheelchair for daily ambulation
were recruited. Inclusion criteria were an age over 18 years old
and suffering from SCI for more than 6 months post injury.
Subjects with all neurological levels of injury (NLI) according
to the International Standard for Neurological Classification of
Spinal Cord Injury (ISNCSCI), and ASIA Impairment Scale (AIS)
grades (A, B, C, and D) were included (Table 1). Participants
with an AIS grade D relied on a wheelchair for daily ambulation
either because of hemiplegia of the lower limb or due to
personal preference. Exclusion criteria were any neurological
diseases other than SCI, metabolic, orthopedic or rheumatologic
diseases as well as pre-morbid or ongoing psychiatric disorder.
All subjects gave written informed consent in accordance with the
Declaration of Helsinki prior to participating in the experiment.
The study was approved by the local ethics committee of the
canton of Zurich (KEK-ZH Nr. 2013-0202).

Measurement Devices
Activity Monitor
An IMU (ReSense) developed by Leuenberger and Gassert was
used for this study (Figures 1B,C) (24). The sensor consists of a
3-axis accelerometer, a 3-axis gyroscope, a 3-axis magnetometer
(not used in this study), as well as a barometric pressure
sensor for altitude estimation. This low-power 10-degrees-of-
freedom IMU can continuously record data for around 48 h at
a sampling rate of 50Hz. Thanks to its lightweight (15 g) and
robust housing, the ReSense module is particularly well suited for
clinical applications. In addition, the on-board clock of multiple
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FIGURE 1 | (A) Examiner wearing the full experimental setup during the

activity weight lifting. One sensor module was attached at each wrist, one at

the chest and one on the wheel of the wheelchair. (B) Sensor worn at the wrist

with the AlphaStrap Blue and Velcro Strap fixation. (C) Wheel sensor with

dedicated attachment. (D) Oxycon mobile mouth piece. (E) Back view of the

Oxycon Mobile with sensor box and data exchange unit. Written and informed

consent was obtained for the publication of these images.

modules can be synchronized temporally via a custom-built USB
base station.

Indirect Calorimetry
EE was assessed using a portable metabolic cart (Oxycon mobile,
Carefusion, Hoechberg, Germany; Figures 1A,D,E). This system
consists of a facemask, a turbine to assess flow as well as O2

and CO2 analysers. The data exchange unit as well as the
sensor box were fixed on the participant’s back via a harness.
Data were recorded continuously breath-by-breath (i.e., one
data point per breath) and synchronized offline with ReSense
measurements. EE was derived from the O2 consumption
and CO2 production using the proprietary software JLAB
(Carefusion, Hoechberg, Germany). The system was calibrated
according to the manufacturer’s recommendation, 30min prior
to and immediately after each session in order to ensure high
accuracy. Additionally, HR and blood oxygen saturation were
measured by infrared technology, using an ear clip that was
connected to the same system.

Bioelectrical Impedance Analysis (BIA)
BIA was used to determine fat mass (FM) and fat-free mass
(FFM) of each subject. Based on FM and FFM, an additional
reference value for the resting energy expenditure (REE) was
calculated. For BIA measurements, a signal electrode as well as
a measurement electrode were attached at each hand and foot
and connected to the BIA device (AKERN BIA 101 system, SMT
medical, Würzburg, Germany). FM and FMM were calculated
using the proprietary software (BodyComposition, MEDI CAL
HealthCare GmbH, Karlsruhe, Germany).

Clinical Assessments
Prior to the experiment, three standard clinical assessments
were conducted to gather information on the NLI, the severity
of the lesion, and the independence of the SCI subjects. The

ISNCSCI protocol was used to assess the NLI as well as the
completeness of the lesion (25). The Spinal Cord Independence
Measure III (SCIM III) is a questionnaire containing 19 items,
which was used to assess the level of independence in daily
life (26). The total score, ranging from 0–100, as well as the
scores of the three subdomains self-care (range 0–20), respiration
and sphincter management (0–40), as well as mobility (0–40)
were included separately in the analysis. The Graded Redefined
Assessment of Strength, Sensibility and Prehension (GRASSP)
was used to capture motor and sensory function and functional
task performance of the upper extremities. As the GRASSP
assesses sensation, strength, qualitative and quantitative grasping
through a series of five examinations, the total score and the
individual sub-scores of the five examinations were later included
separately in the analysis (27, 28).

Tasks
Each subject had to perform 12 different physical activities out
of a set of 24 possible activities. These activities were divided
into three activity classes based on measured EE, subjectively
perceived exertion, and the amount of distance traveled. The
“low-intensity” activity class included the following activities: rest
(lying on a bed), watching TV, reading, doing crossword puzzles,
playing cards, riding an elevator, playing with a tablet PC, writing,
computer work, and passive wheeling (i.e., when the wheelchair
was pushed by someone else). The “high intensity” class included
the following activities: washing dishes, hanging out the laundry,
using a handbike ergometer (30W), playing table tennis, and
weight lifting. The last class was called “wheeling” and included
activities involving wheelchair self-propulsion. These activities
included completing a wheelchair skill parcour (including a
slalom with nine cones, four curbs of 3–8 cm height, and a
ramp with an inclination of 8%), wheeling at different speeds
(2, 3.5, 5, 6.5 km/h and self-chosen), wheeling uphill (inclination
2.6%), wheeling downhill (inclination 2.6%), and wheeling on a
wheelchair ergometer.

Protocol
Participants came to the Balgrist University Hospital for a single
session of ∼5 h in the morning after an overnight fast of at least
10 h. First, participants were informed about the experimental
procedure, and the 12 pseudo-randomly selected tasks were
explained in detail. Subsequently, body composition was assessed
by use of BIA, height was measured while the subject was lying
on the bed, and weight was measured with a wheelchair scale.
Participants were equipped with one sensor module at each
wrist, one module was fixed at the chest (approximately at the
sternum) and an additional module was fixed to one wheel of
the wheelchair. Participants used their own, individually adapted
wheelchair for the entire duration of the study. Thereafter, the
sensor modules were time-synchronized with the camera, the
indirect calorimeter, and the HR monitor.

The first part of the experiment consisted of 20min of rest,
lying on a bed for assessment of REE, followed by a standardized
breakfast equivalent to 30% of a participant’s calculated daily EE.
The second part of the experiment started at least 90min after
the end of breakfast, when EE had returned to baseline values.
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First, participants lay on a bed for 20min. This was considered
the REE measurement under the non-fasted condition (first
task). Subsequently, participants performed eleven 8-min tasks,
selected pseudo-randomly from the set of 24 tasks, with a
minimum of 5min between two consecutive tasks. The pseudo-
random selection ensured that at least two tasks from each
activity class were selected and that each task was performed
approximately equally often across all subjects. The 8-min
activities were ordered according to the expected intensity of
the tasks, starting with the least intense task. After each task,
subjects were asked to rate their perceived exertion on an 11-
point numeric rating scale (0 = “no exertion,” 10 = “maximum
exertion”).

Video recordings were taken during the entire experiment
(GoPro Hero HD 2, Go Pro Inc., San Mateo, CA, USA) in order
to verify all activities retrospectively. In case subjects were unable
to start the experiment in the morning, a shortened version of
the protocol was provided, i.e., subjects came to the clinic at
least 2 h after the last food intake. After explanation of the study
and signing the consent form, the experiment started with the
assessment of body composition, height, and weight, followed
by 20min of REE measurement in the non-fasted condition.
Afterwards, subjects followed the same protocol as described
above.

Data Analysis
The complete data processing, statistical analysis, as well as the
training of the k-nearest neighbors (kNN) classifier and ANNs
were performed usingMATLAB 2014a (TheMathWorks, Natick,
MA, USA). All processing steps were conducted offline.

In total, four different algorithms were designed, evaluated
(Figure 2) and compared against algorithms described in the
literature. The first algorithm is of low complexity, which
requires only limited computational power and could therefore
be implemented directly on an activity tracker for on-line
analysis and subject feedback. This algorithm consists of a multi-
linear regression (MLR) model which uses different statistical
features derived from the IMU data and previously estimated
REE as predictors. The second algorithm is a more complex
approach requiring more computational power. The algorithm
consists of an ANN using features derived from the sensor
data and the estimated REE as predictors. The third (MLR
based with prior classification) and the fourth (ANN based
with prior classification) algorithms are motivated by the
work of Staudenmayer et al. (16). This group showed that
prior classification into different activity classes before the
EE estimation increases the estimation accuracy significantly.
Therefore, the third and fourth algorithms consist of three parts.
In the first part, the REE is estimated from demographic data;
in the second part the different activities are classified into the
three activity classes; in the third part, the EE is estimated using
different MLRs or ANNs, respectively, for each of the classes. All
processing steps are explained in the following paragraph.

Pre-processing
In order to ensure that all IMU data consisted of the same
number of samples and that they were temporally aligned, the

recordings from the ReSense modules were resampled at 50Hz
using a cubic spline interpolation function. Afterwards, IMU
recordings were synchronized with the OxyconMobile data and
the video recordings, using time stamps, which were aligned at
the beginning of the experiment. The acceleration signals were
filtered using a 2nd order Butterworth high-pass filer with a cut-
off frequency of 0.25Hz in order to remove the static acceleration
component due to gravity. Gyroscope data were filtered with the
same high-pass filter. The altitude data was filtered using a 2nd
order Butterworth low-pass filter with a cut-off frequency 0.2Hz.

Labeling and Segmentation
Data were labeled using temporal markers from the
OxyconMobile, the IMU modules, and from the video
recordings. For the REE measurements, the mean of a 4-
min window (min 14–18) was taken. For each of the individual
activities, the last 4min of each activity were segmented in
windows of 1min without overlap. Taking the last 4min ensured
that the EE had reached a steady state. After visual inspection of
the data, 1,324 windows remained, which were later included in
the development of the different models. As HR data was partly
missing for some subjects, all analysis involving the HR was only
based on 897 windows (67.8%).

Feature Calculation
Features were calculated from the processed acceleration signal
containing the dynamic component, from the gyroscope data and
the altitude signal for each window. All statistical features derived
from the accelerometer and gyroscope data were calculated from
the respective magnitudes in order to ensure that the orientation
of the sensors, and therefore in which orientation the sensor
is placed, had no influence on the final algorithm. Statistical
features derived from the sensor data were based on previously
used features in activity classification studies (29–39). Only
features from the time domain were taken for further analysis
as we have shown that in “real world” applications, frequency
domain features usually do not provide useful information
(40). In addition, some high level features were included: AC
(41), total distance traveled and distance traveled actively (40),
altitude difference within one epoch, altitude variance within
one epoch, and time above acceleration magnitude threshold
(empirically chosen). In order to test whether the inclusion of
HR improves the overall accuracy of EE estimation, as shown by
Nightingale et al. (42), mean HR, resting HR and the difference
between mean HR and resting HR were included as additional
features. Finally, features extracted from demographics as well
as from clinical assessments were included, namely age, height,
weight, gender, AIS score (A = 4, D = 1), injury level
(C1 = 1, L5 = 25), GRASSP sub-scores and SCIM III sub-
scores.

REE Estimation
Five different MLR models were developed for the estimation
of the REE. The different MLR models have all the following
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FIGURE 2 | Flow chart summarizing the different evaluated algorithms. The first algorithm for estimating energy expenditure (EE) consists of a multiple linear

regression (MLR) model and the second algorithm of an artificial neural network (ANN); both use features derived from IMU data, participant demographics and clinical

assessment scores, as well as previously estimated resting EE (REE) as model input (Left). The third algorithm consists of three independent MLRs (one per activity

class), and the fourth of three independent ANNs, both preceded by a k-nearest neighbors (kNN) classifier (Right). The two latter algorithms use the same model

inputs as algorithms one and two, without preceding kNN classifier. Note that the blue model requires only limited computational power compared to the red ones.

basic form:

REE = α +

n∑

i=1

βi·Fi

with α representing the intercept, and βi representing the
regression coefficient of the feature Fi. All MLR models
included the independent variables height, weight, age
and gender. In addition, different clinical scores were also
included as independent variables, namely total SCIM III score,
completeness, NLI, AIS score, and motor score of the ISNCSCI
assessment. The MLR was computed by minimizing the sum
of squared relative errors according to the method described
by Tofallis (43). Moreover, ANNs based on the same features
were trained in order to reveal more complex and non-linear
relationships. Readers not familiar with ANNs can refer to the
work of Basheer and Hajmeer (44). As one hidden layer is usually
sufficient in most applications, all ANNs had a single hidden
layer with five sigmoid neurons (44). The initial weights were
chosen by the Nguyen-Widrow layer initialization function
and the Levenberg-Marquardt backpropagation algorithm was
used to train the ANNs (45, 46). As the actual output can vary
depending on the initial weights, 100 ANNs were trained per
iteration and the mean outcome was used for further analysis.
The performance was analyzed using the leave-one-subject-out
cross-validation, resulting in 30 iterations. The MAE in percent
was chosen as criterion for the MLRs and ANNs. A detailed
overview of the models and features included in this study can
be found in Table 2. In addition to the REE estimation models
described above, three well established estimation models,
which have been developed for the able-bodied population,
were evaluated with the data from this study: the Harris-
Benedict equation, the updated Harris-Benedict equation and

the Mifflin-St. Jeor equation (47–49). Finally, the REE was also
estimated from the BIA measurement using the BIA software
BodyComposition Professional (Medi Cal HealthCare GmbH,
Karlsruhe, Germany).

Activity Classification
In order to classify the different windows into one of the
previously described activity categories “low-intensity,” “high-
intensity,” and “wheeling,” a kNN classifier with k = 10 and a
squared inverse distance weight was used. A total of n = 1384
windows were used to train the kNN classifier. Three features
were selected for the kNN classifier, namely the AC of the wheel
sensor as well as the root mean square (RMS, right wrist) and the
median (left wrist) of the angular velocity magnitude. Among all
feature combinations, the combination with these three features
showed the best classification accuracy. In order to evaluate
the performance of the kNN classifier, the leave-one-subject-out
cross-validation method was used for the analysis. This resulted
in a total of 30 iterations, one per subject. The percentage of
correct classified windows was taken as a criterion to optimize
the classifier.

EE Estimation
In total four different estimation models were designed for the
activity dependent EE not including the HR. An MLR model
and an ANN model were designed where the activity-dependent
EE was estimated using IMU data and the estimated REE as
predictors. In order to see if a prior classification into different
activity classes increases the estimation accuracy, additional
MLR and ANN based models were designed. Thereby each
activity class had a separate MLR or ANN estimation model.
In order to see how the classification accuracy of the previously
mentioned kNN classifier influences the final EE estimation, the
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TABLE 2 | Results of the REE estimation based on BIA measurement, models known from the literature (◦), and MLR and ANN models developed in this study.

Mean absolute error Mean signed error Max error

Model description [%] [kcal/day] tetraplegic [%] paraplegic [%] [%] [kcal/day] [%] kcal

BIA* 23.3 ± 12.2 409.7 ± 255.7 23.5 ± 12.2 23.2 ± 12.5 −22.5 ± 13.7 −400.7 ± 270.2 48.3 956.1

Harris-Benedic◦ 14.2 ± 7.9 229.8 ± 129.1 13.9 ± 7.9 14.5 ± 8.2 1.9 ± 16.4 0.5 ± 267.1 26.7 528.2

updated Harris-Benedict◦ 14.2 ± 7.8 227.8 ± 123.1 13.5 ± 7.4 14.6 ± 8.2 2.3 ± 16.3 7.0 ± 262.4 25.9 511.4

Mifflin-St. Jeor◦ 15.1 ± 11.8 256.1 ± 204.9 16.7 ± 12.8 14.1 ± 11.4 −8.1 ± 17.5 −169.5 ± 283.1 34.6 648.8

MULTIPLE LINEAR REGRESSION

h, w, a, g 15.7 ± 12.0 250.3 ± 182.6 15.0 ± 8.6 16.1 ± 13.8 1.3 ± 19.9 63.3 ± 306.7 48.7 810.5

h, w, a, g, SCIM III 16.6 ± 15.5 262.4 ± 227.6 13.2 ± 8.0 18.7 ± 18.5 −0.4 ± 22.9 37.7 ± 348.8 67.8 933.3

h, w, a, g, AIS 16.3 ± 11.3 261.5 ± 175.1 16.2 ± 7.1 16.3 ± 13.5 1.2 ± 20.0 63.2 ± 312.0 48.5 807.3

h, w, a, g, NLI 16.4 ± 11.5 264.2 ± 175.7 15.1 ± 8.4 17.2 ± 13.2 0.9 ± 20.3 57.9 ± 315.7 48.9 814.4

h, w, a, g, motor score 16.6 ± 12.7 264.1 ± 190.8 16.0 ± 9.3 16.9 ± 14.6 1.2 ± 21.0 64.9 ± 322.9 49.2 818.2

ARTIFICIAL NEURAL NETWORK

h, w, a, g 16.2 ± 12.2 248.9 ± 156.5 14.3 ± 8.3 17.4 ± 14.1 2.7 ± 20.4 −6.6 ± 297.7 32.2 535.7

h, w, a, g, SCIM III 14.2 ± 12.2 215.7 ± 160.0 10.0 ± 5.8 16.7 ± 14.4 2.8 ± 18.7 4.2 ± 271.5 39.7 660.4

h, w, a, g, AIS 17.0 ± 11.0 263.0 ± 137.6 15.4 ± 7.4 18.0 ± 12.9 2.4 ± 20.4 −12.6 ± 300.6 49.7 528.5

h, w, a, g, NLI 16.6 ± 11.0 256.5 ± 136.5 14.6 ± 6.9 17.9 ± 12.9 2.7 ± 20.0 −5.8 ± 294.5 33.3 554.3

h, w, a, g, motor score 15.8 ± 12.3 240.1 ± 155.0 12.2 ± 8.4 17.9 ± 14.0 2.9 ± 20.0 −1.2 ± 289.4 54.4 579.0

h, w, a, g, AIS, NLI 17.4 ± 11.7 266.8 ± 140.5 14.4 ± 8.2 19.2 ± 13.2 2.9 ± 21.0 −5.7 ± 305.6 52.3 557.0

h, height; w, weight; a, age; g, gender; *For the REE estimation based on the BIA measurement only N = 28 subjects were included.

MLR and ANN models with prior activity classification were
evaluated (i) assuming 100% correct classification and (ii) with
the classes estimated by the kNN classifier. Similar to the REE
estimation using MLR, the MLRs for the activity-depended EE
estimation were computed using the sum of squared relative
errors (43). The MLR model without prior classification used
seven predictors in total (right wrist IMU: mean acceleration
magnitude, kurtosis of the angular velocity magnitude, altitude
difference; left wrist IMU: RMS of the acceleration magnitude;
chest IMU: RMS of the angular velocity magnitude; wheel IMU:
variance of the angular velocity magnitude; REE). The MLR
model with previous classification used for the MLR of the “low-
intensity” class the same features as predictors as mentioned
before, the “wheeling” class used one predictor less, specifically,
the RMS of the acceleration magnitude of the left wrist IMU. The
“high intensity” class used slightly different features as predictors
(right wrist IMU: altitude difference; left wrist IMU: RMS of the
acceleration magnitude; chest IMU: median of the acceleration
magnitude, RMS of the angular velocity magnitude; wheel IMU:
kurtosis of the acceleration magnitude, variance of the angular
velocity magnitude; REE). The ANNs trained for the estimation
of the activity-dependent EE had the same design as the ANNs
trained for the REE estimation. Thismeans that all ANNs had one
hidden layer with five sigmoid neurons. The Nguyen-Widrow
layer initialization function was used to choose the initial weights
and the Levenberg-Marquardt backpropagation algorithm was
used to train the ANNs. Here again, 100 ANNs were trained per
excluded subject and the mean outcome was used for further
analysis. The ANN without prior activity classification used six
features as input, namely the mean acceleration magnitude (right
wrist IMU), AC (left wrist IMU), AC (chest IMU), altitude

difference (chest IMU), distance traveled, and REE. The ANN
model with prior activity classification had different features
as inputs for every ANN. The ANN for the activity class
“low intensity” had seven inputs, namely the mean acceleration
magnitude (right wrist IMU), kurtosis of the angular velocity
magnitude (right wrist IMU), altitude difference (right wrist
IMU), RMS of the angular velocity magnitude (chest IMU),
weight, gender, and estimated REE. The ANN for the “high
intensity” class used five features as input, namely AC (right
wrist IMU), mean acceleration magnitude (left wrist IMU), mean
angular velocity magnitude (chest IMU), AC (left wrist), and
estimated REE. The ANN for the “wheeling” class had six inputs:
RMS of the acceleration magnitude (right wrist IMU and left
wrist IMU), AC (chest IMU), mean angular velocity magnitude
(wheel IMU), AC (left wrist), and estimated REE. In order to
test if the inclusion of HR improves the estimation, all models
(MLR and ANN based) with prior activity classification were
trained again but this time including the difference between
measured HR and resting HR as additional predictor. Note
that only 897 windows were available for the training of the
models including HR. All developed models (MLR, ANN, with
and without HR) were evaluated using the leave-one-subject-out
cross-validation method. This resulted in a total of 30 iterations
for each developed model.

Establishing Reference Values for a Healthy Lifestyle
For a healthy lifestyle, different reference values exist for the
able-bodied population. The most well-known reference value
for a healthy lifestyle is probably the 10,000 steps a day reference
(equivalent 300 kcal/day) (50, 51). However, this reference value
is controversial and other research groups and institutions have
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proposed lower daily step-goals (52). Furthermore, other activity
goals, which are not directly related to the number of steps, have
been proposed.

The U.S. Department of Health and Human Services for
example, suggests 150min of moderate physical activity per week
(e.g., 5 × 30min) or 75min of vigorous physical activity per
week (53). This is similar to what the American College of Sport
Medicine (ACSM) suggested in their updated recommendations
from 2007, where 30min of moderate physical activity on 5
days a week or 20min of vigorous physical activity on 3 days
per week is suggested to promote a healthy lifestyle (54). Blair
and colleagues stated in their work, that 30min of moderate
intensity activity per day provides substantial benefits, but 60min
of moderate intensity activities per day would be ideal (55). These
60min of moderate (to vigorous) activity per day are also what
is recommended by Wilson and colleagues in order to prevent
weight gain (56). Sixty minutes of moderate to vigorous activity
per day results in an increase in EE by 150–200 kcal/day. In
order to establish values for a healthy lifestyle in the wheelchair
bound SCI population, we therefore investigated which daily
distance traveled in wheelchair would result in 150, 200, and
300 kcal/day. In order to translate this recommendation for a
healthy lifestyle into a daily distance to travel by wheelchair, the
daily average speed has to be taken into consideration. Since the
average wheeling speed in the SCI population was reported to be
1.7–2.3 km/h (57, 58), the EE measured in the wheeling task at
2 km/h was used. On the other hand, there are recommendations
based on time spent in activities of moderate (to vigorous)
intensity. Therefore, we estimated the distance to travel and the
corresponding EE based on the recommendation corresponding
to 30 and 60min of wheeling at moderate intensity.

Performance Analysis and Statistics
The performance of the REE and EE estimation models were
analyzed in terms of MAE in percent and mean signed error
(MSE) in percent. The performance of the kNN classifier was
analyzed using overall classification accuracy in percent and in
addition the sensitivity of the different classes was computed (40).
In order to compare different activities, the metabolic equivalent
of task (MET) was calculated using an adapted formula for the
SCI population (59), where 1 SCI MET is equivalent to 2.7mL
O2·kg

−1·min−1 in contrast to the formula for the able-bodied
population, where 1 MET is equivalent to 3.5mL O2·kg

−1·min−1

(60). In order to demonstrate the relationship between measured
SCI MET and perceived exertion (numeric rating scale), a
Spearman rank correlation was used. The significance level for
all statistical analyses was set to p= 0.05.

RESULTS

REE Estimation
An overview of all REE estimation models is presented in
Table 2. The estimates are compared in terms of MAE, MSE and
maximal error. Both Harris-Benedict equations as well as the
ANN with height, weight, age, gender and total SCIM III score
performed best in terms of MAE (14.2%). Generally, all models
overestimated the REE, which is reflected in the positive MSE.

Only the estimation with the BIA, the Mifflin-St. Jeor equation
and the MLR model including height, weight, age, gender, and
total SCIM III score showed an underestimation of the true EE
value. The MAE in percent for men was always lower than the
MAE for women, except for the BIA estimation where an MAE
for men of 24.0 ± 11.5% and MAE for women of 17.8 ± 19.2%
were found. By way of comparison, the MAE resulting from the
updated Harris-Benedict equation was 13.0 ± 7.2% for men and
25.0± 7.2% for women.

Activity Classification
The overall classification accuracy of the kNN classifier was
97.9%. An overview of the classification accuracy of each
individual activity class can be found in Figure 3B. In addition,
a 3D scatter plot (Figure 3A) and two 2D scatter plots
(Figures 3C,D) are presented in order to visualize the separation
of the different activity classes. The sensitivity for the individual
activities was generally high, with a range of 81.8–100% and a
median of 100%.

EE Estimation
ANN and MLR models were based on a total of 1,324 windows.
An overview of the EE estimation accuracy of all models can be
found in Table 3. Overall, the ANNmodel where the activity was
previously classified into classes by the kNN classifier showed
the lowest overall MAE for the EE estimation with 14.4 ± 5.3%
(Figure 4). The MAE of the different activity classes for the
previously mentioned EE estimation model was 11.8 ± 6.1% for
the “low intensity” class, 19.2 ± 11.7% for the “high intensity”
class, and 14.4 ± 6.8% for the “wheeling” class. Assuming a
classification accuracy of 100% (ANN class known) for the kNN
classifier, this would only result in a marginally better overall
MAE (14.1 ± 5.4%) for the EE estimation. The MAE for the
different activity classes was 11.8 ± 6.0% for the “low intensity”
class, 17.6 ± 11.7% for the “high intensity” class, and 14.2 ±

6.9% for the “wheeling” class. The MLR model (with prior kNN
classification) profited from the inclusion of the HR. The overall
MAE for the EE estimation improved from 16.0 ± 6.2 to 14.9 ±
4.8% when including the HR. The MAE for the different classes
was 13.7 ± 6.8% without HR and 13.8 ± 6.1% with HR for
the “low intensity” class, 19.0 ± 10.7% without HR and 17.4 ±

9.4% with HR for the “high intensity” class, and 17.9 ± 9.3%
without HR and 17.2 ± 10.9% with HR for the “wheeling” class.
In contrast to the MLR model, the ANN model (with prior kNN
classification) did not benefit from the inclusion of the HR. The
overall MAE for the EE estimation with the ANNmodel was 12.9
± 4.7% without HR and 13.6 ± 5.4% with inclusion of the HR.
Looking at different classes showed that the MAE was 10.8 ±

5.9%without HR and 12.3± 6.9%withHR for the “low intensity”
class, 18.6± 13.2% without HR and 17.3± 9.8% with HR for the
“high intensity” class, and 14.2 ± 8.6% without HR and 15.1 ±

12.2% with HR for the “wheeling” class.
The evaluation of the two 2.5 h-measurements to

validate the algorithm under real-world conditions is
shown in Figure 5. For subject #1, the real EE was
underestimated by 23.2 kcal (6.1%) while for subject
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illustrate how the different activity classes can be separated, two additional projections of the 3D scatter plot are presented (C,D).

TABLE 3 | Evaluation of the different models developed as a part of this study.

Mean absolute error Mean signed error Max error

Model description [%] [kcal/day] tetraplegic [%] paraplegic [%] [%] [kcal/day] [%] kcal

N = 1,324

MLR general 15.3 ± 4.8 592.7 ± 270.9 16.4 ± 4.7 14.6 ± 4.9 −2.9 ± 11.1 −266.2 ± 444.4 27.3 1180.1

MLR class known 15.0 ± 4.7 579.2 ± 255.1 15.9 ± 4.2 14.5 ± 5.1 −2.5 ± 10.5 −233.0 ± 416.7 25.7 1103.8

MLR class estimated 15.2 ± 4.7 584.0 ± 253.6 16.3 ± 4.0 14.5 ± 5.0 −2.5 ± 10.5 −235.0 ± 415.4 25.8 1108.9

ANN general 17.3 ± 6.8 606.5 ± 225.1 18.2 ± 6.6 16.8 ± 7.1 5.4 ± 13.4 20.3 ± 489.9 26.8 1118.0

ANN class known 14.1 ± 5.4 513.6 ± 201.3 14.9 ± 4.7 13.6 ± 5.8 3.3 ± 9.8 2.9 ± 379.8 23.9 980.0

ANN class estimated 14.4 ± 5.3 524.7 ± 205.2 15.5 ± 4.7 13.8 ± 5.7 3.5 ± 9.9 −1.3 ± 384.4 24.4 1011.6

N = 897 (HR analysis)

MLR class estimated 16.0 ± 6.2 576.9 ± 281.6 16.9 ± 4.7 15.6 ± 7.0 2.9 ± 12.6 −221.8 ± 437.9 35.3 1406.9

MLR class estimated with HR 14.9 ± 4.8 513.9 ± 193.5 16.4 ± 4.5 14.1 ± 4.8 −1.8 ± 12.3 −154.2 ± 426.2 24.6 961.0

ANN class estimated 12.9 ± 4.7 419 ± 141.4 12.8 ± 3.1 12.9 ± 5.4 3.4 ± 8.2 35.1 ± 284.6 19.4 659.7

ANN class estimated with HR 13.6 ± 5.4 445.8 ± 160.7 14.5 ± 5.5 13.0 ± 5.5 3.0 ± 10.2 14.6 ± 336.4 23.0 816.0

The analysis including the HR was based only on N = 897 windows.

#2, the real value was overestimated by 12.2 kcal
(4.6%).

Energy Cost of Physical Activities
The metabolic cost of each single activity and the three activity
classes is presented in Figure 6. The mean SCI MET for the
“low-intensity” class was 1.6 ± 0.5 and all activities were below
2 SCI MET, which is considered as light intensity activity (61).
The mean SCI MET for the “high-intensity” class was 3.2 ±

1.5 and three activities of this class are considered as light
intensity activities and two as moderate intensity activities.
For the “wheeling” class the mean SCI MET was 3.8 ± 1.6
and, according to Pate and co-workers, two activities would be
classified as light intensity activities, six as moderate intensity
activities, and one as vigorous intensity activity (61). In order to
show the relationship between measured SCI MET and perceived

exertion, a correlation (R = 0.73, p < 0.001) is presented in
Figure 7.

Recommendations of Healthy Lifestyle
The conversion of the recommendations for a healthy lifestyle
in the able-bodied population to daily goals in the wheelchair-
bound SCI population can be found in Table 4.

DISCUSSION

The main aim of this study was to develop and validate an
algorithm for estimating EE from IMU data applicable in a real-
world situation in individuals with SCI. We present a highly
accurate method to estimate ADL-dependent EE from IMU
recordings. Most importantly, we provide reference values for
wheelchair-bound SCI subjects to promote and coach a healthy
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lifestyle, which could be beneficial for reducing the risk of
cardiovascular diseases.

REE reflects the energy used to maintain vital functions at
room temperature. To account for its large contribution [∼65%
in the able-bodied population (62)] to total daily EE, it was
deemed important to accurately estimate the REE. Also, at a
later stage, the estimated REE was used as predictor for the
activity-dependent EE estimation models. As expected, the BIA-
based model showed the worst REE estimation in terms of MAE,
MSE, and maximum error, and is generally known to be very
population specific (63). Therefore, a separate BIA estimation
model for SCI would be required. The three well-established
REE estimation equations, namely the Harris-Benedict equation,
the updated Harris-Benedict equation, and the Mifflin-St. Jeor
equation performed equally well. The MAE for REE estimation

using the updated Harris-Benedict equation has been reported
to be around 14% for the able-bodied population (49). This
compares favorably to 14.2± 7.9% for the SCI data in the present
study.

Here, we also investigated whether and how REE estimation
models could be improved by considering clinical scores.
However, the inclusion of the AIS score did not improve the
models and is likely too unspecific in describing the extent of
impairment. Also, including the level of injury or the motor
scores of the ISNCSCI did not improve the estimation accuracy
significantly. The only clinical score improving the MAE of the
REE estimation was the SCIM III total score, although it only
improved the ANN-based model. In general, all REE estimation
models that were developed in this study were based on the data
of only 30 subjects. This number is clearly too small to build a
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general model for this heterogeneous population of SCI subjects.
For this reason, subsequent analyses were performed using the
updated Harris-Benedict equation for REE estimation.

In the able-bodied population, the type of activity performed
by a subject was shown to be of great importance when
establishing models to estimate EE (16). In order to obtain
a generalizable EE estimation model, we chose to split the
different activities into three broader activity classes. The

overall classification accuracy of the kNN classifier was slightly
better than previous comparable models developed for the SCI
population, which can most likely be explained by the fact that
we included only three activity classes, whereas Hiremath and
co-workers included four and seven activity classes, respectively
(22, 64). The kNN classification has proven to be an appropriate
approach for activity classification in the able-bodied population
as well as in neurological conditions other than SCI (31, 36,
38, 39). The performance of our kNN classifier was excellent,
with an overall classification accuracy of 97.9%. The activity class
“wheeling” had only 2 out of 472 misclassified events. Already
a single feature, namely AC of the wheel sensor, was enough
to classify the aforementioned class (Figure 3C). The “low
intensity” and “high intensity” class had 13 and 14 misclassified
events. In the “low intensity” class, the activity “playing cards”
showed the overall worst sensitivity with 85.3%. This result can
be explained by the fact that even if playing cards is considered
as low intense activity, it can include extended periods of faster
and more intense arm movements. However, in only 2 out
of 24 activities, the presented kNN classifier had a sensitivity
lower than 90%. Thus, the presented kNN classifier is accurate
enough to be used for the activity classification of the final
EE estimation algorithm. Furthermore, since the kNN classifier
classifies activities into activity classes (i.e., groups of activities)
and not into single activities, this approach may be generalizable
to other activities and applications.

The MAE of the activity-dependent EE estimation ranged
from 14.1% up to 17.3%, when the HR information was not
included. However, we have to take into account that the model
reaching a MAE of 14.1% assumed a perfect classification into
the different activity classes. In general, the overall MAE is
in the range of other accelerometer or IMU based models
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TABLE 4 | Recommendations for the able-bodied population converted to EE during moderate activity, and to distance to travel for the wheelchair-bound SCI population.

EE Speed REE measured EE measured Extra EE measured Distance Time needed

Recommendation Reference [kcal/task] [km/h] [kcal/day] [kcal/day] [kcal/day] [km] [min]

10,000 steps of able-bodied 50, 51 300 2.0 1,650 3,430 1,780 8.1 243

150 kcal of additional EE 56 150 2.0 1,650 3,430 1,780 4.0 121

200 kcal of additional EE 56 200 2.0 1,650 3,430 1,780 5.4 162

30min of moderate activity 55 54 3.5 1,644 4,255 2,611 1.8 30

55 61 5.0 1,559 4,502 2,943 2.5 30

60min of moderate activity 56 109 3.5 1,644 4,255 2,611 3.5 60

56 123 5.0 1,559 4,502 2,943 5.0 60

Recommendations based on this study (following

ACSM recommendation)

74 5.0 1,559 4,502 2,943 3.0 36

Additional recommendations based on this study 147 5.0 1,559 4,502 2,943 6.0 72

* 92 3.5 1,644 4,255 2,611 3.0 51

* 111 2.0 1,650 3,430 1,780 3.0 90

*The activities used for this recommendation cannot always be classified as an activity of moderate intensity. Note that values in bold are calculated or estimated from directly measured

or predefined values given in the table.

developed for the SCI population although those studies included
fewer activities (21, 22, 42). Recently, Hiremath and coworkers
presented an EE estimation model which was developed using
recordings from 20 different activities, achieving a MAE of 25%
(23). A possible explanation for the different results might be that
Hiremath and coworkers used linear regressionmodels, which do
not account for non-linear relationships between accelerometer
measurements and EE (23). MAE in the present study was always
highest for the “high intensity” class, which can be explained
by the fact that weight-loading activities, such as the handbike
ergometer and weight lifting, have been included in this class.
In fact, a similarly decreased estimation accuracy for activities
with external load has already been reported previously in the
able-bodied population (13, 18). In order to obtain the best EE
estimate for each class, different features where used for the
different classes. Interestingly, all models developed in this study,
whether MLR or ANN based, included features derived from
the accelerometer data as well as from the gyroscope data. This
is in contrast to what Moncada-Torres and co-workers have
shown, where features derived from the gyroscope data did not
provide useful information for activity classification (39). This
discrepancy can be explained by the fact that, in our study, the
algorithms were used to estimate a continuous value of EE, while
in the study by Moncada-Torres the algorithms were used to
classify activities (39). The inclusion of altimeter-based features
in the final algorithm was not surprising, as it has already been
shown that accelerometer and altimeter are a good combination
to estimate EE in activities with altitude changes (65). Two
features based on demographic data were further included,
namely weight and gender. These two features were only selected
in the class-dependent model and only for the “low intensity”
class. Again, the exclusion of features based on demographic data
may be explained by the fact that they are already represented in
other features, especially in the REE. The comparison between
MLR and ANN-based models showed that the MLR-based

model performed better when no previous activity classification
occurred, and the ANN-based model performed better for the
class-dependent model.

The inclusion of the HR showed a slight improvement for the
MLR-based model. Thereby, the overall estimation improvement
comes mainly from the improvement in the “high intensity”
class. This might be due to the fact that the addition of the
HR can, to a certain extent, improve the EE estimate of weight
loading activities. The validity of combining accelerometer and
HR measurements in the SCI population to estimate EE by using
linear models has already been shown by Nightingale et al. (42).
Our non-linear approach based on the ANNs did not benefit
from the inclusion of the HR, and the MAE increased when
adding the HR as additional predictor. While the MAE decreased
for the “high intensity” class, it increased slightly for the
“wheeling”motion class and was negligible for the “low intensity”
class. In fact, the change in HR might not necessarily result from
a change in the intensity of an activity, especially in the “low
intensity” class, as HR is known to be influenced also by emotion,
stress or other factors which are most visible at rest and during
low intensity exercise (66). During the assessments in the present
study, activity-independent factors potentially influencing HR
were minimized. Hence, the application of the ANN model with
HR as additional feature would most likely result in even higher
estimation errors under “real-world” conditions. Therefore, we
suggest using the class-dependent ANN model without HR for
future applications.

Based on the insights from this study and existing literature for
the able-bodied population, we seeked to propose activity-related
recommendations for a healthy lifestyle in the SCI population.
For subjects with SCI, activity recommendations were translated
into daily distance traveled in a manual wheelchair. Since
translations from able-bodied to SCI are based on the EE
recordings of the present study, we assured that the different
SCI MET values in the literature matched the SCI MET values
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of this study. Collins and co-workers investigated the metabolic
cost of 27 different physical activities in 170 adults with SCI
(59). Six activities, namely desk work, laundry, washing dishes,
weight lifting, table tennis, and hand bike ergometer were
also included in our study. The measured mean SCI MET of
these activities was indeed in the same range as was reported
previously, except for the hand bike ergometer activity, where
mean SCI MET was 4.5 in the present study compared to
values between 3.37 and 3.83 reported by Collins et al. (59).
Possibly, this difference can be explained by differing angular
velocities of the hand bike ergometer between the two studies.
Further agreement between the SCI MET of this study and
the literature can be found in the study of Hiremath et al.
(23). For the four common activities of both studies, namely
arm ergometry, deskwork, resting and propulsion, all activities
were within one standard deviation of EE. In the work of
Nightingale and co-workers the EE for the propulsion at
different wheelchair speeds (on a treadmill) was reported (42).
Although the data cannot be compared directly to the values
of our study, due to different protocols, we can see a linear
relationship between wheelchair speed and EE in both studies,
when excluding the task of wheeling at a speed of 6.5 km/h in
our study. In conclusion, the SCI MET recorded in this study
matches the values reported in the literature well. Therefore,
we consider it a valid approach to use the measured EE of the
present study for healthy lifestyle recommendations in the SCI
population.

The most commonly used recommendation for an
active lifestyle in the able-bodied population is the ACSM
recommendation suggesting 30min of moderate to vigorous
activity per day on at least 5 days per week. For the wheelchair-
bound SCI population, the results of our study found wheeling
at 3.5 or 5 km/h to represent an activity of moderate intensity.
In order to choose one of the two speeds for the translation
of the ACSM recommendation, we further examined the
EE at these two wheeling speeds. According to Wilson et
al. (56), 60min of moderate to vigorous activity per day
should result in ∼150 kcal of increased EE, and 30min of
moderate to vigorous physical activity therefore corresponds
to an additional 75 kcal. Wheeling at 5 km/h for 30min
was closer to the desired 75kcal than wheeling at 3.5 km/h.
For this reason, we chose to use 5 km/h for the translation
of the ACSM guidelines to the wheelchair-bound SCI
population. This translation would therefore result in a
recommendation to travel a daily distance of∼3 km at 5 km/h in
the wheelchair.

There exist, however, also other recommendations for the
able-bodied population. For the translation of the 10,000
steps/day (roughly 300 kcal/day) to a distance to travel
per day in the wheelchair, we selected an average wheeling
speed of 2 km/h. This value was based on daily averages
obtained from long-term recordings in the SCI population
(57, 58). Based on these values, the recommendation for
the SCI population would be to wheel for around 8 km per
day at this average speed. However, it is likely that this
reference distance is far too high. First, the threshold of
10,000 steps/day is controversial in the able-bodied population,

and some researchers have suggested lower thresholds for the
able-bodied population. Second, the daily EE and the REE
of an individual with SCI are lower than those of an able-
bodied person, and therefore less than the additional 300
kcal/day (estimated for 10,000 steps) might be sufficient for
a health-promoting effect. We further translated other activity
recommendations for the able-bodied population such as an
additional 150 and 200 kcal per day spent in activities of
moderate to vigorous intensity, into daily distance to travel in the
wheelchair. As these recommendations are, however, not well-
established, we therefore did not consider them for our final
recommendation.

Therefore, based on data of the present study we recommend
to travel for at least 3 km at 5 km/h on 5 days a week in
order to achieve a health-promoting additional daily EE. This
recommendation is in line with the recommendations of the
U.S. Department of Health and Human Services and the ACSM
(53, 54). There are, however, wheelchair users who cannot
achieve a wheeling speed of 5 km/h and therefore cannot
fulfill the proposed combination of extra calories and intensity.
Nevertheless, these wheelchair users could try to reach the
goal of 3 km/day, first, because even at lower speeds they
reach the recommended daily goal of additional 75 kcal, and
second, because 3 km per day is more than what an average
wheelchair user travels per day (around 2 km) (57, 58, 67,
68).

While our recommendation aims at minimizing the risk for
cardiovascular diseases, Blair and co-workers stated in their work
that 60min instead of 30min of moderate to vigorous physical
activity per day is beneficial for different health outcomes such
as for example, maintaining a lean body mass or improving
muscular strength and endurance (55). In order to fulfill the
60min recommendation, our results can easily be extrapolated
to a daily distance to travel of 6 km/day.

We would like to acknowledge some limitations of this study.
Firstly, the number of women included in this study (i.e., 3) may
be considered too small (although it reflects a typical distribution
in traumatic SCI) and, therefore, the sample measured may
not be representative for the entire SCI population. Secondly,
no individual HR calibration such as the method presented by
Spurr and coworkers was used, which might have influenced the
models including the HR (69). Thirdly, apart from the wheelchair
wheel diameter, no information about the wheelchair types used
by the study participants was included in the models, which
might have influenced the EE estimation accuracy. Fourthly,
the proposed algorithm does not consider the lifestyle of the
individual (type and intensity of activities), which could have
potentially improved our estimation model. The classification
into different activity classes worked well for the activities
included in this study, but a validation in a real-world setting
is required. A further limitation of this study concerns the
recommendations for a healthy lifestyle made for the SCI
population. All values were translated from recommendations
from the able-bodied population and it first has to be shown
that those values should also be used in the SCI population.
Finally, the REE models were based on 30 subjects only (equal
to 30 data points), thus the inclusion of more subjects is
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needed to allow for the design of a more general estimation
model.

CONCLUSION

The models presented in this study accurately estimate EE in
an unprecedented pool of 24 activities and in 3 h of continuous
measurements in wheelchair-bound SCI individuals, making it a
powerful tool to be used during continuous and non-obstructive
recordings in real-world situations. IMU-based EE estimation is
a promising methodology that may be used, together with the
proposed wheeling reference value of 3 km per day, to promote
a healthy lifestyle in SCI individuals at later stages of and/or after
rehabilitation. The use of such recordings and recommendations
may help to increase physical activity of SCI individuals to an
extent allowing to decrease the prevalence of cardiovascular
disease and increase quality of life in the long run.
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