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The injured spinal cord is a complex system influenced by many local and systemic

factors that interact over many timescales. To help guide clinical management, we

developed a technique that monitors intraspinal pressure from the injury site in patients

with acute, severe traumatic spinal cord injuries. Here, we hypothesize that spinal

cord injury alters the complex dynamics of the intraspinal pressure signal quantified

by computing hourly the detrended fluctuation exponent alpha, multiscale entropy, and

maximal Lyapunov exponent lambda. 49 patients with severe traumatic spinal cord

injuries were monitored within 72 h of injury for 5 days on average to produce 5,941 h

of intraspinal pressure data. We computed the spinal cord perfusion pressure as mean

arterial pressure minus intraspinal pressure and the vascular pressure reactivity index

as the running correlation coefficient between intraspinal pressure and arterial blood

pressure. Mean patient follow-up was 17 months. We show that alpha values are

greater than 0.5, which indicates that the intraspinal pressure signal is fractal. As alpha

increases, intraspinal pressure decreases and spinal cord perfusion pressure increases

with negative correlation between the vascular pressure reactivity index vs. alpha. Thus,

secondary insults to the injured cord disrupt intraspinal pressure fractality. Our analysis

shows that high intraspinal pressure, low spinal cord perfusion pressure, and impaired

pressure reactivity strongly correlate with reduced multi-scale entropy, supporting the

notion that secondary insults to the injured cord cause de-complexification of the

intraspinal pressure signal, which may render the cord less adaptable to external

changes. Healthy physiological systems are characterized by edge of chaos dynamics.

We found negative correlations between the percentage of hours with edge of chaos

dynamics (−0.01≤lambda≤0.01) vs. high intraspinal pressure and vs. low spinal cord

perfusion pressure; these findings suggest that secondary insults render the intraspinal

pressure more regular or chaotic. In a multivariate logistic regression model, better

neurological status on admission, higher intraspinal pressure multi-scale entropy and

more frequent edge of chaos intraspinal pressure dynamics predict long-term functional

improvement. We conclude that spinal cord injury is associated with marked changes in

non-linear intraspinal pressure metrics that carry prognostic information.

Keywords: chaos theory, complexity theory, critical care unit, detrended fluctuation analysis, entropy, Lyapunov,

monitoring, spinal cord injury
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INTRODUCTION

Traumatic spinal cord injury (TSCI) is a catastrophic event that,
globally, affects about 23 people per million each year (1). The
management of acute TSCI is variable (2, 3) with no treatment
proven to improve neurological outcome (4). To guide patient
management, we developed intraspinal pressure (ISP) and spinal
cord perfusion pressure (SCPP) monitoring from the injury
site in the intensive care unit (ICU), analogous to intracranial
pressure and cerebral perfusion pressure monitoring used to
manage patients with traumatic brain injury (5, 6). The ISP
monitoring technique is safe and provides clinically important
information (7–16).

ISP is the pressure of the swollen, injured cord as it is
compressed against the dura, whereas SCPP is the difference
between mean arterial pressure (MAP) and ISP. To date we
have analyzed the ISP and SCPP signals by linear techniques
showing correlations between signal amplitude and injury
site metabolism (11), neurological status (5), and long-term
functional outcome (16). Here, we consider the injured cord from
a very different angle, as a complex system influenced by many
local (intraspinal compliance, cord blood flow, oxygenation,
metabolism) and systemic (cardiac pulsation, aortic valve closure,
respiration, plasma glucose) factors that interact over many
timescales. According to chaos and complexity theories, the
interactions between the different components of a complex
system give rise to emergent properties that cannot be inferred
from the individual parts. This idea was elegantly expressed by
Aristotle in Metaphysics as “the whole is more than the sum
of its parts.” Consider a protein with its aminoacids as the
individual components. When the aminoacids are assembled in
a certain sequence, the sequence folds spontaneously to form
complex higher order structures that give the protein biological
functions as emergent properties e.g., forming an ion channel
that opens and closes in response to potential changes and
ultimately gives rise to an action potential. Complex systems have
unique properties, e.g., scale invariance, complexity, and self-
organization, that can be quantified using concepts from chaos
and complexity theories such as self-affinity (17, 18), entropy
(19, 20), and stability (21, 22). There are several reviews on chaos
and complexity theories for clinicians that explain these concepts
in detail (23, 24).

Self-affinity determines if signal fluctuations that occur over
short timescales resemble long timescale fluctuations (17, 18).
We quantified self-affinity by detrended fluctuation analysis
(DFA) to obtain the exponent α. If α = 0.5, ISP is uncorrelated
(white noise). If α < 0.5, ISP is anti-correlated (as timescale
increases, fluctuations are smaller than expected). If 0.5 < α < 1,
ISP is correlated (as timescale increases fluctuations are larger
than expected). If α = 1, ISP is pink noise, which normally
characterizes health (25). If α > 1, ISP is non-stationary (mean

Abbreviations:AIS, American spinal injuries association Impairment Scale; Alpha

(α), exponent from detrended fluctuation analysis; DFA, detrended fluctuation

analysis; ICU, intensive care unit; ISCoPE, injured spinal cord pressure evaluation

study; ISP, intraspinal pressure; Lambdamax (λmax), maximal Lyapunov exponent;

MAP,mean arterial pressure; MSE, multiscale entropy; SCPP, spinal cord perfusion

pressure; sPRx, spinal pressure reactivity index; TSCI, traumatic spinal cord injury.

amplitude changes with time). We predict that α deviates from 1
with greater cord damage.

To quantify ISP signal complexity, we computed the
multiscale entropy (MSE) (19, 20). MSE yields low values for
non-complex signals e.g., periodic and random ones. Based on
the de-complexification theory of disease, ISP is predicted to have
high complexity for healthy spinal cord and low complexity after
TSCI.

Stability refers to signal predictability e.g., a sinewave is stable,
white noise is chaotic. We quantified stability with the maximal
Lyapunov exponent λmax (21). Suppose ISP has similar values at
two time-points. If the evolution of ISP from these time-points
is similar, ISP is stable (λmax < 0). If the evolution of ISP from
these time-points diverges, ISP is chaotic (λmax > 0). Health is
generally associated with λmax∼0, a special state termed edge of
chaos (26, 27). At the edge of chaos, a system transitions between
order and disorder. This is generally the preferred state because,
unlike periodicity or randomness, edge of chaos facilitates self-
organization, evolution and adaptability. Consider the brain as
example of an organ that functions at the edge of chaos. The brain
is orderly by using set logical rules to make deductions, but is also
chaotic by producing original thoughts that may appear as if out
of nowhere.

This study investigates if chaos and complexity theories can
be applied to acute TSCI, if pathological events at the injury site
influence non-linear ISP metrics such as MSE, α and λmax and if
these metrics predict functional outcome. DFA, MSE, and λmax

are also explained in the Supplementary Presentation.

MATERIALS AND METHODS

Approvals
Patients were part of the Injured Spinal Cord Pressure Evaluation
(ISCoPE) study, which is ongoing (https://clinicaltrials.gov,
NCT02721615). Approvals were obtained from the St George’s,
University of London Joint Research Office and the National
Research Ethics Service London–St Giles Committee. The study
complies with the ethical standards as laid down in the 1964
Declaration of Helsinki and its later amendments. Informed
consent was obtained from all individual participants included
in the study.

Patient Recruitment
All patients were treated at the Department of Neurosurgery
and the Neuro-ICU at St. George’s Hospital in London. ISCoPE
inclusion criteria are: 1. Severe TSCI defined as American
spinal injuries association Impairment Scale (AIS) grades A–C;
2. Age 18–70 years; 3. Timing between TSCI and surgery ≤

72 h. Exclusion criteria are: 1. Unable to consent; 2. Major co-
morbidities; 3 Penetrating TSCI.We included all ISCoPE patients
from 2010–2016.

Insertion of Intraspinal Pressure Probe
After bony realignment and posterior fixation, the ISP probe
(CodmanMicrosensor Transducer R©, Depuy Synthes, Leeds, UK)
was placed intradurally on the spinal cord surface at the site of
maximal cord swelling. The probe monitors pressure, which is
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generated by the swollen injured cord compressed against the
dura. These ISP recordings differ from corresponding values
obtained from proximal or distal cord or extradurally. The ISP
monitoring technique is illustrated in Figure 1. Details are given
elsewhere (5, 6, 9–12, 15, 16).

Intraspinal Pressure, Spinal Cord Perfusion
Pressure
The ISP probe was connected to a Codman ICP box linked via
a ML221 amplifier to a PowerLab running LabChart v.7.3.5 (AD
Instruments, Oxford, UK). Arterial blood pressure was recorded
from a radial artery catheter kept at the same level at the ISP
probe and connected to a Philips Intellivue MX800 bedside
monitoring system (Philips, Guildford, UK) in turn connected to
the PowerLab system. ISP and arterial blood pressure signals were
sampled at 1 kHz for up to 7 days. LabChart was used to analyse
the signals and compute SCPP as mean arterial pressure (MAP)
minus ISP. Spinal pressure reactivity index (sPRx) was computed
as the running correlation coefficient over 5min between MAP
and ISP. Details are given elsewhere (5, 6, 9–12, 15, 16).

Patient Assessments
Neurological examinations to record the AIS grade were done on
admission, prior to discharge to the spinal rehabilitation center
and during outpatient appointments. A CT andMRI of the whole
spine were done on admission, another CT within 48 h of surgery
and another MRI within 2 weeks of surgery.

Detrended Fluctuation Analysis
We used DFA to compute the scaling exponent α (17, 18).
A program for conducting DFA was created in Matlab. Each
ISP signal was divided into non-overlapping 1 h windows, i.e.,
N = 3,600 at 1Hz sampling rate. Each 1 h window, the ISP
was normalized using z scores and integrated by computing the
cumulative sum to produce the time series X(t). The normalized
and integrated time series X(t) was then divided into time
segments of equal length n and a least square linear best fit was
performed in each time segment to obtain the local trend Y(t).
The normalized and integrated time series X(t) was detrended
by subtracting the local trend Y(t) in each time segment. The
fluctuation F(n) defined as the root-mean-square deviation from
the mean was computed as follows:

F (n) =

√

√

√

√

1

N

N
∑

t=1

(X (t) − Y (t))2 (1)

Detrending followed by fluctuation measurement was repeated
for a range of segment sizes n from 100 to 1,000 with interval 100
and a log[F(n)] vs. log (n) plot was constructed. The exponent α

was calculated as the slope of the linear regression fitted to the
log [F(n)] vs. log (n) plot. DFA was performed in each 1-h time
window to obtain α.

FIGURE 1 | ISP monitoring technique. (A) Schematic showing intradurally placed ISP probe. (B) Pre-operative T2 MRI of a patient with TSCI at C6-7. (C)

Postoperative T2 MRI of same patient. (D) Postoperative CT of same patient with ISP probe in situ. (E) Examples of ABP (yellow) and ISP (white) signals. Percussion

peak (a), dicrotic notch (b), dicrotic peak (c). (F) Examples of ABP, ISP, and sPRx recordings.
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Multi-Scale Entropy
MSE measures the complexity of a time series (19, 20). To
calculate MSE, we used the software of ICM+ (www.neurosurg.
cam.ac.uk/icmplus). MSE analysis starts with a coarse-graining
process applied to the time series. For each 1 h ISP time series,
the ISP signal sampled at 1Hz was normalized using z scores.
Multiple coarse-grained time series were then generated by
averaging the data points within non-overlapping windows of
increasing length. Each 1 h ISP time series was investigated with
scale factors 1–20. Sample entropy was computed for each coarse-
grained time series with non-overlapping windows. For a given
coarse-gained time series, sample entropy takes into account the
number of repeated m (embedding dimension) consecutive data
points (m = 2 in the study), given by A, and the number of
repeated m+1 consecutive points, given by B. Sample entropy,
defined as − loge (

A
B ), is a regularity measure that searches for

similar patterns. Sample entropy was computed for each scale
and plotted against scale factor. A single value, termed MSE, was
computed as the area under the sample entropy vs. scale factor
curve.

Maximum Lyapunov Exponent
The maximum Lyapunov exponent λmax is an important statistic
for quantifying stability and distinguishing chaotic from non-
chaotic behavior in dynamical systems (21, 22). Here, we consider
the ISP signal to be stable when λmax < −0.01, chaotic when
λmax > 0.01 and at the edge of chaos when −0.01 ≤ λmax

≤ 0.01. A program for calculating ISP λmax was created in
Matlab based on the computation process of Wolf et al. (21)
that does not require fitting a model to the time series. The ISP
signal, sampled at 0.1Hz and divided into 1-h non-overlapping
windows, was normalized using z-scores. The parameters chosen
for the algorithm are embedding dimension m = 3 and time
delay τ = 10 s. Time delay reconstruction defines the tuples
x(i), x(i+τ ), x(i+2τ ) etc. from the time series x(i) and the
reconstructed phase space consists of points in m-dimensional
space. The value of m should not be too small that causes the
reconstruction to be topologically incorrect and was chosen has
the 3D space in current study.

Statistical Analysis
We used XLStat Biomed (v.18.07, Addinsoft, New York).
Regression lines were fitted and Pearson’s correlation coefficient
was computed. Logistic regression was performed using Logit
with binary response (AIS improvement / no improvement) to
fit the best model based on the likelihood ratio.

Data Availability
The datasets generated during and/or analyzed during the
current study are available from the corresponding author on
reasonable request.

RESULTS

Patient Characteristics
We analyzed 5,941 h of ISP data obtained from 49 TSCI
patients. Most patients were young men with complete, i.e., AIS

grade A, cervical TSCI on admission. All patients underwent
posterior surgery to fix the spine, most within 48 h of the
injury, and were followed up for about one and a half years
on average. ISP was monitored for about 5 days on average.
Overall, at follow-up 19/49 (38.8%) patients had improved
by at least one AIS grade, including (8/34) 23.5% who were
AIS grade A, 4/7 (57.1%) who were AIS grade B and 7/8
(87.5%) who were AIS grade C on admission. For details see
Table 1.

Detrended Fluctuation Analysis
Figure 2A illustrates the principles of DFA. The raw ISP signal is
integrated and detrended and the root-mean-square fluctuation
Fn computed by partitioning the processed curve into n non-
overlapping time windows. By plotting Log (Fn) vs. Log(n),
we obtain a trend-line with gradient α (Figure 2B). Trend-
lines fit the Log (Fn) vs. Log(n) points well (R > 0.9) and
values of α ranged between 0.55 and 1.40 with mean of 0.85.
Figure 2C shows examples of ISP signals with different α. Fewer
than 2% of α values were >1. Thus, regarding the amplitude
fluctuations in the ISP signal: (1) Most (98%) of the time there
is long-term positive temporal correlation, i.e., 0.5 < α < 1;
(2) There is never long-term negative correlation, i.e., α is
never < 0.5; (3) Non-stationarity, i.e., α > 1.0, which means
that the mean and variance of the amplitude vary with time
occurs rarely (<2% of the time). Non-stationary hours cluster
in a few patients (87% in 6 patients) and are not pathological
because all patients with mean α > 1.0 improved by at least 1
AIS grade.

Relationships between ISP vs. α (Figure 2D) and SCPP
vs. α (Figure 2E) are non-linear: as α increases from 0.5 to
0.8, ISP decreases and SCPP increases, but as α increases
from 0.8 to 1, ISP and SCPP plateau. With α > 1, ISP
increases and SCPP decreases. There is near-perfect negative
correlation between sPRx vs. α (Figure 2F). Therefore, as the
injured cord swells or becomes ischaemic or the vascular
pressure reactivity is impaired, the long-term correlations in
amplitude dynamics of the ISP signal become attenuated. α >1
is a unique state of low sPRx despite high ISP and low
SCPP.

TABLE 1 | Patient characteristics.

Characteristic Value Percent

No. of patients 49

Age in years: mean ± sem 41.1 ± 2.1

Sex: male, female 39, 10 79.6, 20.4

Level: cervical, thoracic 27, 22 55.1, 44.9

Surgery: posterior, anterior, both 41, 0, 8 83.7, 0, 16.3

Injury to surgery: hours mean ± sem 36.4 ± 2.7

Monitoring: hours mean ± sem 121.2 ± 5.9

Admission AIS grade: A, B, C 34, 7, 8 67.3, 14.3, 18.4

Follow-up AIS grade: A, B, C, D, E 26, 4, 6, 12, 1 53.1, 8.2, 12.2, 24.5, 2.0

Months follow-up: mean ± sem 17.2 ± 2.3
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FIGURE 2 | Detrended fluctuation analysis of ISP signal. (A) Example of raw (white, top) and integrated detrended (yellow, bottom) ISP signal. (B) Log F(n) vs. Log n

plot and trend-line (R = 1.00, slope = α). (C) Raw (white, left) and integrated detrended (yellow, right) ISP signals with increasing α. (D) ISP vs. α (green). Trend-line

R = −0.18. (E) SCPP vs. α (blue). Trend-line R = 0.19. (F) sPRx vs. α (black). Trend-line R = −0.98. For (C–E) n = 49 patients, mean±standard error.

Complexity Analysis
Figure 3A illustrates the coarse-graining process. For each 1 h
long ISP signal, several coarse-grained time series are generated
by averaging the data points within non-overlapping time
windows of decreasing length as follows: scale factor 1 means
1 window which is 1 h long, scale factor 2 means 2 windows
which are 1

2 h long each, scale factor 3 means 3 windows

which are 1
3 h long each etc. We plot the sample entropy of

each coarse-grained time series vs. the scale factor and compute
MSE as the area under the curve. Examples of ISP signals with
low and high MSE are in Figure 3B. Though the MSE of the
ISP signals varies widely (4.1–298.7), most (95.5%) MSE values
are <30.

Though the relationships between ISP vs. MSE, SCPP vs.
MSE, and sPRx vs. MSE are non-linear (Figures 3C–E), there is
significant negative correlation between ISP vs. MSE and between
sPRx vs. MSE and significant positive correlation between SCPP
vs. MSE. Therefore, as the injured cord swells or becomes
more ischaemic or as the pressure reactivity becomes more
impaired, the ISP signal becomes less complex, i.e., the number
of interacting biological processes that influence ISP decreases.

Stability Analysis
Figure 4A illustrates the concept of λmax in phase space, which is
an N-dimensional plot of all ISP trajectories. Consider two states
in the phase space at time 0 located at Z1(0) and Z2(0) with a very

Frontiers in Neurology | www.frontiersin.org 5 June 2018 | Volume 9 | Article 493

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Chen et al. Spinal Cord Injury

FIGURE 3 | Entropy analysis of ISP signal. (A) Coarse-graining process: For each 1 h long ISP signal, multiple coarse-grained time series are generated by averaging

data points xi within non-overlapping windows of increasing time length to obtain yj . (B) Examples of two raw ISP signals (red, top) and their corresponding sample

entropy (MSE) vs. scale plots (green, bottom). (C) ISP vs. MSE (green). Trend-line R = −0.94. (D) SCPP vs. MSE (blue). Trend-line R = 0.93. (E) sPRx vs. MSE (black).

Trend-line R = −0.90. For (C–E) n = 49 patients, mean±standard error.

small separation δZ(0). After time t, the two states are located at
Z1(t) and Z2(t), respectively, with separation δZ(t).

∣

∣δZ(t)
∣

∣ = eλt
∣

∣δZ(0)
∣

∣ (2)

λ is a Lyapunov exponent and the number of λ values is N. The
largest λ is given by

λmax = lim
t→∞

lim
δZ(0)→0

1

t
ln

∣

∣δZ(t)
∣

∣

∣

∣δZ(0)
∣

∣

(3)

and determines if the system is chaotic. Figure 4B shows two ISP
signals with their corresponding trajectories in phase space as
seen in two dimensions; one ISP signal is stable (λmax < 0) and
the other chaotic (λmax > 0).

λmax∼0 indicates a special state, termed edge of chaos, which
is preferred in healthy biological systems. Here, we defined edge
of chaos as −0.01 ≤ λmax ≤ 0.01. We found significant negative
correlation between the % hours at the edge of chaos vs. ISP; as
ISP increases, the ISP signal is less frequently at the edge of chaos
and more frequently stable (Figure 4C). There was significant
positive correlation between the % hours at the edge of chaos
vs. SCPP; as SCPP increases, the ISP signal is more frequently at
the edge of chaos and less frequently stable (Figure 4D). Though
there was no correlation between the % hours at the edge of chaos
vs. sPRx; however, as sPRx increases, the ISP signal becomes less

stable and more chaotic (Figure 4E). These findings suggest that
as the injured cord swells or becomes ischaemic, ISP loses its edge
of chaos dynamics by becoming more regular. As the vascular
pressure reactivity at the injury site becomes impaired, ISP is less
regular and more chaotic.

Patient Prognosis
Figure 5 shows plots of α, MSE and % hours at the edge of chaos
vs. time for those patients who improved by at least 1 AIS grade
and those who did not. Overall, patients who improved have
significantly larger α, significantly larger MSE and significantly
higher % hours at the edge of chaos than patients who did not
improve. Interestingly, large rises in MSE (∼3.0-fold) and %
hours at the edge of chaos (∼1.7-fold) are seen at day 10 in
patients who improve, but not in patients who do not improve.
The significance of this is unclear; it may indicate some important
physiological change at the injury site or may be an artifact due
to the small number (=11) of data points at this time point.
There are also positive correlations between % patients who
improved vs. mean α, vs. mean MSE, and vs. mean % hours at
the edge of chaos. Logistic regression analysis is summarized in
Table 2. Univariate regression identified patient age, admission
AIS grade, mean ISP, mean SCPP, mean exponent α, mean MSE,
and overall % hours at the edge of chaos as prognostic factors
after TSCI. According to amultivariate regression, admission AIS
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FIGURE 4 | Stability analysis of ISP signal. (A) Concept of Lyapunov exponents: In phase space, a small n-dimensional sphere with radius

p1 (0) = p2 (0) = . . . = pn (0) at time 0 becomes an ellipsoid with radii p1 (t) , p2 (t) , . . . , pn (t) at time t. The i-th Lyapunov exponent is defined as

λi = lim
t→∞

(

1
t

)

log
pi(t)
pi(0)

. (B) Examples of stable (left, blue, λmax <-0.01) and chaotic (right, red, λ = 0.06) ISP signals with their respective phase space trajectories

(insets, 10 s time delay embedding). (C) % hours which are at edge of chaos (circles, −0.01 ≤ λmax ≤ 0.01), stable (triangles, λmax < −0.01), or chaotic (squares,

λmax > 0.01) vs. ISP. Trend-line R = −0.86 (edge of chaos), 0.87 (stability), −0.36 (chaos). (D) % hours which are at edge of chaos (circles, −0.01 ≤ λmax ≤ 0.01),

stable (triangles, λmax < −0.01), or chaotic (squares, λmax > 0.01) vs. SCPP. Trend-line R = 0.89 (edge of chaos), −0.84 (stability), 0.10 (chaos). (E) % hours which

are at edge of chaos (circles, −0.01 ≤ λmax ≤ 0.01), stable (triangles, λmax < −0.01), or chaotic (squares, λ > 0.01) vs. sPRx. Trend-line R = 0.19 (edge of chaos),

−0.76 (stability), 0.91 (chaos). For (C–E) 49 patients.

grade, mean MSE, and overall % hours at the edge of chaos are
significant independent prognostic factors.

DISCUSSION

Our key findings are that pathological changes occurring after
TSCI at the injury site (cord swelling, ischaemia, impaired spinal
pressure reactivity) produce marked changes in non-linear ISP
metrics including α, MSE and λmax, and these metrics have
prognostic value.

Central to our study is the concept of the spinal cord as
a complex system with several components that interact over
timescales ranging from seconds to hours to produce the ISP
time series. Studies of TSCI normally reduce the spinal cord to
its individual parts, i.e., cells or molecules, study their behavior,
and re-assemble them to form the whole. At the macroscopic
level, complex systems have emergent properties that are absent
from the individual components, hence “the whole is more
than the sum of its parts.” The emergent properties may also
inhibit the component parts and thus “the whole is also less
than the sum of its parts.” These ideas suggest that the response
of ISP to TSCI cannot be fully understood by studying the
individual components of the spinal cord in isolation. Chaos and
complexity theories provide a novel perspective on TSCI with a

set of conceptual tools to tackle the problem. One such concept
is self-similarity, i.e., the system exhibits the same behavior at
different timescales, the hallmark of which is the power law
(17, 18). We showed that the ISP signal is self-similar by obeying
power laws with α > 0.5. We hypothesized that the ISP signal
carries information over different timescales that arises from the
several biological processes that influence it. We thus quantified
the information content of the ISP signal over several scales
using MSE (19, 20). Another concept in complex systems is
edge of chaos dynamics (21, 22), i.e., the spinal cord fluctuates
at the interface between order and disorder. This state, also
known as self-organized criticality, is an emergent property and
is the preferred state of healthy biological systems because it
accelerates information processing and storage (27) as well as
maximizing adaptability to changing demands (26). We showed
that, for long periods, the ISP signal is at the edge of chaos
with λmax∼0. Together, our data suggest that the spinal cord is
a complex system that generates an ISP signal with high self-
affinity, high information content (high MSE) and edge of chaos
dynamics.

We found that secondary insults disrupt the self-affinity, the
complexity and the edge of chaos dynamics of the ISP signal. The
secondary insults studied here are cord compression (increased
ISP), ischaemia (decreased SCPP) and impaired autoregulation
(increased sPRx). These insults likely disrupt the fundamental
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FIGURE 5 | Relations between α, MSE, λmax, and functional outcome. (A) α vs. days after TSCI. (B) % patients who improved vs. α. Trend-line R = 0.92. (C) MSE vs.

days after TSCI. (D) % patients who improved vs. MSE. Trend-line R = 0.92. (E) λ vs. days after TSCI. (F) % patients who improved vs. % hours at edge of chaos

(−0.01 < λmax < 0.01) . Trend-line R = 0.98. For (A,C,E) Patients who improved by ≥1 AIS grade (red, 19 patients, 1,996 h) and patients not improved (blue, 30

patients, 4,068 h), mean±standard error.

biological processes that regulate the ISP signal, which in turn
cause the observed changes in α, MSE and λmax. Consequently,
as these insults become more severe, the self-affinity of ISP
weakens (α decreases), the ISP signal loses information (MSE
decreases) and becomes more regular or chaotic (fewer hours
with −0.01 ≤ λmax ≤ 0.01). We showed that α, MSE and λmax

carry prognostic information, probably because these metrics
are sensitive to the pathological processes at the injury site. The

multivariate logistic regression model shows that the chance of
AIS grade conversion at follow-up is increased 6.7-fold when AIS
grade at presentation increases by one, whenMSE increases by 10
or when the number of hours with−0.01≤ λmax ≤ 0.01 increases
by 5%.

Chaos theory has not been previously applied to TSCI
because ISP monitoring is new. The idea of applying chaos
theory to traumatic brain injury has been proposed in reviews
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TABLE 2 | Univariate and multivariate logistic regression analysis.

Variable Univariate Multivariate

P-value Odds ratio P-value Odds ratio

Age <0.01 0.49 (0.27–0.84) NS

Admission AIS <0.0005 4.65 (1.91–14.55) <0.005 6.73 (1.81–51.50)

ISP <0.05 0.26 (0.09–0.61) NS

SCPP <0.05 2.21 (1.19–4.49) NS

Exponent α <0.05 2.71 (1.13–8.01) NS

MSE <0.0001 6.54 (1.26–38.77) <0.0005 6.10 (1.96–39.61)

Hours−0.01< λmax <0.01 <0.05 2.62 (1.05–8.68) <0.05 4.94 (1.30–34.25)

Exponent α, detrended fluctuation analysis exponent; ISP, mean hourly intraspinal pressure; λmax , maximum Lyapunov exponent; MSE, multi scale entropy; NS, not significant; SCPP,

mean hourly spinal cord perfusion pressure.

(28), but few such studies have been undertaken. Reduced
MSE (29) or α >1 (30, 31) in the ICP signal is associated
with worse Glasgow Outcome Score after traumatic brain
injury. Decreased MSE of near infrared spectroscopy signals
obtained from the brains of critically ill preterm infants
correlates with death and brain damage (32). Together,
these findings suggest that non-linear ISP metrics are
clinically useful in acute traumatic brain injury as well as
TSCI.

Some issues need to be addressed before non-linear metrics
can be used clinically. Foremost is the large number of
computations required that may preclude non-linear analysis
to be done in real time. Another practical issue is that a
change in ISP complexity, which signifies an adverse event,
does not provide information about the cause. A change in
ISP complexity should alert the clinician to investigate list of
possible causes e.g. increased cord swelling (high ISP), reduced
cord perfusion (low SCPP), more deranged autoregulation (high
sPRx) and perhaps fever, pneumonia, hypoxia etc. To make
our findings more clinically relevant, future studies ought to
determine if α, MSE, and λmax are affected by confounding
factors unrelated to the injury and ought to validate these metrics
in a larger group of TSCI patients and against other outcome
measures, not only AIS conversion. Provided these limitations
are addressed, α, MSE and λmax may be used clinically. The
first step is to incorporate them into a multi-modality display
in ICU by computing them in real time perhaps using a
sliding 4-h window updated each minute (15, 31, 33). This
will allow use of α, MSE, and λmax to evaluate the state of
the injury site and the effectiveness of therapies. An alternative
to multi-modality monitoring is to combine several ISP-related
parameters (e.g., ISP amplitude, SCPP, sPRx, α, MSE, λmax)
after appropriate weighting into a single, composite metric (cord
complexity index) that reflects the state of the injury site. The
cord complexity index could also be used to predict outcome
independent of the AIS grade. Our observation that non-linear
ISP signal metrics carry clinically useful information raises the
intriguing possibility of novel therapies for acute TSCI aiming to

enhance α, MSE, and λmax without necessarily reducing ISP or
increasing SCPP.

Further research is required to fully define the clinical value of
non-linear analysis of physiological signals, such as intracranial
or intraspinal pressure monitored from injured brain or spinal
cord in ICU. To facilitate this, we recommend that non-linear
metrics be incorporated into standard software packages that are
widely used by neuro-ICUs, such as ICM+.
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