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Autism spectrum disorders (ASD) represent a complex group of neurodevelopmental

conditions characterized by deficits in communication and social behaviors. We

examined the functional connectivity (FC) of the default mode network (DMN) and its

relation to multimodal morphometry to investigate superregional, system-level alterations

in a group of 22 adolescents and young adults with high-functioning autism compared to

age-, and intelligence quotient-matched 29 healthy controls. The main findings were that

ASD patients had gray matter (GM) reduction, decreased cortical thickness and larger

cortical surface areas in several brain regions, including the cingulate, temporal lobes,

and amygdala, as well as increased gyrification in regions associated with encoding visual

memories and areas of the sensorimotor component of the DMN, more pronounced in

the left hemisphere. Moreover, patients with ASD had decreased connectivity between

the posterior cingulate cortex, and areas of the executive control component of the

DMN and increased FC between the anteromedial prefrontal cortex and areas of the

sensorimotor component of the DMN. Reduced cortical thickness in the right inferior

frontal lobe correlated with higher social impairment according to the scores of the

Autism Diagnostic Interview-Revised (ADI-R). Reduced cortical thickness in left frontal

regions, as well as an increased cortical thickness in the right temporal pole and

posterior cingulate, were associated with worse scores on the communication domain

of the ADI-R. We found no association between scores on the restrictive and repetitive

behaviors domain of ADI-R with structural measures or FC. The combination of these

structural and connectivity abnormalities may help to explain some of the core behaviors

in high-functioning ASD and need to be investigated further.
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INTRODUCTION

Autism spectrum disorders (ASD) represent a complex group of
neurodevelopmental conditions characterized by deficits in social
behaviors, including both interpersonal social processes and self-
referential thought (1). This condition is reported to affect 1
in 59 individuals according to the last CDC update of autism’s
estimated prevalence (2). The pathology of ASD is currently
considered a disruption of brain development time-course
with a wide range of heterogeneity among patients (3). The
specific neurobiological substrates of this lifelong developmental
disability remain unclear. Several studies reported a combination
of structural abnormalities along with atypical brain connectivity
in ASD (4–15). These abnormalities could help explain some of
the symptoms of ASD and their severity.

Early investigations in ASD showed an increase in total
brain volume at 2–4 years of age persisting into childhood but
not adolescence (16). Some areas increase more than others,
including frontal and temporal regions and the amygdala,
while other structures present reduction in volume, such as
the corpus callosum (17–26), probably indicating dysfunction
of intra- and inter-hemispheric connectivity (15, 27–36). The
first generation of studies using brain imaging failed to report
consistent localized neocortical brain dysfunction (37, 38).
However, structural neuroimaging has indicated various sites
of anatomical abnormalities, providing some clues for a better
understanding of this condition (17, 39–44).

Despite some inconsistencies, there is a trend from more
recent studies which have observed regional increases of gray
matter (GM) accompanied by local reductions of white matter
(WM) (6, 38, 45). These findings support an increased local
but reduced long-distance cortico-cortical reciprocal activity
and functional coupling (46–48). Converging lines of evidence
suggest that ASD is a complex disorder of brain connectivity
(49, 50), involving aberrant functional connectivity (FC) within
the default mode network (DMN), as well as between the DMN
and several cortical and subcortical areas (13, 15, 27, 30, 31, 34–
36, 44, 51–70, 107, 135).

The DMN is a set of structures known to be particularly
engaged when participants are at rest (Figure 1). Anatomically,
this network consists of the posterior cingulate cortex (PCC),
retrosplenial cortex, lateral parietal/angular gyrus, medial
prefrontal cortex, superior frontal gyrus, regions of the temporal
lobe, and the parahippocampal gyrus (54, 71–73, 79). Many have
speculated that the DMN function may extend beyond cognitive
processes and encompass the role of maintaining homeostasis
between excitatory and inhibitory neuronal responses (74, 75).
Others have argued that it is active when contemplating scenarios
and events, when the mind is wandering, or when conducting
lower-level observations of the individual’s external surroundings
(76–79). More recently, the “developmental disconnection
model,” proposed by many authors, links the core symptoms of
ASD to weak FC between remote cortical regions and an excess
of FC within local regions (80–82). For recent reviews in the topic
see references (6, 15, 37, 43, 44, 50, 57, 67, 83–86).

It is currently unclear the extent of regions overlap between
abnormal structural and functional connectivity in ASD patients

FIGURE 1 | The DMN constituent components. The blue square placed in the

posterior cingulate cortex illustrates the seed position described in the

methods.

and its relationship with different clinical presentations in the
spectrum of this condition (26, 87, 88). The understanding of
the relationship between structural and functional alterations
is also compromised by the high heterogeneity of individuals
and the age-related differences reported among different ASD
groups (26). The comparison between brain structure and
function in a single group of ASD individuals with similar
phenotypic pattern can shed light on these complex interactions
and establish a link with clinical symptomatology in these
patients.

We aimed to characterize the relationships between structural
and functional abnormalities in a cohort of patients with high-
functioning autism. We performed a high resolution multimodal
structural (cortical thickness, gyrification index, surface area
and GM volume) and functional (resting-state FC) analysis
to detect superregional, system-level alterations attempting
to establish a neurobiological foundation to pathology and
clinical symptoms in this part of the spectrum of autism—
adolescents and young adults with high-functioning autism
without associated depression, psychosis, seizures, or other major
psychiatric disorders.

METHODS

Participants
We recruited 22 adolescents and young adults with ASD and 29
normal controls from the local community and the University
of Campinas. This study was approved by the Ethics Committee
of the University of Campinas (plataformabrasil.saude.gov.br;
reference number: CAAE 02388012.5.0000.5404; number of the
approved ethical statement: 190409). All participants provided
written informed consent approved by the Ethics Committee.
For the participants younger than 18 years of age, we obtained
informed consent from parents or guardians, as well as from the
participants themselves.

A trained and qualified clinician made the diagnosis of ASD
using the DSM-5 criteria after interviewing the family and
examining each patient. A second investigator confirmed the
diagnosis using the “Current” Scores of the Autism Diagnostic
Interview-Revised (ADI-R) (89). The ADI-R is a clinical
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diagnostic instrument for assessing autism in children and adults
(89). The ADI-R provides a diagnostic algorithm for autism
as described in both the ICD-10 and DSM-IV and is one of
the most important validated ASD measures available in Brazil.
The clinician’s observation provides the opportunity to put the
patient’s behavior into the context of knowledge about other
patients, but information from caregivers provides a broader
context needed in understanding the patient’s day to day behavior
in a wide range of situations, his or her history, as well as family
expectations, resources, and experiences and other important
contextual factors. Thus, patient’s testing and parent interviews
should be viewed as complementary and necessary components
of the diagnostic evaluation after the clinical evaluation and
DSM-5 criteria. All patients were required to have a full-scale IQ
greater than 85, as measured by the Wechsler Abbreviated Scale
of Intelligence.

Exclusion criteria comprised a history of major psychiatric
disorders (e.g., depression, psychosis), seizure, head injury, toxic
exposure, facial dysmorphic features, and the evidence of genetic,
metabolic, or infectious disorders. We also excluded individuals
with secondary autism related to a specific etiology such as
tuberous sclerosis or Fragile X syndrome (all included patients
had a negative investigation of tuberous sclerosis and Fragile X
syndrome).

Thirteen individuals in the ASD group were using a
variety of psychoactive medications. Nine subjects were not
under psychoactive drug treatment. Five subjects were taking
psychostimulants, seven were taking antipsychotics, and six were
taking selective serotonin reuptake inhibitors (SSRIs) for anxiety
and compulsive behaviors. Six of these subjects were using more
than one of the medications listed above. Participants were
instructed not take any medication 1 day before their visit.

Neuroimaging Data Acquisition
We acquired functional and structural MRIs on a 3T scanner
(Phillips, Achieva; Best, The Netherlands) with the following
protocol:

– Resting-state fMRI: 6min echo-planar images (EPIs), 180
dynamics, voxel size = 3 × 3 × 3 mm3, 40 slices, no gap,
FOV = 240 × 240 × 120 mm3, TE = 30ms, TR = 2,000ms,
flip angle = 90◦. For this specific acquisition, we instructed all
individuals to keep their eyes closed, not to fall asleep and try
not to move for the duration of the scan. We used memory
foam pillows placed around the participant’s head to minimize
head movement.

– Structural MRI: Volumetric T1-weighted images acquired on
the sagittal plane, voxel size = 1 × 1 × 1 mm3, no gap,
TR = 7ms, TE = 3.2ms, flip angle = 8◦, FOV = 240 × 240
× 180 mm3. The number of slices varies with the size of the
head, with an average of 160 sagittal slices.

MRI sequences were corrected for gradient non-linearity during
the reconstruction step in the Phillips scanner. We performed a
visual inspection of all structural and functional images to assess
image quality, movement artifacts, and the existence of clinically
relevant abnormalities.

Image Processing and Analysis
Our MRI phenotyping combined group- and individual-
level analysis of GM volume, cortical thickness and folding
complexity, which are three established in vivo markers of brain
morphology and development. There was no difference between
the groups on movement in the scanner for the structural
imaging.

Voxel-Based Morphometry Analysis
We performed VBM with the VBM8/SPM8 toolbox (Wellcome
Department of Cognitive Neurology, http://www.fil.ion.ucl.ac.
uk) for detection of GM volume abnormalities. VBM allows
the automated identification of the whole brain GM differences
between groups (90). Post-processing of the T1-weighted images
included normalization to the same stereotaxic space (MNI-
152 template), modulation and segmentation of the images
into GM, WM and cerebrospinal fluid (CSF). The DARTEL
algorithm was included to increase the accuracy of the alignment
between subjects (91). The resultant GM images were smoothed
with a 10mm FWHM isotropic Gaussian kernel. We excluded
eight outliers (four ASD patients and four controls) detected
in a quality test for image homogeneity and co-registration.
Therefore, the final VBM analysis included 19 ASD patients and
25 controls (all other analyses from here on included the 22
patients and 29 controls).

We used two-sample t-tests (to adjust for multiple
comparisons we considered a p < 0.001, minimum of 30
contiguous voxels) to search for areas of volume reduction
or increase in ASD patients. First, we looked for areas of GM
volume reduction or increase in the ASD group with age as
covariable. As a second approach, we looked at the differences
between groups in the correlation between age and GM volumes
with total IQ as a covariate.

Cortical Thickness, Surface Area, and
Gyrification Analysis With FreeSurfer
We performed cortical reconstruction and volumetric
segmentation with the FreeSurfer image analysis suite (http://
surfer.nmr.mgh.harvard.edu/), which is a well-validated method
already described in previous publications (92–94). A single
filled WM volume was generated for each hemisphere after
intensity normalization, skull stripping, and image segmentation
using a connected components algorithm. A surface tessellation
was generated for each WM volume by fitting a deformable
template. This resulted in a triangular cortical mesh for GM
and WM surfaces in each hemisphere. Cortical thickness,
then, was calculated as the shortest distance between GM and
WM surfaces. Vertex-wise measurements of surface area were
determined as the area of a vertex on the GM surface (5). We
used the FreeSurfer default Gaussian filter of 10mm FWHM to
smooth the surfaces (92, 94).

Another volumetric measure obtained from FreeSurfer is the
local gyrification index (LGI) which was developed by Schaer
et al. (95). The LGI was defined as the ratio between the GM
surface border and an outer border in successive coronal sections
(96). To calculate this LGI, FreeSurfer uses both tessellated outer
and inner contours of the pial surface, which were covered by a
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triangle mesh. For each vertex on the outer surface, a spherical
region of interest is created with a standard size of 25mm radius.
Therefore, the LGI is given as the ratio between the outer area
on the surface and the area comprehended in the real pial surface
(95). Thus, the LGI for each vertex on the pial surface reflects the
amount of cortex buried in its locality. The LGI values obtained
were mapped onto a normalized cortical surface.

We then compared regional cortical thickness, surface area
and gyrification index between autism and control groups using
a general linear model (GLM) with age and total IQ as covariates.
To correct for multiple comparisons, we performed a cluster-
based correction (level of significance at α = 0.01) (97).

ROI Analysis With Data Extracted From
FreeSurfer
ROI measures of cortical thickness, cortical area and LGIs for
33 gyral regions generated by FreeSurfer (98, 99) (https://surfer.
nmr.mgh.harvard.edu/fswiki/FsTutorial/AnatomicalROI#
Groupstatsfiles) were corrected for total intracranial volume
generated by FreeSurfer and exported to SPSS Statistics version
20 (IBM Corp. Released 2011. IBM SPSS Statistics for Windows,
Version 20.0. Armonk, NY: IBM Corp.).

Group differences in gyral-level cortical thickness, cortical
area, and LGIs were analyzed using mixed GLMs with diagnosis
(autism vs. controls) as the between-subjects factor, the 33 gyral
regions from both hemispheres (98, 99) as the within-subjects
factors, also with age and total IQ as covariates. We also ran
the same mixed GLM for subcortical volumes generated by
FreeSurfer. All comparisons between controls and patients were
Bonferroni corrected for multiple comparisons.

Resting-State Functional MRI Processing and

Analysis
To perform the resting-state processing and analysis, we used
the UF2C (User-Friendly Functional Connectivity; https://www.
lniunicamp.com/uf2c) toolbox (100) on a PC running MATLAB
2013a (The MathWorks, Inc., Natick, MA, USA) with SPM8
(Wellcome Trust Centre for Neuroimaging). The UF²C toolbox
(100) pipeline started with a standard image preprocessing
protocol which includes: (i) functional realignment to the
mean image (movement parameters are saved); (ii) structural-
functional co-registration; (iii) structural segmentation into
GM, WM and CSF tissues; (iv) functional and structural
normalization (MNI 152); (v) functional image smoothing
(kernel with double voxel sizes= 6× 6× 6 mm3).

We used the functional and structural T1-weighted images of
all subjects as data input. The GM, WM, and CSF maps were
spatially adjusted (sinc interpolation [or Whittaker–Shannon
interpolation] of third degree) to the functional image, aiming
to obtain functional segmented maps (GM, WM, and CSF). A
multilinear regression was performed including WM and CSF
global signal fluctuations and six movement parameters (three
translational and three rotational) to reduce their confounding
influence on the GM signal (101). Subsequently, a band-pass filter
(0.008–0.1Hz) was applied to remove low-frequency drifts and
artifacts arising from cardiac or respiratory rate (102).

To reduce the chance of false positives/negatives, we
controlled the amount of motion during scanning sessions

using a cumulative value of movement equal or higher than
3mm (size of one voxel) using the first volume as a reference
as the cut-off to exclude subjects from the analysis. One
patient was excluded from the resting-state analyses due to
excessive movements during the fMRI acquisition. There was
no difference between groups in the amount of movement
during the scans: multivariate general linear model, Tukey’s
corrected with maximum displacement on axes X (controls
average 0.77mm ±0.47; patients average 0.78 ± 0.49), Y
(controls average 0.30mm ± 0.1; patients average 0.41 ±

0.22), and Z (controls average 1.15mm ± 0.47; patients
average 1.35 ± 0.51), average framewise displacement (controls
average 0.18mm ± 0.04; patients average 0.24 ± 0.06), and
derivative variance (DVAR) (control average 3.18% SD ±

0.40; patients average 3.22% SD ± 0.36) were added as
variables.

We estimated the cross-correlations using a cubic seed (9 × 9
× 9 mm3) to extract the reference time-series (64). The reference
time-series was correlated with each gray matter voxel creating
the correlation maps. We varied the seed position according to
the analysis described below.

DMN Analysis
The motivation to investigate the connectivity of the whole brain
to and from the DMN came from the fact that: (a) it is a very
stable and reproducible network (103, 104), (b) several studies
have shown alterations in the DMN in ASD, including high
functioning autism (88), and (c) it connects tomost regions of the
brain, and in particular, to regions processing salience, attention,
and negative affect (105). To study the DMN, we positioned the
seed on the PCC (centered on the MNI coordinate −41 13 −29)
because this is one of the most active areas within the DMN, and
it is possible to place a seed region involving both hemispheres
at once (the blue square in Figure 1 illustrates the position of
this seed). We used the standard seed-based FC methodology,
in which the whole averaged time series of the seed region is
used as a reference to calculate the correlation with the GM
voxels. We performed these steps individually generating a 3D
r-score map for each volunteer. We converted all individual r-
score maps resultant from the connectivity analysis to z-scores
(Fisher’s transformation) and performed a spatial smoothing (6
× 6 × 6 mm3 FWHM), aiming to reduce high discrepancies in
neighbor voxels.

Other Seed Positions
Additional to the seed positioned in the PCC (from the DMN),
we tested other four seeds that we judged relevant for ASD
verbal communication and social skills, according to findings
from previous publications (6, 37, 106): (i) bilateral medial
frontal region (MNI 0 49 −3); (ii) left + right amygdala (MNI
−23 −4 −20); (iii) left anterior hippocampus (MNI −24 −13
−20); (iv) left temporal pole (−41 13 −29). We used the same
steps as described for the generation of the 3D r-score DMN
maps to obtain individual 3D statistical maps for the functional
connectivity maps derived from seeds in these four positions. We
did not include seeds in other areas also considered important
for ASD, such as the caudate, to avoid too many comparisons
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and to focus mainly on regions more directly related to emotional
communication and interpersonal interactions.

The functional connectivity preprocessing was developed
aiming to avoid possible confounding effects raised from
structural variations. The functional images were segmented
using the tissues probabilistic maps obtained from the T1WI,
with consistent thresholds. This means that the resultant post-
processed functional images included only voxels with the upper
threshold probability to be GM or GM/WM. Additionally, the
seeds time series extraction applied an algorithm that excludes by
the average time series, voxels with a temporal behavior that is
considered a minor outlier regarding the others. These last steps
exclude from the seed, voxels which are functionally discrepant
(see Supplementary Image 1).

As in the previous section, all individual r-score maps
resultant from the connectivity analysis to z-scores (Fisher’s
transformation) and performed a spatial smoothing (6 × 6 × 6
mm3 FWHM), aiming to reduce high discrepancies in neighbor
voxels. We applied a two-sample t-test (to adjust for multiple
comparisons we considered a p < 0.001, with a minimum of
10 contiguous voxels) with age added as covariate to compare
controls and patient’s groups resulting in two t-maps: a map
showing areas that were more functionally connected in controls
than in patients and a map showing the opposite.

Correlations With the Clinical Phenotype
We explored how the neuroanatomical and functional differences
observed in the ASD group may be related to the clinical
outcome. For that purpose, we conducted multiple correlation
analyses between the ROI measures of cortical thickness, cortical
area, and LGIs for the 33 gyral regions of each hemisphere
generated by FreeSurfer (98, 99) and values from the PCC seed-
based functional connectivity analysis (Resting-state analysis)
vs. the “Current” Scores obtained at the ADI-R (scores in
each of the three content areas: communication and language,
social interaction, and restricted, repetitive behaviors), with age
and total IQ as covariates and with Bonferroni correction for
multiple comparisons using SPSS Statistics version 20 (IBM
Corp. Released 2011. IBM SPSS Statistics for Windows, Version
20.0. Armonk, NY: IBM Corp.).

Analyses of Overlapping of Abnormalities
Across Modalities
We analyzed the number of voxels that coincided with the
resting-state fMRI and structural analyses using co-registration
of statistical maps. This procedure was automated and based on
the maps matrix intersection, providing relative percentages of
overlapping among maps. Maps with distinct resolution were
interpolated using 4th degree B-Spline interpolation.

In addition, we also investigated if the areas of abnormalities
were near or within the same anatomical sub-region by sub-
region by atlas labeling coincidence.

RESULTS

Subject Demographics and Global Brain
Measures
There were no significant differences in age between ASD
(n = 22; mean ± SD: 17.45 ± 3.29) and controls (n = 29;

18.48 ± 2.82, two-sample t-test, p = 0.24). There was no
significant difference in sex ratios between groups (Fisher’s
exact test; p = 0.22). We found no significant differences in
full scale and performance IQ (p = 0.1) but, as expected,
the ASD group displayed significantly lower verbal scale IQ
(p = 0.03; see Table 1). There were also no significant between-
group differences in total brain volume or total surface area
(p > 0.05).

All imaging analyses were covaried for age and total IQ
and corrected for multiple comparisons as described in the
methods.

Voxel-Based Morphometry (VBM) Analysis
VBM showed that individuals with ASD had reduced GM
concentration in the cerebellum bilaterally (right anterior
and posterior lobe and left posterior lobe), bilateral anterior
cingulate, right middle, medial, and superior frontal gyrus, left
fusiform gyrus, parahippocampus, amygdala, paracentral, and
postcentral gyrus and claustrum. Increased GM concentration
was detected in the right cerebellum and brainstem (Figure 2;
Table 2).

In a correlation between age and GM volumes (i.e., areas
with decreased GM volume in patients with increasing
age as compared to controls), we observed that ASD
participants had more age-related GM atrophy than controls
exclusively in the left temporal lobe (temporal pole, middle
temporal gyrus, parahippocampal gyrus, uncus) (p < 0.001,
Supplementary Image 2; Table 3).

TABLE 1 | Summary of clinical data.

Controls (n = 29) ASD (n = 22)

Age

(range)

18.48 ± 2.82 SD

(14–25)

17.45 ± 3.29 SD

(14–25)

Sex 19M:10F 18M:4F

Handedness Rt to Lt 28:1 19:3

Full scale IQ

(range)

105.83 ± 9.64

(90–127)

99.77 ± 9.5

(87–121)

Performance IQ

(range)

107.79 ± 11.91

(86–128)

101.77 ± 12.25

(84–129)

Verbal IQ*

(range)

103.86 ± 9.53

(87–123)

98.95 ± 9.67

(85–124)

ADI-R social

(range)

– 20.50 ± 5.38

(10–29)

ADI-R

communication

(range)

– 13.82 ± 4.36

(6–21)

ADI-R repetitive

behavior

(range)

– 6.50 ± 1.78

(3–10)

ADI-R, Autism Diagnostic Interview-Revised (“Current” Scores); ASD, autism spectrum

disorder. There were no significant differences between the ASD and control groups in

age, full IQ and performance IQ at p< 0.05 (two-tailed). There was no significant difference

in sex ratios between groups (Fisher’s exact test; p = 0.22). *There was a significant

difference in verbal IQ (p = 0.03). The following cutoff scores were used: ADI-R social,

greater than 10; communication, greater than 6; and repetitive behavior, greater than 3.

Rt to Lt, right to left ratio.
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FIGURE 2 | Areas with decreased (cool colormap) and increased (hot colormap) cortical voxel-based morphometry in patients when compared to controls. In shades

of blue (cool colormap), the most significant regions with decreased gray matter (voxel-based morphometry, two sample t-test, p < 0.001, cluster with at least 30

voxels) in patients compared to controls. In the hot colormap (black to yellow), regions of increased gray matter (voxel-based morphometry, two sample t-test

p < 0.001 clusters with at least 30 voxels).

Cortical Thickness and Gyrification Index
Using Freesurfer
Vertex-by-Vertex Analysis
Individuals with ASD presented decreased cortical thickness in
the right hemisphere over the cingulate, precentral, superior
frontal, superior, and inferior parietal regions. In the left
hemisphere, decreased cortical thickness was observed in
the supramarginal, superior parietal, paracentral, precuneus,
superior, and middle frontal and lingual gyrus (the areas of
decreased cortical thickness are shown in red in Figure 3A),

and increased thickness was observed in the postcentral area
(Table 4).

The ASD group had increased cortical surface in the following
areas in the right hemisphere: cingulate, precentral, and superior

frontal regions (which coincided with regions with decreased
cortical thickness), as well as middle frontal, pars triangularis,
supramarginal, precuneus, paracentral, superior, and middle
temporal, and lateral occipital regions. In the left hemisphere,
the ASD group had increased surface areas in the superior and
middle frontal and precuneus (coinciding with the regions with
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TABLE 2 | Areas of reduced gray matter concentration and increased gray matter

concentration by VBM in patients with ASD in comparison with a group of healthy

individuals.

Voxels Area Side T score MNI Coordinates

AREAS OF REDUCED GRAY MATTER vbm CONCENTRATION IN

PATIENTS WITH ASD

1804 Cerebellum, Posterior lobe Right 4.24 33 −55 −53

259 Fusiform gyrus Left 4.58 −44 −54 −8

347 Cerebellum, Anterior lobe Right 4.45 14 −60 −30

1562 Cingulate gyrus Left 4.43 −6 −13 37

Cingulate gyrus Right 4.25 8 −9 42

Paracentral lobule Left 4.25 −8 −9 45

263 Middle frontal gyrus Right 4.42 32 53 −14

642 Claustrum Left 4.12 −38 −10 3

170 Medial frontal gyrus Right 4.06 12 51 1

66 Parahippocampal gyrus Left 3.89 −15 −18 −26

121 Lentiform nucleus Left 3.85 −18 −9 −9

Amygdala Left 3.74 −26 −7 −14

73 Postcentral gyrus Left 3.72 −6 −42 70

77 Cerebellum, Posterior lobe Left 3.69 −30 −58 −48

37 Superior frontal gyrus Right 3.57 12 60 30

32 Cingulate gyrus Right 3.49 18 33 22

AREAS OF INCREASED GRAY MATTER vbm CONCENTRATION IN

PATIENTS WITH ASD

96 Cerebellum, Posterior lobe Right 3.93 45 −45 −38

42 Brainstem Left/right 3.52 −2 −37 −27

TABLE 3 | Areas with significant gray matter VBM reduction influenced by the age

in patients with ASD.

Voxels Area Side T–score MNI Coordinates

378 Middle Temporal Gyrus Left 3.98 −45 6 −36

112 Parahippocampal Left 3.65 −21 −10.5 −34.5

78 Uncus/Amygdala Left 3.88 −33 −10.5 −37.5

67 Superior Temporal

Sulcus/Gyrus

Left 3.52 −63 −34.5 13.5

p < 0.001; cluster with at least 30 voxels. All these four areas had significantly reduced

functional connectivity on the seed analysis (see Table 6).

reduced cortical thickness), as well as in the pre- and post-central,
orbitofrontal, posterior cingulate, inferior parietal, temporal lobe
(superior, middle, and inferior temporal regions) and insular
regions (Figure 3B).

Gyrification was increased in the lingual, precuneus, superior
temporal sulcus and superior parietal areas in the right
hemisphere, and in the precentral and paracentral areas of the
left hemisphere (Figure 3C).

Region of Interest (ROI) Analysis With FreeSurfer Data
When examining gyral-based differences in cortical thickness
(ROI analysis with data extracted from FreeSurfer), which
includes a larger number of voxels in each regionmeasured by the
vertex-by-vertex analysis, we observed increased thickness in the
right posterior cingulate cortex, including the isthmus cingulate

FIGURE 3 | Regions with differences in cortical thickness, surface areas, and

gyrification. The most significant clusters for group analysis using a GLM

vertex-wise approach, between control and autism groups for left and right

hemispheres. In red are areas of decreased and in blue are areas of increased

values in patients with autism. All results were corrected for multiple

comparisons (Cluster-based correction). (A) ASD presented decreased (in red)

cortical thickness in the right cingulate, precentral, superior frontal, superior,

and inferior parietal regions. In the left hemisphere, decreased cortical

thickness was observed in the supramarginal, superior parietal, paracentral,

precuneus, superior, and middle frontal and lingual gyrus, and increased

thickness in the postcentral area. (B) Increased surface areas in the superior

and middle frontal and precuneus (coinciding with the regions with reduced

cortical thickness), as well as in the pre- and post-central, orbitofrontal,

posterior cingulate, inferior parietal, temporal lobe (superior, middle, inferior

temporal), and insular regions in ASD. (C) Increased gyrification in the lingual,

precuneus, superior temporal sulcus, and superior parietal areas in the right

hemisphere and the precentral and paracentral areas of the left hemisphere.

(which is a narrow cortical area that connects the posterior end
of the cingulate gyrus with the parahippocampal gyrus), and in
the right and left lateral orbitofrontal cortex as well as decreased
cortical thickness in the left paracentral and posterior cingulate
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TABLE 4 | Areas of decreased cortical thickness by FreeSurfer vertex-wise analysis in patients with ASD.

Cluster p-value X Y Z Vertex Anatomical region Macro anatomical region

MNI Coordinates

LEFT HEMISPHERE

1 0.001 −36.5 −43.67 9.21 58690 Inf. Supramarginal G Supramarginal

2 <0.001 −21.47 −68.69 12.95 146808 Superior Temp S Superior temporal sulcus

3 0.001 −13.68 −18.6 52.44 41967 Postcentral G Postcentral

4 0.004 −0.05 −53.7 47.49 81380 Intraparietal S Superior parietal

5 0.004 −13.64 −88.19 −5.07 101248 Middle occipital G Occipital

6 0.001 8.59 11.93 64.19 44865 Sup. part of precentral S Precentral

7 0.002 −23.88 −69.23 −38.08 69991 Inferior temporal S Temporal

8 0.003 16.3 −65.67 53.17 53854 Superior parietal G Superior parietal

9 0.001 28.43 −65.42 20.57 64736 Precuneus G Precuneus

10 0.001 28.96 −12.24 53.54 26765 Sup. Frontal G Paracentral

11 0.002 27.57 42.06 56.47 152760 Sup. Frontal G Superior frontal

12 0.003 −6.05 96.89 −21.68 58366 Middle frontal G Rostral middle frontal

RIGHT HEMISPHERE

1 0.004 8.66 19.20 50.53 29786 Sup. part of precentral S Precentral

2 0.003 20.9 72.25 −1.21 4081 Sup. frontal G Superior frontal

3 0.002 −10.97 7.58 66.56 5767 Precentral G Precentral

4 0.005 −9.49 89.20 −46.04 119767 Orbital G Pars orbitalis

5 <0.001 −30.83 17.08 42.62 108535 Postcentral G Postcentral

6 0.001 −26.24 −73.11 12.69 45913 Sup. temporal S Superior Temporal sulcus

7 0.001 −26.08 28.49 63.48 144822 Central S Precentral

Level of significance equal to 0.01. All results were corrected for multiple comparisons (cluster-based correction). S, sulcus; G, gyrus.

and in the right temporal pole in the ASD group compared to
controls (Supplementary Image 3; Table 5).

The ROI analysis showed significantly increased cortical
surface area only in the right anterior cingulate (p = 0.019,
multivariate analysis with Bonferroni correction).

We found also increased gyrification index in the postcentral,
precentral, superior parietal, and supramarginal regions of both
hemispheres, in the right frontopolar and middle frontal regions,
and in the left paracentral region (Table 6).

Subcortical Volumes
We found no differences between groups in the volumes of the
amygdala, hippocampus, thalamus, or caudate.

Functional Connectivity
We first examined the FC patterns of the PCC, which is part of
the DMN. Relative to the control group, ASD patients showed
reduced FC with the PCC (i.e., between the posterior part of the
DMN and other areas of the brain) which was more pronounced
in the left hemisphere, including the middle temporal gyrus,
inferior, and superior frontal gyrus, and anterior and posterior
cingulate. Decreased connectivity was also observed in other
regions outside the DMN: the right cerebellum, cuneus, and
caudate (Figure 4). Increased FC in areas of the DMN occurred
only in the right middle frontal gyrus. Outside the DMN regions,
increased connectivity was present in the left caudate (Figure 4).

The analysis of the additional seed positions as described
in Methods, showed decreased FC in ASD patients between
the left amygdala and right claustrum, inferior parietal lobule,
postcentral gyrus, cingulate gyrus, precentral gyrus, inferior
frontal gyrus, middle frontal gyrus, and left postcentral gyrus;
between the left anterior frontal region and the right superior
frontal gyrus; between the left anterior hippocampus and bilateral
temporal, right insula, and left precentral regions; between
the left temporal pole and the left temporal and parietal,
right temporal, frontal, parietal, and occipital regions (Figure 4;
Table 7). Increased FC was observed between left amygdala and
right superior frontal gyrus, and between the middle frontal
regions and bilateral pre- and postcentral gyrus (Figure 4;
Table 7).

Imaging and Clinical Scores
Cortical Thickness and Symptomatology
Significant correlation (corrected for age and total IQ) was found
in the right pars triangularis (part of the lateralized fronto-
parietal components of the DMN) (73), where reduced cortical
thickness was associated with more impaired scores in the social
domain of the Autism Diagnostic Interview-Revised (ADI-R)
(r = −0.63; p < 0.001) (Figure 5). A significant negative
correlation (r=−0.52; p= 0.02) was also found between cortical
thickness in the left precentral and superior frontal regions (areas
of the executive control and sensorimotor component of the
DMN) (73) with communication scores on the ADI-R (Figure 6).
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TABLE 5 | Spatially distributed patterns of differences in cortical thickness in

individuals with Autism spectrum disorder compared with controls—ROI analysis.

Lobe Region Side Centroid MNI coordinates

x y z

ASD>Controls

Frontal Lateral orbito-frontal L 28.96 −12.24 53.54

Lateral orbito-frontal R 21 38 −19

Limbic Posterior cingulate

cortex/Isthmus cingulate

R 9 −39 14

ASD<Controls

Temporal Temporal pole R 42 21 −35

Limbic Posterior cingulate L −7 −41 30

Other Paracentral L −8 −32 69

L, left; R, right. p < 0.05 (multivariate analysis with Bonferroni correction) for all the areas

presented in the table.

TABLE 6 | Spatially distributed patterns of differences in the gyrification index in

individuals with Autism Spectrum Disorder compared with controls—ROI analysis.

Lobe Region Side Centroid MNI coordinates

x y z

ASD>Controls

Frontal Frontopolar R 21 29 −23

Middle frontal R 63 8 37

Parietal Superior parietal L −28.43 −65.42 20.57

Superior parietal R 28 −63 52

Supramarginal L −36.5 −43.67 9.21

Supramarginal R 42 −38 32

Paracentral L −8 −32 69

Central Postcentral L −13.68 −18.60 52.44

Postcentral R −30.83 17.08 42.62

Precentral L 8.59 11.93 64.19

Precentral R −10.97 7.58 66.56

L, left; R, right. p<0.05 (multivariate analysis with Bonferroni correction) for all the areas

presented in the table.

Reduced cortical thickness in these areas was associated with
more severe scores on the ADI-R communication domain.
Thicker cortices in the right temporal pole (r = 0.56; p = 0.01)
and posterior cingulate (r = 0.50; p = 0.03) were associated with
greater communication impairment as measured by the ADI-R
communication domain (Figure 6). We found no correlations
between the scores on the restrictive and repetitive behaviors
(RRIB) domain of ADI-R and structural images.

Functional Connectivity and Symptomatology
There was a trend for significant association (that did not survive
Bonferroni correction) between stronger connectivity indexes
from PCC to the right temporal pole (p = 0.09) and left anterior
hippocampus (p = 0.10) with worse symptom severity in the
social domain on the ADI-R, controlling for age and total IQ. We

found no correlations between the scores on the RRIB domain of
ADI-R and FC.

Overlap of Abnormalities Across Modalities
The percentage of coincident maximum voxels abnormalities
between resting-state FC and abnormal gray matter on VBM
was <3%. However, we found a close localization of the FC
abnormalities andGM reduction onVBM and changes in cortical
thickness in FreeSurfer ROI analysis (Figure 7) and vertex-
wise analysis (Figure 8) in cingulate gyri of both hemispheres,
left parahippocampal gyrus, postcentral gyrus, amygdala, and
claustrum; right middle and superior frontal gyri, temporal pole,
and cerebellum (Table 8).

Note that the lack of correspondence between the maps
presented in Figures 2, 3 and the results in Figures 7, 8, is
because in Figures 2, 3 the maps show the most statistically
significant clusters of abnormalities while in Figures 7, 8 the
areas indicated do not correspond to the maximum voxel
statistical location, but rather the sub-anatomical regions with
significant differences (therefore, much larger than in Figures 2,
3).

GM atrophy determined by VBM showed a closer anatomical
relationship with reduced FC than surface measures by
FreeSurfer. Interestingly, areas with decreased GM volume
(middle and superior temporal gyri, parahippocampus, and
amygdala/uncus, all in the left hemisphere) that correlated with
increasing age in patients had reduced FC (see Table 3).

DISCUSSION

The diversity of neuroimaging results are likely explained by the
heterogeneous nature of ASD, both among the subgroups within
the spectrum, the variable comorbidities and on an individual
level across the lifespan (15, 29, 35, 43, 44, 50, 57–60, 63, 67,
84–86, 107, 135). The individual differences in functional and
structural organization, the idiosyncratic ASD connectivity and
cortical atrophy maps, which change over the maturation of
central nervous system, are themselves the core features of ASD,
although its pathophysiological basis remains undetermined
(13, 15). These findings underscore the need to address both
age and severity when investigating functional and structural
neuroimaging in ASD (15). Every imaging technique, both
regarding acquisition and post-processing have their limitations
and advantages and are in constant improvement of the quality of
acquisition (better hardware) and algorithms of post-processing.
These facts make it difficult to compare studies over the years.
The use of multimodal imaging in a single study, in a similar age
range and severity of symptoms, may provide a better description
of the altered brain connectivity and structural changes, and its
relationship with behavioral changes, than one imaging method
alone. However, several multimodal studies have been performed
with some contradictory findings, which by itself justify further
studies (6, 15, 29, 35, 37, 43, 44, 50, 57–60, 63, 67, 84–86, 107,
135).

Different frommost studies that focused on a single technique
(27, 28, 108–112) or low functioning autism (113), or using a
heterogeneous group of patients (114), our multimodal imaging
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FIGURE 4 | Areas with decreased (cool colormap) and increased (hot colormap) functional connectivity measurements in patients when compared to controls. In

shades of blue (cool colormap), regions with maximum decreased functional connectivity (union of all seeds results, two sample t-test p < 0.001 clusters with at least

10 voxels) in patients compared to controls. In the hot colormap (black to yellow), regions of increased functional connectivity (two sample t-test, p < 0.001, cluster

with at least 10 voxels).

investigation showed abnormalities across brain measures in
young adults and adolescents with high-functioning autism. We
showed reduced cortical thickness, increased cortical surface
and increased gyrification, as well as abnormal functional
connectivity, mostly co-localized in areas that are important hubs
of the default mode network and other regions frequently linked
to socio-emotional processing, such as cingulum, amygdala,
insula, and temporal pole. Overall, our findings suggest aberrant
functional connectivity involving a network of altered cortical
structure.

We combined structural and functional connectivity analyses
to detect complex brain abnormalities and to investigate how
these alterations are related to each other and symptom
severity in a group of individuals with high functioning
autism. We observed that patients with ASD had decreased FC
compared to controls between the PCC and anterior medial
prefrontal cortex and left superior temporal cortex (temporal
pole), both regions part of the DMN. Patients also exhibited
greater diffuse subtle GM atrophy related to increasing age
(in the VBM analysis), more pronounced in left temporal
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TABLE 7 | Areas of significantly decreased and increased connectivity in patients with ASD in comparison with a group of healthy individuals.

Seed region Voxels Area Side T score MNI Coordinates

AREAS OF DECREASED FUNCTIONAL CONNECTIVITY IN PATIENTS WITH ASD

PCC* 47 Middle temporal gyrus Left 4.66 −54 5 −26

PCC 56 Cuneus Right 4.64 15 −70 25

PCC 83 Inferior frontal gyrus Left 4.49 −39 17 −26

PCC 35 Posterior cingulate Left 4.25 −6 −55 28

PCC 33 Superior frontal gyrus Left 4.01 −21 59 25

PCC 20 Caudate Right 3.82 3 2 −2

PCC 14 Cerebellum, Posterior lobe Right 3.70 45 −37 −44

PCC 12 Anterior cingulate Left 3.50 −6 44 13

Left amygdala 44 Insula Right 4.47 36 2 13

Left amygdala Claustrum Right 3.57 27 8 19

Left amygdala 172 Inferior parietal lobule Right 4.30 53 −31 22

Left amygdala Postcentral gyrus Right 3.83 53 −19 13

Left amygdala 44 Cingulate gyrus Right 4.20 30 −34 40

Left amygdala 33 Precentral gyrus Right 4.08 36 −4 55

Left amygdala 21 Inferior frontal gyrus Right 3.89 54 11 25

Left Amygdala 44 Middle frontal gyrus Right 3.88 3 −16 52

Left Amygdala 12 Postcentral gyrus Left 3.44 −57 −15 43

Left ant. frontal 15 Superior frontal gyrus Right 3.61 9 41 55

Left ant. hippocampus 84 Superior temporal gyrus Left 4.20 −54 −28 4

Left ant. hippocampus Transverse temporal gyrus Left 4.03 −54 −19 10

Left ant. hippocampus 54 Superior temporal gyrus Right 4.08 66 −19 10

Anterior hippocampus 33 Insula Right 3.92 36 −28 13

Left ant. hippocampus 12 Precentral gyrus Left 3.66 −54 −1 10

Left ant. hippocampus 10 Inferior frontal gyrus Right 3.51 66 14 28

Left temporal pole 50 Postcentral gyrus Left 4.31 −27 −28 67

Left temporal pole Inferior parietal lobule Left 3.45 −30 −34 58

Left temporal pole 34 Middle temporal gyrus Left 4.25 −57 −10 −11

Left temporal pole 34 Cerebellum, Anterior lobe Right 4.25 30 −40 −20

Left temporal pole Parahippocampal gyrus Right 3.49 27 −25 −20

Left temporal pole 28 Medial frontal gyrus Right 4.25 12 −19 58

Left temporal pole 47 Superior temporal gyrus Left 4.14 −48 8 −32

Left temporal pole 68 Postcentral gyrus Right 4.00 63 −10 31

Left temporal pole 22 Superior temporal gyrus Right 3.84 42 17 −38

Left temporal pole 72 Posterior cingulate Right 3.83 3 −52 22

Left temporal pole 28 Cuneus Right 3.83 21 −76 28

Left temporal pole Precuneus Right 3.57 24 −67 25

Left temporal pole 20 Middle frontal gyrus Right 3.74 63 8 37

Left temporal pole 11 Postcentral gyrus Left 3.69 −54 −4 13

AREAS OF SIGNIFICANTLY INCREASED FUNCTIONAL CONNECTIVITY IN PATIENTS WITH ASD

PCC 22 Caudate Left 4.13 −18 −16 25

PCC 10 Middle frontal gyrus Right 3.60 45 8 61

Left amygdala 28 Superior frontal gyrus Right 4.78 15 53 28

Bil. medial frontal region 74 Postcentral gyrus Right 4.04 63 −7 13

Bil. medial frontal region Precentral gyrus Right 3.51 54 −4 31

Bil. medial frontal region 32 Precentral gyrus Left 3.40 −51 −10 25

Bil. medial frontal region Postcentral Gyrus Left 3.29 −60 −7 22

*PCC, Posterior Cingulate Cortex bilaterally (posterior aspect of the DMN). Ant, anterior; Bil, Bilateral; All regions in the table had p < 0.001 (two-sample t-test), cluster with at least 10

voxels.
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FIGURE 5 | Reduced cortical thickness (from FreeSurfer ROI analysis) in the

right inferior frontal lobe correlated with higher social impairment. In the ASD

group reduced cortical thickness in the right pars triangularis was associated

with greater social impairment as measured by the ADI-R (Autism Diagnostic

Interview-Revised) social domain.

regions (temporal pole, middle temporal gyrus, parahippocampal
gyrus, and uncus). In addition, we showed areas of abnormal
cortical structure, combining thinning, and thickening, increased
surface area and gyrification index in different areas of the
brain, involving frontal, parietal, and temporal areas that
had abnormal FC. Overall these structural and functional
abnormalities involved areas linked to: (a) visual processing
and analysis of logical order of events (lingual gyrus), (b)
encoding visual memories (temporal and posterior cingulate
areas), (c) areas related to language, memory and emotion
processing (temporal pole, middle temporal, parahippocampus,
and uncus), (d) areas of the executive control component of the
DMN, which has been associated with performance of executive
functional tasks (anterior and posterior cingulate cortex, left
middle temporal, inferior, and superior frontal gyrus), (e) areas
of the sensorimotor component of the DMN (anteromedial
prefrontal cortex and bilateral pre- and postcentral gyrus),
(f) areas of the lateralized fronto-parietal components of the
DMN related to executive and language functions (reduced
cortical thickness in left frontal regions), and (g) areas of
the auditory component of the DMN (temporal and parietal
areas) (73, 115). In addition, more severe scores on the
communication domain of the ADI-R were associated with
increased cortical thickness in the right temporal and posterior
cingulate gyrus, and there was a trend for worse symptoms in
the social domain of the ADI-R to be associated with stronger
connectivity between posterior cingulate cortices (DMN) and
temporal regions (areas of the Auditory component of the
DMN) (71–73).

Our findings taken together indicate that young adults and
adolescents with high functioning autism present complex, subtle
morphological cortical changes that may reflect different stages
of neurogenesis, combined with aberrant connectivity within and
outside the DMN.

FIGURE 6 | Correlations between cortical thickness (from FreeSurfer ROI

analysis) and communication scores on the ADI-R. In the ASD group thicker

cortices in the right temporal pole and right posterior cingulated were positively

associated with greater communication impairment as measured by the ADI-R

Autism Diagnostic Interview-Revised) social domain (Top), while thinner

cortices in the left precentral and superior frontal regions correlated with

greater communication impairment as in the ADI-R social domain (Bottom).

Structural Abnormalities
To date, neuroimaging studies in ASD have mainly investigated
either cortical volume or cortical thickness in isolation, and
combined measures of surface area and gyrification with
functional data remain scarce (4). Studies in adults with ASD
typically show cortical thickening of the frontal cortex (6, 116,
117), whereas the cortical thickness of the temporal lobe has been
reported as increased or decreased in patients with ASD (118).

Abnormal brain structure has been reported with great
variability in individuals with ASD, both enlargement, and
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FIGURE 7 | Illustrative figure showing anatomical localization of abnormalities in functional connectivity (in red), voxel-based morphometry (VBM, in blue), and

FreeSurfer ROI analysis of gyrification index (in yellow), cortical thickness (in green), and surface area (in light blue). The areas indicated in this figure do not correspond

to the maximum voxel statistical location, but rather the sub anatomical regions with significant differences in patients with high functioning autism compared to

controls. See Tables 2–7 for the centroid MNI coordinates of maximal abnormalities and Table 8 for a summary of the location of increased and decreased changes

as compared to controls.

reduction of the GM (40, 46, 119). However, this variability
is probably due to the highly heterogeneous age of the
patients (from children to adults) and various phenotypes
(5, 120). It is believed that in ASD there is a disruption
of the time course of brain development and this could
be the explanation for the detection of specific increased
areas in children during an early phase of development and
reduced areas (atrophy) in adults (40). Our findings, which
included only ASD individuals with total IQ > 85, confirm
this theory and add further evidence about specific types of
abnormal cortical shape and volume in association to functional
abnormalities. Another key aspect of our results is that we
used multimodal imaging measures in the same patients to
certify that the abnormalities are present across brain measures,

different from most studies so far that focused on a single
technique.

Volumetric studies of ASD in earlier MRI studies showed
increased volumes in left frontal and temporal lobes across
the 2- to the 11-year-age range (121) and in the dorsolateral
prefrontal and medial frontal cortex in patients aged 2–5 years
(122). A meta-analysis showed that brain size in autism was
slightly reduced at birth, increased within the first year of
life, and within normal range by adulthood (123). However, it
is difficult to compare these studies since the methodologies
for cortical volume measurements varied significantly (manual
volumetry, VBMwith different versions of SPM software, cortical
thickness). Also, earlier studies used images with lower MRI
field strength (1.5 T) as compared to the higher fields (3T MRI)
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FIGURE 8 | Illustrative figure showing anatomical localization of abnormalities of FreeSurfer vertex-wise analyses of surface area (in red), gyrification index (in green),

and cortical thickness (in blue). The areas indicated in this figure do not correspond to the maximum voxel statistical location, but rather the sub anatomical regions

with significant differences in patients with high functioning autism compared to controls. See Figure 3 and Table 4 for the location of maximal abnormalities and

Table 8 for a summary of the location of increased and decreased changes as compared to controls.

and higher resolution images used in more recent studies. More
recent versions of SPM software (http://www.fil.ion.ucl.ac.uk/
spm/software/) have substantial algorithmic enhancements with
more sophisticated registration models compared to previous
versions and thus, making it difficult to compare earlier studies
with more recent ones (45, 124). These aspects and the fact that
our patient’s ages ranged from 14 to 25 years (mean: 17.4 years)
may explain why our VBM analyses (excluding the cerebellum
and brainstem) did not show areas of increase GM and showed
GM atrophy mainly in temporal and frontal areas.

VBM and FreeSurfer cortical measures use quite different
methods and are expected to yield different results as we
showed here. Our intention was not to compare these two
methods, but rather to expand the search for structural
changes in these patients in a multimodal way. We believe
that these two techniques added information and were not
redundant. VBM performs voxel-wise statistical analysis on
smoothed (modulated) normalized segments (90, 124). VBM
is a statistical parametric mapping of segmented tissue density
and compares the local concentration of gray matter between
two groups of subjects (90, 124). The interpretation of gray

matter concentration or density depends on the preprocessing
steps used (90, 124). However, VBM is a whole-brain unbiased,
objective technique, with very reproducible results in similar
circumstances (of image quality and software version), providing
great sensitivity for localizing small-scale, regional differences
in gray matter concentration (90, 124, 125). In addition, more
rigorous methods for correction for multiple comparisons will
reduce the false positives but also reduce the pickup rate of true
positives.

FreeSurfer uses the cortical geometry to do inter-subject
registration, which appears to have a much better matching of
homologous cortical regions than other volumetric techniques.
FreeSurfer allows measuring the two components of volume
separately (thickness and surface area). These two measures are
not similar and do not necessarily change in parallel as will be
discussed below (37). FreeSurfer uses the white matter surface
geometry for registration, which is completely independent to
GM atrophy; therefore, GM alterations will not result in different
registrations (92–94, 99). Therefore, one should not expect a total
overlap between findings with VBM and FreeSurfer in the same
group of subjects, as it was in this study.
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Using FreeSurfer, we found significant differences in cortical
thickness of ASD patients over frontal regions (superior, middle
frontal regions, pars orbitalis) and temporal lobes (right temporal
pole). This finding is consistent with previous reports suggesting
that people with ASD have differences in frontal lobe neuronal
integrity, function, anatomy, and connectivity. Furthermore, it
has been suggested that individuals with ASD have a delay
in frontal lobe maturation and that abnormalities in frontal
lobe development may underlie some of the social impairments
reported in people with ASD (39, 122, 126), which was
corroborated by our results.

Cortical surface areas are usually, but not necessarily,
increased (as illustrated in Table 7) in regions with reduced
cortical thickness, which is biologically explained by the
consequent increase in sulcation of the cortical mantle (i.e.,
with atrophy the sulci became deeper, thus increasing the
area) (37). Therefore, explaining our finding of increased
cortical surface areas coinciding with the regions with reduced
cortical thickness described above, as well as in the pre-
and post-central, orbitofrontal, posterior cingulate, inferior
parietal, temporal lobes, and insular regions. However, cortical
thickness and surface area measurements represent distinct
aspects of the cortical architecture and may represent different
early neurodevelopmental pathologies (37, 127, 128). Cortical
thickness measurements appear to reflect the number of neurons
within cortical minicolumns (mainly related to intermediate
progenitor cells), while cortical surface area measurements may
be related to the number of cortical minicolumns (mainly
related to radial unit progenitor cells), according to the
radial unit hypothesis (5, 37, 117, 127–129). Our findings
suggest that, in addition to the well-documented early brain
overgrowth in ASD, there is probably an arrested growth
during late childhood, followed by accelerated regionally
specific thinning during adolescence and young adulthood.
More specifically, the present results complement earlier
findings of thinner cortices in adults with ASD (5, 130–
132).

We found increased gyrification in temporal, parietal, and
frontal areas in ASD, supporting previous studies that indicate
that these are the core areas in ASD and are probably related
to abnormalities in visual-spatial attention, selective attention,
and visual-motor learning as well as in the mirror neuron
system (133, 134). Gyrification represents the amount of cortex
within sulcal folds in the surrounding area of measurement
and is computed as the ratio between the surface of the outer
surface of the brain and the surface of the corresponding
area on the GM (pial) surface (37, 95, 129), which reflects
an early developing process. It is believed that the brain in
ASD goes through a stage of accelerated expansion during
early childhood, and consequently, ASD patients are expected
to have an increase in cortical folding to accommodate an
increasing brain surface into the skull (37, 127). A closer
inspection of Figure 3, reveals that the areas (representing the
points of maximal statistical scores) of reduced cortical thickness,
increased cortical surface areas and increased gyrification areas
have a similar distribution in our group of young adults and
adolescents with ASD.

Abnormalities found in our analysis could be implicated in the
core behaviors often impaired in ASD: social and communication
(medial frontal region, anterior cingulate) and repetitive
and stereotyped behavior (medial and lateral orbitofrontal
region).

Resting-State Functional Connectivity
Findings from most studies have continued to support the
broad notion that, overall, individuals with ASD have poorer
connectivity in regions spanning long distances in the brain
compared to controls, whereas connectivity seems to be increased
in local circuits (6, 47). However, findings amongst studies on
FC in ASD do not overlap [some with increased (106) and
others with decreased (51, 86, 135) connectivity in similar areas],
in part due to different techniques used (i.e., seed analyses
of predetermined areas, region of interest analyses, etc.) and
heterogeneity of patient groups and age range, as occurs with
the structural data discussed above (53, 68, 107). Others have
reported decreased connectivity of the DMN in adolescents and
adult patients with ASD (14, 51, 52, 54, 87), associated with more
severe symptoms (135, 136). We found increased connectivity in
the ASD group in the right middle frontal gyrus, and a trend for
an association between the right temporal pole and left anterior
hippocampus FC strength andADI-R social score, indicating that
worse symptom severity was associated with more connectivity
in this region. Overall, our results are similar to those observed
by Supekar et al. (106) about brain hyperconnectivity predicting
symptom severity in ASD. Individuals with greater FC showed
more severe social deficits, and they argue that this brain-
behavior relationship suggests that aberrant FC may underlie
social deficits, which are some of the hallmarks of ASD (28, 106).
Our results add to the growing evidence that regional DMN
under-connectivity may underlie the pathogenesis of patients’
clinical deficits and go further by showing that seed-based
analysis reveals the reduction in connectivity also in areas outside
the DMN (amygdala, insula, and temporal pole), supporting that
ASD is not only a condition of under- or hyper-connectivity but
also of aberrant FC (13, 14, 27, 29, 35, 37, 54–56, 69, 137–140).

The Role of the Temporal Pole
We found significant VBM cortical atrophy in ASD individuals
when considering age, only in the left temporal lobe, including
the left temporal pole. We also observed decreased FC in
individuals with ASD between the left temporal pole and the
remainder of left temporal and parietal regions. This region
lies between the orbital frontal cortex and the amygdala,
two of the region’s most frequently linked to socio-emotional
processing. The temporal pole is highly connected with the
amygdala, hippocampus, parahippocampal gyrus, cingulate
gyrus, orbitofrontal cortex, and the insula (141, 142). In addition,
the temporal pole cortex extends topographically to the insula
(ventrally) and the entorhinal cortex (medial-inferiorly) (142).
The role of the temporal pole is key for various social and
emotional functions, including mentalizing (theory of mind)
(56, 66, 141, 143, 144). The impairment of theory of mind
abilities is one of the most popular hypotheses about ASD (56, 66,
86, 144–146). Some studies using theory of mind tasks showed
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temporal pole activation (147–150), which give support to our
interpretation of the temporal pole as a key node in ASD and
social dysfunctions.

Overlap Between Functional and Structural
Findings
Our findings give further evidence that ASD is a network
disorder, as revealed by the structural and functional
abnormalities (112, 151). In a similar vein, Honey et al.
observed that, although resting-state FC is variable and is often
present between regions without direct structural linkage, its
strength, persistence, and spatial statistics are nevertheless
constrained by the large-scale anatomical structure of the human
cerebral cortex (152).

We found no complete voxel overlap of areas of maximal GM
reduction and areas of decreased connectivity in our patients,
which is expected due to the different anatomical resolution
between structural and functional images (original voxel sizes of
1 vs. 3 mm3, which became even more discrepant after spatial
smoothing) and differences in post processing and analyses.
However, close localization of the abnormalities was observed
in cingulate gyri of both hemispheres, left parahippocampal
gyrus, postcentral gyrus, amygdala, and claustrum, right middle,
and superior frontal gyri, temporal pole, and cerebellum.
Interestingly, GM atrophy determined by VBM showed a closer
anatomical relationship with reduced FC than surface measures
by FreeSurfer; particularly in areas with GM reduction in the
left hemisphere that correlated with increasing age in ASD
patients (middle and superior temporal gyri, parahippocampus,
and amygdala/uncus). These differences may be explained by the
distinct methods for quantification used by VBM and FreeSurfer,
whichmay also reflect different biological substrates between GM
volume vs. cortical thinning and cortical areas as discussed above.
Nevertheless, our results support the notion that brain alterations
in high functioning autism, although subtle and diffuse, converge
into areas of structural and functional changes of higher order
multisensory association cortex (58). Also, the lack of close
correlation between cortical thickness and FC patterns [as also
found in other diseases (100)] indicate that changes in cortical
thickness or GM atrophy that are not severe enough to be
seen on routine MRIs, do not impact directly on FC patterns.
This observation is in line with studies of brain networks
showing that structural and functional network communities
rarely overlap; i.e., functional modules are not always directly
connected anatomically [for review see (153)].

LIMITATIONS

Limitations of our study include the potential effects of
medication, a relatively small sample size that may have reduced
statistical power and lack of information about puberty stages.
However, the statistical significance of the results after correcting
for multiple comparisons was remarkable. Our results cannot
be generalized to younger and lower-functioning individuals
with ASD since we studied a group that included only high
functioning autism.

CONCLUSION

We found cortical thinning and diffuse GM reduction, more
pronounced in the left hemisphere, as well as decreased FC
between the left hemisphere and PCC (posterior aspect of
the DMN) in patients with high-functioning autism. Reduced
cortical thickness in the right inferior frontal lobe correlated
with higher social impairment, while thinner cortices in the left
precentral and superior frontal regions and thicker cortices in
the right temporal pole and posterior cingulated correlated with
greater communication impairment.

The combination of these abnormalities might represent a
neurobiological pattern of this end of the spectrum of autism
disorders, indicating a network disorder and could help explain
some of the core behaviors in ASD. We also believe that new
techniques, such as cortical thickness measurements and surface
morphometry could help to elucidate in more detail the patterns
of abnormalities related to age and the neurodevelopmental
process.
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Supplementary Image 1 | Z-scored average connectivity maps of all seeds from

both groups. With (a) we indicate controls’ average maps, with (b), patients’

average maps. In (1), DMN maps, with seed on the posterior cingulated cortex; in

(2) the seeds in the left temporal pole; in (3) with the seed on the left anterior

hippocampus; in (4), with the seed on the left amygdala; in (5), the seed on the
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interhemispheric medial frontal gyrus. The slices in (1), (2), and (5) were MNI axial:

−32, −12, 18, 48, 78, and in (3) and (4) were MNI axial: −26, −12, 18, 48, 78.

Supplementary Image 2 | Areas of gray matter atrophy in voxel-based

morphometry influenced by the age in patients with ASD. Gray matter atrophy

determined by voxel-based morphometry, p < 0.001 clusters with at least 30

voxels.

Supplementary Image 3 | Inflated surface maps showing areas with increased

and decrease cortical thickness in ASD compared to controls using ROI analysis.

There was an increased thickness in right posterior cingulate (red), and in the right

(green) and left lateral orbitofrontal cortex (blue) as well as decreased cortical

thickness in the left paracentral (pink), posterior cingulate (yellow), and in the right

temporal pole (orange) in the ASD group compared to controls.
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