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Myelin sensitive MRI techniques, such as diffusion tensor imaging and myelin water

imaging, have previously been used to reveal changes in myelin after sports-related

concussions. What is not clear from these studies, however, is how myelin is affected:

whether it becomes degraded and possibly removed, or whether the myelin sheath

loosens and becomes “decompacted”. Previously, our team revealed myelin specific

changes in ice hockey players 2 weeks post-concussion using myelin water imaging.

In that study, 45 subjects underwent a pre-season baseline scan, 11 of which sustained

a concussion during play and received follow-up scans: eight were scanned within

3 days, 10 were scanned at 14 days, and nine were scanned at 60 days. In the

current retrospective analysis, we used quantitative susceptibility mapping, along with

the diffusion tensor imaging measures axial diffusivity and radial diffusivity, to investigate

this myelin disruption. If sports-related concussive hits lead to myelin fragmentation

in regions of lowered MWF, this should result in a measurable increase in magnetic

susceptibility, due to the anisotropic myelin fragmenting into isotropic myelin debris,

and the diamagnetic myelin tissue being removed, while no such changes should be

expected if the myelin sheath simply loosens and becomes decompacted. An increase in

radial diffusivity would likewise reveal myelin fragmentation, asmyelin sheaths block water

diffusion out of the axon, with little to no changes expected for myelin sheath loosening.

Statistical analysis of the same voxels-of-interest that were found to have reduced

myelin water fraction 2 weeks post-concussion, revealed no statistically significant

changes in magnetic susceptibility, axial diffusivity, or radial diffusivity at any time-point

post-concussion. This suggests that myelin water fraction changes are likely due to a

loosening of the myelin sheath structure, as opposed to fragmentation and removal of

myelin debris.
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INTRODUCTION

Concussions are the most common form of traumatic brain
damage, with between 1.6 and 3.8 million injuries per year in
the United States alone (1). Despite how common they are,
the underlying pathophysiological changes that take place after
injury are poorly understood. One reason for this may be due
to the lack of detectable changes by conventional magnetic
resonance imaging (MRI). Current clinical neuroimaging
techniques are unable to reliably detect, let alone quantify, signs
of concussion, resulting in an inability to predict who will recover
completely, who will have long-term impairments, or when it is
safe to return to play in contact sports.

Recent advances in neuroimaging have providedmore specific
information on the sequelae of concussion, at least at a group
level. Diffusion MRI, such as diffusion weighted imaging,
diffusion tensor imaging, and diffusion kurtosis imaging, looks
at the restriction of water diffusion to measure microstructural
changes. These methods hold promise in traumatic brain injury
(TBI) research due their sensitivity to microstructural changes in
white matter (WM), such as axonal injury using axial diffusivity
or myelin damage using radial diffusivity (2–4), but often times
lack tissue specificity.

Myelin water imaging is another advanced MRI method,
and is able to quantify metrics associated with changes specific
to myelin, such as myelin water fraction (MWF) (5). In a
prospective study in a cohort of 45 ice hockey players, we
previously showed that the MWF is significantly reduced,
upwards of 10% in some regions, 2 weeks after concussion
compared to pre-injury baseline data, and then normalizes by
2 months after injury (6). Although myelin water imaging is
more specific to myelin than any other MRI technique (7), it
is not known from these data whether the observed changes
in MWF are due to degradation/removal of myelin followed
by establishment of a new myelin sheath, or due to a transient
change in the structure of the myelin sheath, or a combination of
both.

An MRI technique that may shed further light on these
changes in myelin is quantitative susceptibility mapping (QSM).
QSM is a relatively new technique that turns the resonance

frequency measured with gradient echo MRI scans into maps of
underlying tissue magnetic susceptibility (8). Strong modifiers of
the magnetic susceptibility are the paramagnetic iron found in
deoxygenated blood and in the basal ganglia, and diamagnetic
myelin. In multiple sclerosis, significant magnetic susceptibility
increases (MR frequency in earlier studies) have been seen
occurring up to 3 months prior to lesion formation seen
on gadolinium enhanced MRI (9). This increase in magnetic
susceptibility was detectable by averaging across as few as
7MS lesions. Due to its high sensitivity, QSM is widely used
in MS research (10–12). The increase in MR frequency and
magnetic susceptibility observed from myelin loss occurs due to
anisotropic healthy WM degrading into more isotropic myelin
debris, and the removal of diamagnetic myelin from the affected
area (13). An important property of MR frequency and QSM
is that its contrast to noise ratio is seven times higher than
that of the corresponding magnitude (14). This high sensitivity

to myelin degradation demonstrates that susceptibility sensitive
MRI may allow for the distinction of decompaction—defined
as the loosening of myelin sheaths around the axon and other
myelin layers, with increased myelin water volume—from actual
myelin breakdown.

One nice advantage to QSM analysis is that often times
the required scan, SWI, is already routinely acquired when
investigating concussion and TBI damage, due to its ability to
detect and evaluate microhemorrhages (15). We had previously
acquired susceptibility weighted images (SWI) in the same
cohort of ice hockey players in which we performed myelin
water imaging, and have previously reported finding no signs
of microbleeds using this data (16). In recent years, QSM has
undergone considerable maturation (17, 18), allowing us to now
explore the magnetic properties of WM in this cohort.

DTI data, also acquired in the same study, can be used
in tandem to corroborate these findings, as the DTI metrics
previously mentioned, axial diffusivity (AD) and radial diffusivity
(RD), have been shown to relate to axonal and myelin damage,
respectively, in both animal (4, 19, 20) and human (3) models.
In voxels of high anisotropy with aligned axons, AD is the
measure of the primary eigenvalue, which is parallel to the axonal
fibers. Damage to the axon can lead to reduced diffusion along
this direction (4, 21, 22). Meanwhile, RD is the mean value of
the secondary and tertiary eigenvalues, which run perpendicular
to the fibers. Damage to myelin will lead to water diffusing
perpendicularly out of the axon more easily, thus increasing RD
(4, 19, 20).

Here, we investigated susceptibility changes along with axial
and radial diffusivity in the same voxels-of-interest in which
reductions of MWF were previously found (6) in 11 ice hockey
players longitudinally after receiving a concussion during game-
play. All players were scanned pre-season, and were subsequently
scanned 3 days, 2 weeks, and 2 months post-injury. Based on
animal studies that demonstrated decompaction of the myelin
sheath after a single mild TBI (23), we hypothesized that
the magnetic susceptibility and radial diffusivity would remain
unchanged in areas of reduced MWF due to a lack of myelin
fragmentation and removal.

METHODS

Participants and Data Acquisition
Complete details of the original study have been previously
reported (16). All subjects gave written informed consent prior
to the study, which was approved by the University of British
Columbia Clinical Research Ethics Board (H11-00423). Briefly,
20 female and 25 male ice-hockey players (mean age = 21.2 ±

3.1 years) underwent pre-season baseline and post-season clinical
examination and MRI scans. If a player suffered a concussion
during play, as diagnosed by a physician present during all
games based on criteria outlined in the 3rd Consensus Statement
on Concussion in Sport (signs of poor balance, confusion, and
disorientation) (24), they were removed from play, given a
clinical evaluation at the rink, followed by Sport Assessment Tool
2 (SCAT2) (24) tests in the dressing room. The players were
then scheduled to receive additional follow-up scans at 72 h, 2
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weeks, and 2 months following the concussion. All images were
acquired with a 3T Philips Achieva scanner equipped with an 8-
channel SENSE head coil. 11 players were concussed and eight
were scanned within 72 h of being injured. 10 out of 11 athletes
were scanned at 2 weeks, and nine out of 11 were scanned at 2
months post-injury.

All subjects underwent the following set of scans: (a) 3D-
sagittal T1-weighted image (TR = 8.1ms, TE = 3.7ms, flip
angle= 6◦, voxel size= 1× 1× 1mm3, acquisitionmatrix= 256
× 256 × 160, field of view = 256 × 256 × 160 mm3,
SENSE factor = 2 along left-right direction); (b) DTI scan
(TR/TE/flip angle = 7,015/60 ms/90◦; acquisition matrix/field
of view/acquired voxel size/reconstructed voxel size = 100 ×

99/224 × 224 × 154 mm3/2.2 × 2.2 × 2.2 mm3/2 × 2 × 2.2
mm3; SENSE factor of 2.1 along the anterior-posterior direction,
b0 = 0, b1 = 700 s/mm2, 60 non-collinear directions); and
(c) multi-echo SWI with a 3D gradient echo (TR = 36ms,
TE= 6,12,18,24,30ms, flip angle= 17◦, acquisition matrix= 440
× 222 × 64, field of view = 220 × 166 × 128 mm3, voxel
size = 0.5 × 0.5 × 1 mm3, SENSE factor = 1.2 along left-right
direction).

Methods of the MWI acquisition and analysis can be found
in Wright et al. (6) Briefly, a 32-echo T2-weighted scan was
used to decompose the T2 decay using a non-negative least
squares fit with an extended phase graph algorithm and flip
angle optimization (25). MWF was calculated as T2 signal
from 0 to 40ms divided by the total T2 signal. MWF changes
were evaluated through comparison of concussed athletes’
baseline scans to those acquired at 72 h, 2 weeks, and 2
months post-injury. Voxelwise statistical analysis of the data was
performed using tract-based spatial statistics (TBSS) (26) from
the Functional MRI of the Brain Software Library (FSL, Oxford,
United Kingdom) (27), created using fractional anisotropy maps
obtained from diffusion tensor images.

Post-processing
All multi-echo SWI images were post-processed as QSM images.
For full details of this technique, please refer to Kames et al.
(18). In brief, phase unwrapping was accomplished using a
3D Laplacian algorithm (28), while background field removal
was performed by using the V-SHARP method (29). The
inverse problem was solved using a two-step dipole inversion
algorithm, first by addressing the well-conditioned k-space
region by reconstructing using a Krylov subspace solver, and
then reconstructing the ill-conditioned k-space region by solving
a constrained l1-minimization problem (18). This proposed
pipeline does not incorporate a priori information, but utilizes
sparsity constraints in the second step. QSM was implemented
using custom in-house Matlab code.

Raw diffusion data was first converted from Philips PAR/REC
format to NIfTI using Chris Rorden’s freely available dcm2nii
(30) software (BSD License). Data was then eddy current and
motion corrected using FSL’s FDT (31) (FMRIB’s Diffusion
Toolbox) software. AD and RD values were calculated using the
dcm2nii’s calculated gradient directions and b-values and FSL’s
DTIFIT.

Image Analysis
FSL was further used for display, brain extraction, and
registration of the voxels of interest. Registration between TBSS
derivedMWF significant voxels andQSM/DTI was accomplished
using FSL’s FLIRT (32), and were inspected individually. The
mean QSM, AD, and RD values from within the previously
identified voxels of interest (VOI) from Wright et al. (6) were
then computed. A sample QSM axial slice image, with VOI
overlayed, is shown in Figure 1.

Statistics
Statistical analysis tools R (33), lme4 (34), and languageR (35)
were used to perform a linear mixed-effects analysis on the
relationship between QSM, AD and RD values and time. Fixed
effects were set as gender and age, while random effects were set
for subjects, including by-subject random slopes for the effect of
time:

[QSM/AD/orRD]∼Time+ (1|Subject)+ Age+ Sex+ ε

Visual inspection of residual plots did not reveal any obvious
deviations from homoscedasticity or normality. A linear mixed-
effects model was used due to its advantages in dealing
with missing data (36). Time was treated as a numeric
variable. P-values were obtained by likelihood ratio tests of
the full model with time against the “null” model without
time, with a p-value of 0.05 set as the threshold required
to reject the null hypothesis. Power was calculated for the

FIGURE 1 | Sample QSM axial slice of a subject obtained at baseline, with

overlay registered VOI mask in red. QSM underlay is shown in the range of

−0.2 ppm (black) to +0.2 ppm (white), with 0 ppm shown in neutral gray.
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QSM retrospective analysis using 10,000 simulated longitudinal
studies of similar size using baseline mean and standard
deviation values from our results and expected QSM changes
to calculate effect size. A further 10,000 power simulations
were performed resulting in a power estimate of 88% (see
Supplementary Materials).

RESULTS

All 11 concussed subjects [five male, mean age 21.18 ± 1.66
(SD) years] scored 15 on the Glasgow Coma Scale, indicating
a mild TBI/concussion. They were all scanned during the
preseason (baseline), with eight participating in the 3 day follow-
up scan, 10 at 2 weeks, and nine at 2 months. Results from
conventional MRI, MWI, and psychometrics were reported
previously (6, 16). Previous results of particular relevance to
the present paper are a cluster of voxels detected using TBSS
with significantly reduced MWF at 2 weeks post-concussion;
no other time-points achieved statistical significant changes

(6). The voxel clusters were located in the splenium of the
corpus callosum, right posterior thalamic radiation, left superior
corona radiata, left superior longitudinal fasciculus, and left
posterior limb of the internal capsule. Across all significant
voxels, this represented a 5.9 ± 1.2% (mean ± standard error)
decrease from baseline, and upwards of 10% reduction in
voxels located in the left splenium. Mean QSM values from
all 11 concussed subjects at baseline in the VOI was −0.0079
ppm (confidence interval: −0.0104 to −0.0053). Longitudinal
values are listed in Table 1. The fixed effects of gender and
age did not show any statistically significant influence on the
model. Likelihood ratio-test analysis of the full model with
time against the “null” model without time did not show
a significant change in QSM values in the VOI (p = 0.94;
Figure 2A).

Mean AD and RD values from all 11 concussed subjects over
time are listed in Table 1. The fixed effects of gender and age did
not show any statistically significant influence on either model.
Likelihood ratio-test analysis of the full model with time against
the “null” model without time did not show a significant change

in AD or RD values in the VOI (p = 0.92 and 0.25, respectively;
Figures 2B,C).

DISCUSSION

This study used measurements of WM magnetic susceptibility
along with DTI measures AD and RD to examine the impacts
of concussion on the brain of varsity ice hockey players. To our
knowledge, this is the first study to look for changes in magnetic
susceptibility, from data before injury, and at 3 days, 2 weeks,
and 2 months post-injury. Our data revealed no statistically
significant QSM, AD or RD changes at any time-point post-
concussion. This finding has implications for how myelin is
affected by a concussive hit in the first 2 months post injury.

In the same cohort of patients as in the present study, we have
previously reported finding a significant reduction in MWF, with
up to 10% reduction seen in the sCC (6). At the time, however,
we could not deduce what was causing this MWF reduction:
myelin degeneration, myelin sheath loosening (decompaction),

or a mix of the two. A previous study by Johnson et al. provided
evidence for myelin degeneration and active phagocytosis of
myelin fragments in humans followingmoderate/severe TBI (37).
Another study by Donovan et al. demonstrated that repeated
mTBI in rats leads to a spectrum of changes, including separation
of the myelin sheath from the axon, decompaction of the myelin
sheath, and fragmentation of the myelin sheath (23). Finally,
investigations into secondary degeneration in rat optic nerves,
characterizing ongoing changes associated with neurotrauma,
have shown that myelin is particularly susceptible to secondary
damage, which can lead to myelin sheaths becoming loose
(38, 39). Payne et al. found a maximum of 15% of myelin sheaths
to be decompacted in rats following secondary degeneration (39).
This is due to the fact that myelin’s compact layers of lamellae are
held together with proteins that are vulnerable to damage from
reactive oxidative species and lipid peroxidation from secondary
degeneration (40), processes we know occur following concussive
hits and mTBI (41, 42). Thus, there is circumstantial evidence to
support myelin decompaction, a mixture of decompaction and
degeneration, or only degeneration, following a concussion.

TABLE 1 | Mean QSM, AD, and RD values with standard deviations and confidence intervals.

Baseline 72 h 2 Weeks 2 Months p-Value

n = 11 8 10 9

QSM Mean

SD

CIs

−0.0079

0.0043

−0.0104 to −0.0053

−0.0089

0.0035

−0.0112 to −0.0064

−0.0085

0.0035

−0.0106 to −0.0063

−0.0075

0.0040

−0.0101 to −0.0049

0.94

AD Mean

SD

CIs

0.0013

3.7e-5

0.0013 to 0.0014

0.0013

3.8e-5

0.0013 to 0.0013

0.0013

2.8e-5

0.0013 to 0.0013

0.0013

3.1e-5

0.0013 to 0.0013

0.92

RD Mean

SD

CIs

0.00048

3.0e-5

0.00047 to 0.00050

0.00047

3.0e-5

0.00045 to 0.00049

0.00049

1.9e-5

0.00047 to 0.00050

0.00046

1.7e-5

0.00046 to 0.00048

0.25

Mean values over time in the VOI, with p-values from likelihood ratio test. n, number of subjects scanned at time-point; SD, standard deviation; CI, confidence interval.
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FIGURE 2 | QSM, AD, and RD Values in VOI Over Time. (A) QSM values (in ppm); (B) AD values; and (C) RD values plotted against time post-concussion by individual

subjects separated by color, and mean and standard deviation (error bars) plotted in dark gray; against time post-con Note: time zero refers to baseline scan.

Together, the reduction in MWF, and the absence of
statistically significant changes in magnetic susceptibility or RD
in the same region observed in the current study, suggest
that the myelin sheath structure has been altered, such as
becoming decompacted, rather than degraded or fragmented
(23, 39). Degradation or removal of myelin should result in
an increase in magnetic susceptibility and an increase in radial
diffusivity. The decompaction interpretation is in agreement with
the observed recovery of the myelin water fraction by 2 months
post-injury, suggesting a normalization of the myelin sheath
structure.

Decompaction, while not as severe as myelin degeneration,
should still be considered a serious injury, as it leads to
reductions in action potential conduction (43). Unmyelinated
axons, in mice and rats, have a conduction rate of 0.4 m/s,
significantly lower than the myelinated conduction rate of
2.4 m/s (44, 45). Axons of mice with decompacted myelin,
however, have a conduction rate of about 1.05 m/s, a reduction
of more than half the healthy rate (43). This reduction in

conduction could be responsible for some of the known
cognitive deficits following concussive hits (46), such as
affected memory, attention, processing speed, and executive
functioning.

Myelin decompaction is likely to be caused by secondary
mechanisms, such as oxidative stress (39). Petronilho et al.
looking at oxidative damage following mTBI and severe TBI
in adult male Wistar rats, found an inversely proportional link
between trauma severity and oxidative damage (47). Thus, for
mTBI, there was more evidence of oxidative stress than in
the severe TBI rats. What secondary mechanisms could be
causing this separation of the myelin layers? While iron is a
known reactive oxidative species, and has been implicated in
mTBI secondary damage (41), we would expect an increase
in magnetic susceptibility if iron levels were increased, for
example due to hemorrhage related formation of hemosiderin.
As reported, no such increase in susceptibility was observed.
Other potential candidates include high levels of radical species
such as nitric oxide and hydroxyl radicals (39). Ultimately it is
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beyond the scope of this paper to identify the exact cause of this
decompaction.

One possible criticism of our interpretation of the previously
reported MWF results is that MWF changes can occur due
to increased edema/inflammation instead of changes to the
myelin layers. While it is true, in theory, that MWF can be
modified by edema/inflammation (48), this is likely not the case
in our present study. As demonstrated previously by Chiang
et al., an increase in extracellular fluid, such as vasogenic
edema, should lead to increased radial diffusivity, and a partial
increase in axial diffusivity (49). Neither AD or RD showed
increases in the same regions that showed reduced MWF as
previously reported. If edema was to blame for this reduction
in MWF, we should expect a simultaneous increase in AD and
RD, which is not seen. Furthermore, as demonstrated in our
2016 Frontiers in Neurology publication, no microbleeds or
hemorrhages were detected as a result of concussion or playing
a season of ice hockey, nor was there any increase in brain
volume (16). Finally, as stated in our 2016 PLOSOne publication,
we found decreases in MWF of up to 10% in voxel clusters
in the sCC (6). For “diffuse edema” to explain this change,
we would likely see a reduced MWF throughout the whole
brain (which was not observed), and a ∼9% swelling of the
brain, which would cause enough intracranial pressure to prove
lethal (50).

Another counter to our proposed explanation would be to
suggest that perhaps myelin degradation is occurring, but that
the increased magnetic susceptibility is being masked by a
concurrent and equal reduction in susceptibility due to some
other factor. This, however, is negated by our finding no changes
in AD or RD over time, suggesting that axial damage and
myelin fragmentation is not occurring. Furthermore, in order
for QSM values to remain constant despite myelin loss, an
equivalent reduction in iron should be expected. A reduction in
iron, however, is highly unlikely given the past literature (see
Nisenbaum et al.’s review of iron in mTBI in the Journal of
Neurotrauma) (41).

There are several limitations to this work that should be
highlighted and addressed in future studies. This study included
some missing data points of subjects. A linear mixed-effects
model was therefore used due to its ability to handle missing
data-points. Another limitation is our decision to only look at
the region where myelin water imaging detected a reduction in
myelin signal in the same cohort. Since myelin water comprises
only about 10% of tissue water, MWI is a noisy technique by
definition. It is possible that other areas were damaged but not
detected by MWI.

Finally, we do not know what may happen between 2
weeks and 2 months after concussion, and after 2 months
post-concussion. Future studies should have an MRI scan at
4 weeks, 6 months and up to 1 year post injury to provide
additional information on the trajectory of recovery after injury.
In particular, denser sampling of the time period between 2 weeks
and 2 months after concussion will provide further insight on
the time course of tissue recovery after concussion. Such work
will lead to a better understanding of how much later tissue
recovery succeeds functional recovery. Such knowledge is critical

for return to play decision making in contact sports, which is
based on clinical assessment of functional recovery.

In summary, we report a repeated measures QSM, AD
and RD analysis of the same regions previously reported to
have reduced MWF due to sports related concussion. We
did not find any statistically significant changes in magnetic
susceptibility, axial diffusivity, or radial diffusivity in these
regions after 3 days, 2 weeks, or 2 months post-concussion.
This finding provides evidence that a sports-related concussion
leads to decompaction in myelin sheaths, as opposed to myelin
degradation.
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