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Central neurotrauma, such as spinal cord injury or traumatic brain injury, can damage
critical axonal pathways and neurons and lead to partial to complete loss of neural
function that is difficult to address in the mature central nervous system. Improvement
and innovation in the development, manufacture, and delivery of stem-cell based
therapies, as well as the continued exploration of newer forms of stem cells, have allowed
the professional and public spheres to resolve technical and ethical questions that
previously hindered stem cell research for central nervous system injury. Recent in vitro
and in vivo models have demonstrated the potential that reprogrammed autologous stem
cells, in particular, have to restore functionality and induce regeneration —while potentially
mitigating technical issues of immunogenicity, rejection, and ethical issues of embryonic
derivation. These newer stem-cell based approaches are not, however, without concerns
and problems of safety, efficacy, use and distribution. This review is an assessment of the
current state of the science, the potential solutions that have been and are currently being
explored, and the problems and questions that arise from what appears to be a promising
way forward (i.e., autologous stem cell-based therapies)—for the purpose of advancing
the research for much-needed therapeutic interventions for central neurotrauma.

Keywords: nervous system trauma, neural stem cells, autologous transplantation, regeneration, cell and tissue
based therapy, spinal cord injury, traumatic brain injury

NEUROTRAUMA: AN OVERVIEW

Neurotrauma is defined as neurological insult that results in the disturbance of neural circuitry
through disruption of axonal pathways and/or neural cell damage or loss (1). Injuries to the central
nervous system (CNS) include, but are not limited to, spinal cord injury (SCI), traumatic brain
injury (TBI), and stroke (1-4).

The epidemiological impact of neurotrauma is significant. Annually, there are approximately
12,000 cases of SCI in the United States alone (5), with injury being incurred by
compression, contusion, laceration and/or partial or complete severing of the cord (6).
There are 1.5-2 million cases of traumatic brain injury (TBI) per year in the US, with
75,000-100,000 of these cases being classified as severe (7, 8). Approximately 795,000 strokes
occur annually in the US, with 87% of these being ischemic and 10% due to intracranial
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hemorrhage (9). Neurotrauma can incur both short and long-
term, partial or complete loss of neurological function, depending
on the type and severity of injuries (7, 8, 10). Pathophysiological
features can include sensory and/or autonomic impairment,
muscle weakness, and/or decreased control of movement,
decreased endurance, muscle spasms, and hypertonicity, and
are typically reflective of the site(s) and extent of neurological
damage (6-8, 11). Onset of signs and symptoms resulting from
neurotrauma can begin immediately following injury, or in some
cases (of mild to moderate insult, with iterative neurological
involvement) can be latent, and can persist for months, years
and/or durably (i.e., - permanently).

The short- and long-term effects of neurotrauma can extend
beyond the biophysiological to detrimentally affect quality of life
(i.e., employment opportunities, relationships, ability to partake
in recreational activities, etc.) (12-14). Post-trauma care and
management of symptoms can also be economically burdensome
for individuals and families affected by SCI, TBI or stroke. For
example, in the US, the first year of care following an SCI
injury, can incur individual costs ranging from US$123,000 to
US$423,000 (15). Lifetime costs for an individual injured at
25 years of age have been estimated to reach US$2.7 million,
depending on the severity of the injury incurred (16).

While we recognize that SCI, TBI, and stroke each and all have
differing therapeutic targets, and methods, and have been, and
may be therapeutically approached in distinct ways, herein we
take a heterogeneous approach to include all of these conditions
in this review, as stem cells are and may be used in a variety
of therapeutic applications. As well, we place specific emphasis
on SCI, recognizing the particular potential for application of
stem cell-based therapies in this context, and acknowledge and
address that TBI and stroke have been shown to share certain
pathophysiological processes and clinical targets, which have
been supportive of stem-cell based interventions (3, 17, 18).

THE THERAPEUTIC/RECUPERATIVE
PROBLEM

Patterns of recovery of function following neurotrauma generally
reflect neurons’ incapacity for replication (i.e., post-mitotic
stability). It is noteworthy that some areas of the brain have
shown regenerative capacity (i.e., neurogenesis) (19-21) through
initiation and migration of neural progenitor cells. Regions
that have exhibited progenitor cell activation and resulting
neurogenesis include the hippocampal subgranular zone (22—
24) and dentate gyrus [(25); however, for contrasting report,
see (26)], the periventricular area, the olfactory bulb (27-30),
the subventricular zone (31-33), and the central canal of the
spinal cord (34-37). However, progenitor cells appear to be
isolated to these regions, and are not ubiquitous in the CNS.
The majority of mature neurons of the CNS are terminally
differentiated (TD), can no longer undergo mitosis, and are
considered to be outside of the cell cycle (38). While there
is some debate whether neurogenesis may persist into and
throughout adulthood in certain brain areas [e.g., the dentate
gyrus; (25, 26, 39)]; such mitotic capacity, even if limited to

key periods in development, is certainly not neuroanatomically
ubiquitous. In mammals (including humans) cortical neurons
become mature, post-mitotic cells early on during development
(40), and maintain the stable post-mitotic state for decades
(41). Further evidence suggests that the human neocortex does
not acquire any additional neurons after birth (41), and that
brain tumors are not derived from mature, TD neurons, but
rather, from aberrant neural stem cells found in the areas of the
brain with regenerative ability (38, 42). Neuronal cell death also
typically occurs when TD neurons are induced to re-enter the cell
cycle, either experimentally or due to cell stress (38, 43).

Following neural insult and injury, the terminal zones of
severed neurons swell into dystrophic growth cones and have
been shown to have some regenerative capabilities when in the
appropriate environment(s) (44-47). Neurons of the dorsal root
ganglia, for instance, have axons in both the peripheral neural
system (PNS) and the CNS; however, only those ending in the
PNS have capacity for regeneration (48). The inability of CNS
neurons to regenerate neural fibers is related to the environment
of the adult CNS following injury (49). When a neuronal fiber
is severed, axonal regrowth is initially inhibited by the presence
of myelin-associated inhibitors in the glial environment [see
(50, 51) for overview]. These myelin-associated inhibitors are
released by both intact oligodendrocytes and myelin structures
that may have been damaged by injury (47, 52-55). Identified
inhibitors include: Nogo, myelin-associated glycoprotein (Mag),
oligodendrocyte myelin glycoprotein (Omgp), ephrin B3 and
transmembrane semaphoring 4D (Sema4D) (54, 56).

Following CNS injury, microglia, oligodendrocyte precursors,
meningeal cells, and astrocytes are also recruited to the site.
Activation of local inflammatory processes and induction of
lipid-collagen matrices lead to gliosis and formation of a glial scar,
which provides a physical barrier and further inhibits regrowth
of the axon and outgrowth of neurites beyond the lesion site
(1, 47, 54). Moreover, the recruited astrocytes enter a reactive
state, in which they up-regulate and release chondroitin sulfate
proteoglycans (CSPGs), creating a chemical gradient at the site
of injury that is inhibitory to regrowth (47, 57, 58). Additional
evidence suggests that the glial scar may also provide stability
to the site of injury in the CNS, preventing further cellular
degeneration, isolating the inflammatory response, and repairing
the blood-brain barrier at the injury site (59-61).

Thus, the adult nervous system is largely unable to regenerate
following irreparable neuronal damage and/or loss (1, 62-
64). This presents challenges (viz. a “therapeutic/recuperative
problem”) to developing effective interventions for neural insult,
and is an increasing clinical (and socio-economic) concern as
the incidence of neurological injury and global prevalence of
neurodegenerative disease rise (1, 6, 38, 47, 54, 65).

CELL-BASED APPROACHES TO CENTRAL
NEURAL REPAIR AND REGENERATION

A variety of strategies have been developed to treat CNS
injury and disease. In general, methods for the repair and
possible regeneration of the CNS entail pharmacological,

Frontiers in Neurology | www.frontiersin.org

August 2018 | Volume 9 | Article 602


https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

Wu et al.

Stem Cells for Central Neurotrauma

structural, and cell-based approaches, either singularly or
in combination. Although pharmacological approaches have
demonstrated therapeutic benefit for management of symptoms
and functional rehabilitation associated with SCI (66), TBI (67),
and stroke (68, 69), not all have been proven safe or effective
in reparative or regenerative capacities in clinical application.
Structural approaches, while perhaps limited in their reparative
and regenerative capacities when employed in isolation, have
demonstrated some success when employed in combination with
cell-based approaches (70-74). We focus herein, however, on
cell-based approaches to repair and possible regeneration of the
injured CNS that have shown potential in preclinical and early
clinical studies.

Cell-based therapies can have a variety (i.e., direct, indirect,
or both types) of effects. Such therapies can be used to facilitate
regeneration of neurons via implantation of specifically active
cells in the adult CNS. Direct cell-based therapies generally
involve use of implanted cells to replace or repair damaged
neuronal and/or glial cells and tissue. Indirect effects involve use
of implanted cells to contribute biomolecular and biochemical
factors that modify the neural micro- and/or macroenvironment,
providing trophic support that facilitates neural repair and
regeneration (6, 75-77). Some cell-based therapies have both
indirect and direct effects. Bone-marrow derived mesenchymal
stem cells (BM-MSCs), for instance, exhibit immunosuppressive
qualities and the ability to promote the proliferation of
endogenous cells following stroke, in animal models (78-81).
These cells are also capable of trans-differentiation into various
neural cell types, such as astrocytes, oligodendrocytes, and
neurons, both in vitro and in vivo, and in in vivo animal models
have been shown to demonstrate migratory capacity and actions
in the CNS (82-92).

Stem Cells

Stem cell-based therapies for neural regeneration and repair
garnered attention after the identification of specific regions of
the adult human brain capable of maintaining the capacity for
neuroregeneration throughout the human adult lifespan (6, 77,
93-95).

Stem cell-based techniques have been increasingly innovative,
with relatively rapid advances enabling the potential to combine
stem-cell therapies with previously explored pharmacological,
structural, and even other cell-based methods (96-99). For
example, stem cells could be modified to deliver biomolecules
or to replace damaged neurons, astrocytes, oligodendrocytes, etc.
and thereby act directly and/or indirectly, as noted above (100).

As illustrated in Table1, embryonic stem cells (ESCs),
mesenchymal stem cells (MSCs), neural stem/progenitor cells
(NSCs), and induced pluripotent stem cells (iPSCs) have all been
explored for use in cell therapies for neuroregeneration in a
variety of models and applications.

Embryonic Stem Cells (ESCs), Fetal Stem
Cells and Derivatives

ESCs were first cultured and isolated from mice (134), but
can now be derived from donated human blastocysts following
in-vitro fertilization (IVF) procedures (135, 136), somatic cell

nuclear transfer (137), human or mice fetal brains (120, 122), or
existing hESC lines (there are currently 390 NIH-approved hESC
and 70 unapproved cell lines’.

ESCs are pluripotent and can proliferate almost indefinitely
in vitro (135, 138, 254). Furthermore, ESCs have potential to
differentiate into any cell type, including neurotransmitter or
growth factor-secreting cells, neural stem cells (NSCs) and neural
progenitor cells that can be further differentiated into neuronal
subtypes, and/or glia (e.g., oligodendrocytes, astrocytes) capable
of effecting roles in facilitating neural repair and/or regeneration
(117, 120, 121, 139, 254, 255).

Early preclinical studies employing in vivo mouse models
demonstrated the ability of hESC-derived neural progenitor cells
to integrate into host parenchyma, migrate along established
pathways in the brain, and differentiate according to region-
specific cues (254). Various cell transplantation applications
of hESC-derived, as well as mouse or human fetal-derived
NSCs, in animal models of TBI suggest the potential of these
cells to migrate to injured regions of the brain, differentiate
into neurons and neuronal subtypes, and improve cognitive
and motor functional recovery in the injured brain (121, 122,
139). Transplanted ESC-derived cells in ischemic animal models
(e.g., rats subject to middle cerebral artery occlusion (MCAO))
have also demonstrated the ability to differentiate in vivo and
to improve structural, functional, behavioral, and motor and
sensory repair (123-125). NSCs and NPCs derived from ESCs
have also been applied in preclinical animal models of stroke
(126-131) with marked improvements in the size of the infarct
area, the level of differentiation into neurons and neuronal
cell types post-transplantation, and improved behavioral deficits
(256).

Transplanted ESC-derived NSCs have demonstrated
functional and structural improvement in animal models
of SCI, as well (101, 102, 104-107, 257, 258). An ongoing phase
/I study (NCT02302157) is investigating the application of
human ESC-derived oligodendrocyte progenitor cells (OPCs)
in subjects with subacute cervical SCI; this clinical trial is
supported, in part, by preclinical evidence of the safety and
ability of these cells to promote neurite outgrowth in vitro and
to facilitate myelination in vivo in rodent models of thoracic
SCI (103).

Risks of inappropriate differentiation (i.e., teratoma and
tumor formation), as well as technical issues arising from the
possibility of immunological and graft rejection of the implanted
tissues are major challenges that are still to be overcome (140-
142). As well, ethical controversies surrounding the source of
ESCs has led to alternative sources of pluripotent stem cells being
explored (143, 144).2

Fetally-derived NSCs can be isolated from fetal brain tissue,
with minute quantities also reported in bone marrow and
umbilical cord blood (259). While these cells readily give rise to

!National Institutes of Health, “NIH Human Embryonic Stem Cell Registry,” 4 May
2018, accessed May 2018, https://grants.nih.gov/stem_cells/registry/current.htm.).
2Mattis V, Svendsen S, Sareen D, and Svendsen C, “Neural stem cells;” Nature
Neuroscience, 2010, https://www.stemcell.com/media/files/wallchart/WA10008-
Neural_Stem_Cells.pdf.
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neurons, astrocytes, and oligodendrocytes, they are less versatile
and proliferative than ESCs because they maintain some of
the characteristics of the region of the brain from which they
were derived® (100, 145). Transplantation of human fetal stem
cells and their derivatives have shown promise in: increasing
neuronal survival and decreasing lesion size in animal models
of TBI through increased angiogenesis and reduced astrogliosis
(122, 147); and, neuronal regrowth, functional and structural
improvement following transplant in animal models of SCI (108-
110). Clinical trials involving fetal stem cells or their derivatives
for the treatment of SCI and stroke are completed and ongoing.
A Phase I study is underway that is investigating the safety and
efficacy of human fetal spinal cord-derived NSCs (NSI-566) for
the treatment of chronic SCI (NCT01772810), and a Phase II
study investigating the effect of human central nervous system
stem cells (HuCNS-SCs) on patients with thoracic spinal cord
injury has been completed (NCT01321333). Yet another Phase
I/II clinical trial is ongoing that is evaluating the effect of NSI-566
cells on motor deficits in stroke patients (NCT03296618).

Despite such progress in preclinical and clinical fields,
ESC- and fetally-derived stem cells have given rise to ethical
concerns regarding the source and process of their procurement,
technical considerations focal to possible risks incurred during
transplantation, and unregulated tissue growth in situ [for
overview, see (260)].

A Focus on Neural Stem Cells and Neural
Progenitor Cells: Possibilities and

Problems

NSCs are found in the developing and adult CNS in a number of
brain regions [i.e., cortex, hippocampus, olfactory bulb, striatum,
ventricles, midbrain, cerebellum, spinal cord, and retina, (31,
93, 94, 157-161). NSCs can be derived from ESCs, fetal tissues
(as discussed in prior section), iPSCs, and adult brain tissue!
(160, 261). NSC differentiation (e.g., into neurons, astrocytes,
and/or oligodendrocytes) is dependent, in part upon exposure to
particular growth and environmental factors.

The use of adult NSCs/NPCs (derived from biopsy tissue
from brain or spinal cord) in cell therapies could, if validated
in preclinical proof-of-concept studies, allow for autologous
cell transplantation and repair by endogenous NSCs, thereby
potentially minimizing risks of incompatibility. Early studies in
animal models of SCI and TBI have suggested the potential
viability of this approach (isolation, in vitro expansion, and
transplantation), either alone or in combination with other
methods (e.g., bone marrow-derived MSCs) for provision of
neuroprotection, immunomodulation and facilitation of re-
myelination and functional recovery of the injured spinal cord
(149-151, 153, 154, 156).

In transplantation-based therapy, NSCs or NPCs are
implanted within defined areas of the CNS!. Transplanted
NSCs and NPCs facilitate neuroregeneration and therapeutic
plasticity in the injured CNS via processes of neuroprotection
[i.e., the “bystander” “mechanism” in SCI, see (262) for overview;
(132, 155) for ischemic stroke], neurotrophic support (262);
immunomodulation (164), and cell replacement and integration

(111). Broadly speaking, neuroprotection is the activation
of pathways that prevent further neuronal cell death, while
neurogenesis involves proliferation and differentiation of
endogenous neural stem and progenitor cells (259, 262), or
implanted NSCs capable of cell replacement. Lu et al. (113)
found improved motor functionality following SCI in rodents,
when rat- and human-derived NPCs, human ESC-derived NSCs,
and human iPSC-derived NSCs were implanted at injury sites
(112, 114, 115, 263). Specifically, it was observed that these cells
were able to extend multiple axons over long distances, and
form synapses with host neurons (112, 264). Research suggests
that endogenous NSCs and the immune system share secreted
mediators (chemokines, cytokines) and receptors relevant both
to inflammation and the maintenance, structure, and function of
endogenous neural stem cell niches in the brain (165, 166, 265).
Transplanted exogenous NSCs may modulate local immune
responses and secrete growth factors that are conducive to
neuronal growth (132, 133). Indeed, both in vitro and in vivo
proof-of-concept studies have demonstrated the potential of
NSCs as a cell-based therapy for SCI (266-268), stroke (269), and
TBI (266, 268, 269), based, at least in part, upon the capability
for defined differentiation and target specific integration and
functional activity of these cells when introduced at or proximate
to sites of neural injury (259).

However, NSCs and NPCs from adult tissues cannot be easily
engaged to generate certain types of neurons [e.g., dopamine or
motor neurons; (162)]2, nor are they easily isolated or expanded
from the regions of the human brain that contain NSCs [i.e., the
subgranular zone of the hippocampus, and the subventricular
zone of the striatum; (94)], in part, because they are present in
rather low numbers (100). Moreover, despite the viability and
potential value of transplanted NSCs as a therapeutic approach,
gaps exist in knowledge about the activity and effect(s) of
NSCs in vivo with regard to migration mechanisms and the
optimum number of NSCs needed to facilitate regeneration in
different types of lesions (166, 259). The method and timing
of delivery, and potential interactions between the transplanted
NSCs and the host immune system may also impact the induction
and extent of neuroregenerative effects produced by these cells
(160, 166).

The CNS environment at the site of neural injury in SCI, TBI,
or stroke is not conducive to neuroregeneration (270). This is
due to the activation of inhibitory pathways, glial scar formation,
and the lack of guiding astrocytes essential for axonal regrowth
(6). As a result, many applications of NSCs have resulted in poor
cell survival, failed integration into host tissue, and poor, if not
uncontrolled, differentiation of cells (6, 153, 271). Additionally,
while NSC transplants derived from ESCs have shown increased
risk for formation of tumor growth compared to NSCs that have
been derived from either fetal or adult brain tissues, that is not
to say that these cells do not also have associated risks of tumor
formation! (100, 260). Furthermore, given that a source of NSCs
is from ESCs and fetal tissues, research and potential therapies
using these stem cells generate concerns about derivation, cost,
supply, and accessibility of these cells (11, 272, 273). In sum,
these challenges, as well as mixed evidence of safety and efficacy
in animal studies (152, 153, 274), have hindered translation of
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adult brain-derived NSCs/NPCs into clinical therapies (100, 259,
260).

Translation of Stem Cell Therapies

Ongoing Trials

There are currently no stem cell therapies for neural injuries
(namely, SCI, TBI, or stroke) that have received US FDA market
approval for clinical application in humans, although there are 19
ongoing trials investigating stem cell therapies for SCI (as of May
2018; see Table 2 for details)®. Four of these are Phase 1, seven are
Phase 1/2, six are Phase 2, one is phase 2/3, and one is unspecified.
There are also 6 trials investigating stem cell therapies for TBI,
and 22 trials investigating stem cell therapies for application to
stroke?.

The majority (12) of the studies are investigating the safety
and efficacy of MSCs for treatment of SCI, with the remainder
utilizing NSCs [NCT01772810 (275) and NCT02326662 (277)],
NSCs and MSCs (NCT02688049) (276), CD34" and CD133+
stem cells (NCT02687672) (278), bone marrow mononuclear
cells (BMMCs) (NCT02009124) (288), BMMCs and MSCs
(NCT02352077) (289), and AST-OPC1 [human ESC-derived
oligodendrocyte progenitor cells (OPCs)] (NCT02302157) (293).
Seven (7) of these trials use allogeneic stem cells products
[NCT03505034 (279), NCT02481440 (281), NCT02917291 (292),
NCT03521336 (282), NCT03521323 (283), NCT03003364 (290),
NCT02302157 (293)], 9 use autologous stem cells (NCT02326662
(277), NCT01676441 (280), NCT02687672 (278), NCT02574585
(284), NCT02981576 (285), NCT03308565 (286), NCT02574572
(287), NCT03225625 (291), NCT02009124) (288), and 3
are unspecified [NCT01772810 (275), NCT02688049 (276),
NCT02352077 (289)]%.

Here we highlight several of these ongoing trials pertaining to
stem cell therapies for SCI to demonstrate the types of studies
being conducted. NCT02326662 (277) is a non-randomized
interventional study assessing the safety and efficacy of MSC-
derived autologous NSC transplantation for individuals with
traumatic SCI (NCT02326662). The aim is to recruit 30
participants (paraplegic and tetraplegic patients in the acute, sub-
chronic, and chronic phases of SCI), who will receive transplants
of autologous MSC-derived NSCs by intraspinal and intrathecal
injection, along with RMx Biomatrix scaffolding as needed.
NCT02688049 is a Phase 1/2 randomized, double-blind clinical
trial assessing the efficacy and safety of NeuroRegen Scaffold™
when combined with MSCs or NSCs for chronic SCI repair.
It is a two-arm study, with patients in one arm receiving the
NeuroRegen Scaffold™ combined with MSC transplantation
therapy following SCI, and those in the other arm receiving
NeuroRegen Scaffold™ combined with NSC transplantation
following SCI (NCT02688049). NCT01676441 is a Phase 2/3
clinical trial being conducted in the Republic of Korea, that
aims to evaluate the safety and efficacy of bone marrow-
derived MSCs when transplanted into patients with chronic

3FDA, “FDA Warns About Stem Cell Claims,” 6 Jan 2012, accessed 8 Aug
2017, https://www.fda.gov/forconsumers/consumerupdates/ucm286155.htm#
Regulation.

4ClinicalTrials.gov, accessed May 2018, www.clinicaltrials.gov.

SCI. All participants (32) will receive MSC transplants directly
to the injured spinal cord lesion site via laminectomy, and
following recovery from the procedure, will undergo 4 weeks of
physical and occupational therapy (NCT01676441). Participants
will undergo magnetic resonance and diffusion tensor imaging
and electromyography and nerve conduction testing at 6
months post-operatively, and be assessed for motor and sensory
function as well as adverse events (using the American Spinal
Injury Association (ASIA) scale) 12 months post-operatively
(NCT01676441)*.

Reported Results

At this writing, 13 trails involving stem cell therapies for
SCI on ClinicalTrials.gov have been completed, although the
results from all of these studies are not yet available. Park
et al. (294) reported long-term outcomes (i.e., changes in
motor power grade of extremities, MRI, and electrophysiological
recordings) of 3 SCI patients who received intramedullary
transplantations of autologous bone marrow-derived MSCs
(sourced from the iliac bone of patients). The patients were
identified from an initial cohort of 10 patients as those who
showed evidence of improvement in their activities of daily
living (ADL) at 6 months following MSC- transplant (295).
Patients had received direct injections of MSCs (8 x 10°) to
the spinal cord, in addition to introduction of MSCs (4 x
107) to the intradural space. At 4 and 8 weeks post-operatively,
patients received additional injections of MSCs (5 X 107) via
lumbar puncture. In this long-term follow-up, none of the 3
patients exhibited tumorigenesis or complications associated
with the intramedullary injection of MSCs. Additionally, 2 of
the 3 patients showed evidence of gradual improvement in
motor power of the upper extremities, as well as evidence of
the disappearance of cavity margins, which may suggest the
ability of BM-derived MSCs to diminish glial scarring (294).
The results of this study do not contradict those of previous
studies [e.g., (296, 297); see (6) for an overview of completed
trials involving stem cells for SCI], which similarly found
slight motor improvements without significant complications
associated with MSC transplantation in humans with SCI (294).
The results of such studies suggest that stem cell therapies can
be especially beneficial for functional recovery in the acute and
subacute stages of SCI, but that improvements incurred during
the later and chronic stages of SCI are characteristically less
significant (6).

Clinical trials involving stem cell therapies for TBI and
stroke have also been completed. Results for MSC transplants
in TBI patients have been promising, with both (298) and (299)
reporting enhancement of neurological function and recovery
among adults and pediatric patients following injury. Kalladka
et al. (300) recently reported on the use of human fetal brain-
derived NSCs (CTXO0E03) in patients with chronic ischemic
stroke in a phase 1 study. This single-site, dose-escalation study
found improved neurological function and no immunological
or cell transplant-related adverse events in a sample of 13
men over the age of 60 who received intracerebral implants of
(2, 5, 10, or 20 million) NSCs, up to 2 years post-transplant
(300).
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MORE RECENT APPROACHES: IPSCS
AND REPROGRAMMED AUTOLOGOUS
CELLS

Alternatives to ESC and fetally-derived cell-based transplantation
therapies received renewed attention upon the discovery that
adult somatic cells could be induced to become pluripotent
stem cells (190). Adult somatic cells include MSC derived
from bone marrow, adipose, or epidermal tissues (301, 302).
NSCs may also be induced from amniotic fluid stem cells
(193). Induced pluripotent stem cells (iPSCs) have shown some
promise in their ability to generate patient-specific, autologous
pluripotent cells and tissues, although their ability to retain
all autologous characteristics has recently come into question
(194, 195). While iPSCs have been predominantly been used in
animal and in vitro models, these studies have both significantly
contributed to an understanding of neurodegenerative diseases,
and are being viewed as significant resource tools for discovering
novel therapeutic strategies against neurodegenerative disease
and particular types of neurological injury (144, 303).

iPSCs

Researchers successfully demonstrated that induced pluripotent
stem cells (iPSCs) could be generated from mouse embryonic
fibroblasts (190) and from adult fibroblasts (189, 191, 192, 199)
that are cultured in the presence of some combination of four
transcription factors (Oct4, Sox2, KlIf2, and c-Myc; or Oct4, Sox2,
Nanog, and Lin28)—rather than from embryonically- or fetally-
derived cells (11, 144, 190, 191). Since then, iPSCs have become
an attractive source of pluripotent stem cells for use in neural
replacement and regeneration therapies, given their potential
to generate a “virtually limitless supply” of autologous iPSCs—
thus resolving ethical concerns regarding the source of stem cells
and risks associated with immunological rejection in transplant
recipients (11, 196). In neural therapies, iPSCs and their
progeny can facilitate regeneration of neurons, induce axonal
remyelination, provide trophic support and immunomodulation,
and modify the extracellular microenvironment (105, 167, 177,
187).

Reprogramming and Differentiation of

iPSCs for Neural Insult
The first step in generating iPSCs is to select an appropriate
type of donor cell (201). Currently, the majority (i.e., 80%) of
published studies of cellular reprogramming employ fibroblasts
in that they are easy to obtain, purify, maintain, and
have significant potential for autologous transplantation (11,
191, 273). Other somatic donor cells include: melanocytes,
adipocytes, CD34+ cells, mesenchymal stem cells, human
primary keratinocytes, umbilical cord blood CD133+4- cells, and
peripheral blood mononuclear cells (199, 208, 273, 304-307).
Each of these cell types has a characteristic differentiation
profile related to its epigenetic memory (201, 308, 309).
Such “memory” (e.g., particular patterns of DNA methylation,
histone acetylation and phosphorylation) can influence patterns
of expression and differentiation profiles of the resultant
pluripotent stem cells (201, 309). Cells of different origins

can also differ in their reprogramming efficiencies (11, 310).
When designing cell therapies for neurotrauma, it is important
to consider the donor cell source in light of the ease of
isolation/expansion, the differentiation profile, the pathology of
the CNS injury of interest, and the intended destination of the
cell therapy in the injured patient.

Skin fibroblasts, for instance, are easily obtained but can
require more time, resources, and manipulation to generate
iPSCs due to their low programming efficiency (311, 312).
Given the increased time required for reprogramming, they also
have potential for increased mutations in vitro. Keratinocytes
and melanocytes show therapeutic potential as sources of
iPSCs: both are relatively easy to obtain from skin biopsies
or plucked hairs, have relatively short reprogramming periods
and high reprogramming efficiencies (203). Some research
suggests the potential for these cells to be reprogrammed
to neural stem cells, though further research is needed to
improve the reprogramming process and validate its potential for
differentiation and neuroregenerative applications (11, 313). Use
of CD133+ cells from umbilical cord blood has been explored
due to these cells ‘relatively high reprogramming efficiency
and pluripotency (205); however, their use in therapies for
CNS insult remains questionable, as there remains a need to
characterize their NSC differentiation potential and optimal
culture conditions (11, 314). CD34+ cells, derived from bone
marrow and umbilical cord blood, are not recommended for
clinical use due to their low availability and low reprogramming
efficiency (206, 207). Stem cells derived from adipose tissue show
notable promise as a reliable source of iPSCs: they are easily
obtained during liposuction procedures, require fewer genomic
changes to generate iPSCs, and the reprogramming period is both
relatively short and efficient (208, 315).

Since the publication of studies by (189), a number
of protocols for the development of iPSCs have become
available that use these various adult-derived donor cells (some
autologous) and employ different combinations of transcription
factors (TFs) and delivery methods—with the goal of finding
a protocol that optimally balances efficiency, safety and related
risks (201, 311-321). Some TF delivery methods involve the
use of viruses, such as lentiviruses, to integrate viral DNA into
replicating regions of the host genome (322). The use of viral
vectors to deliver reprogramming factors can, however, lead
to chromosomal disruption, expression of transgenes, and/or
mutations (322). More recent “scarless” technologies have been
introduced that use episomal vectors, synthetic mRNAs and
Sendai viruses that do not integrate to the genome during
reprogramming of adult somatic cells into iPSCs (198, 323-
325). Kim et al. (199) developed a vector-free method to
generate human iPSCs directly from human fibroblasts through
delivery of reprogramming proteins (Oct4, Sox2, Klf4, and c-
Myc) fused to cell penetrating peptides capable of crossing the cell
membrane (199). These “scarless” and vector-free systems reduce
potential risks of chromosomal disruption associated with DNA
transfection and genome manipulation.

Studies in animal models of SCI that involve transplantation
of human NSCs derived from iPSCs also suggest that difficulties
remain in ensuring in vivo differentiation of cells into
appropriate neural cell lineages and with tumorigenicity—both
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of which may hinder successful cell engraftment and functional
recovery (326, 327). Evidence suggests that the local CNS
microenvironment and pro-inflammatory factors (and associated
neuroinflammation) can influence transplanted cell engraftment,
differentiation and survival (326). In light of this, optimization of
protocols for human cell reprogramming and the generation of
iPSCs for use in clinical trials remains a work in progress in an
attempt to achieve balance in safety and efficiency when applied
in humans for certain types of neurotrauma (11, 144, 328).

Direct Reprogramming and
Transdifferentiation of Autologous Somatic
Cells

Cell reprogramming studies published in the late twentieth and
early twenty-first centuries that demonstrated transdifferentation
challenged the widespread notion of predetermined cell fates
(329-332). Indeed, NPCs/NSCs can be generated from iPSCs, but
can also be directly generated from somatic cells (e.g., fibroblasts)
via a process known as direct reprogramming (333, 334). Lujan
et al. (335) showed the direct conversion of MEFs to NPCs
using reprogramming factors (Sox2, FoxG1, and Brn2). Somatic
cells can also be transdifferentiated to become mature neuronal
cells [e.g., neurons, glia; (336, 337)]. Vierbuchen et al. (336),
for instance, demonstrated that mouse embryonic fibroblasts
(MEFs) could be directly converted to neurons. The same
and other iterative combinations of factors (e.g., Musashi-1
(Msi-1)°) and techniques (e.g., silencing of donor cell-specific
transcriptional programs, chromatin remodeling) to optimize
cell transdifferentiation, generation and stability have been
further identified (339-343).

Direct reprogramming via chromatin remodeling involves
opening the chromatin in somatic cells, and facilitating sustained
exposure to a set of transcription factors that effectively
converts the somatic cells to NSC/NPCs; chromatin remodeling
enables NSCs/NPCs to maintain their new identities and
bypass the intermediate pluripotent state (337, 344, 345). For
direct reprogramming approaches, bypassing the intermediate
pluripotent state reduces the associated reprogramming risks
of genetic and epigenetic abnormalities (346, 347). Continuing
research is further exploring those combinations of TFs that
could be most effective in direct reprogramming somatic
cells into neuronal subtypes (e.g., dopaminergic, GABA-ergic,
glutamatergic, and motor neurons), as well as distinct types of
glial cells [i.e., oligodendrocytes, astrocytes, and Schwann cells;
(325, 348)].

POSSIBLE APPLICATIONS OF
AUTOLOGOUS IPSC-DERIVED CELL
TYPES AND DRNPCS

NPCs have potential to participate in and facilitate central
neural regeneration and repair by functioning to replace lost or

*Musashi-1(Ms-1) is found to upregulate in injured ependymal cells in certain
adult amphibians and lizards, and thought to play a role in regeneration of the
injured spinal cord (143, 144, 338, 339).

damaged neurons, prompt axonal remyelination, and provide
local trophic support (111, 132, 155, 262). Autologous iPSC-
NPCs could be generated using a patient’s somatic cells, and
reprogrammed via dual SMAD inhibition (209, 349), embryoid
body formation and differentiation into neural rosettes (210),
or via the piggybac transposon system paired with induction of
the NOTCH pathway (211, 324). Dimos et al. (350) generated
autologous iPSCs from patient-specific fibroblasts that were then
differentiated into motor neurons. As previously mentioned,
drNPCs may also be generated via direct reprogramming of
autologous somatic cells. In mouse models of SCI, transplanted
iPSC-NPCs induced axonal remyelination and regeneration,
inhibition of (further) cell death, and improvements in a number
of behavioral outcomes (169, 170, 172). These cells have also
shown the ability to differentiate in vivo into neurons and glial
cells, migrate (169), and effectively integrate to host tissue within
the CNS (114).

ISSUES, QUESTIONS, PROBLEMS, AND
POSSIBLE SOLUTIONS

Optimization of iPSC Production and

Differentiation

Several important questions remain regarding reprogramming
of human cells that must be considered pursuant to their
use in clinical applications. For example, it will be important
to discern to what extent iPSCs retain epigenetic memory of
their donor cell types, and whether the induced pluripotency is
equivalent to that seen in ESCs (144, 309, 351). It is also necessary
to determine the extent to which different reprogramming
methods (choice of donor cell and iPSC line, cell selection
during propagation, and culture conditions) influences genetic
variability and functionality of the differentiated cells (144, 310).
While genetic variability between iPSC lines could theoretically
be resolved via gene editing, human pluripotent stem cells have
demonstrated resilience to conventional gene targeting methods,
and even those methods that have worked (352-354) have
been shown to be both inefficient and time consuming (144).
Advancements made in the use of novel gene-editing systems,
such as CRISPR/Cas-9 and its variants, may offer a possible
solution to this demonstrated resilience in iPSCs to targeted
gene-editing (144, 355).

Mutations, Tumorigenicity, and Teratoma

Formation

Concerns regarding mutations and tumorigencitiy are focal to
any consideration of the development and use of reprogrammed,
differentiated iPSCs. iPSCs can acquire mutations during both
the reprogramming process and in vitro expansion; furthermore,
some protocols for generation of iPSCs call for the use of c-
Myc—a proto-oncogene associated with various types of cancers
(325, 356, 357). Risk of tumorigenicity and accumulation of
genetic alterations might be reduced by selecting appropriate
cell source(s) for the generation of iPSCs (i.e. adipose cells,
keratinocytes, or melanocytes) (11, 310). Direct reprogramming
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may also offer a way to reduce these risks, as reprogrammed cells
do not require an intermediate pluripotent stage (329-332).

Yet, even with sufficient controls for mutation during these
phases of development, there remains a definitive need for an
efficient technique for evaluating differentiation and screening
for mutagenesis and potential tumor- and/or teratoma formation
both prior to and following transplantation. Antibodies that
target high-risk cell subpopulations and selective in vivo ablation
of transplanted cells are potential solutions being explored to
reduce this risk (358), and further studies are needed to more
fully define the effectiveness of this, and other methods of
insuring stability of these cells.

Immunological Interactions and Possible

Rejection

A growing body of literature describes the numerous pathways
of communication that exist between the immune system and
the CNS—namely, the role that such communication has in
the CNS ability to maintain homeostasis and to react to
neurological injury and trauma [e.g., neuroinflammation, (359-
362)]. Communication between these two vital systems is
mediated primarily through immune regulatory molecules that
are released by cells residing in the CNS, such as microglia, mast
cells, astrocytes, and oligodendrocytes (361-365).

Following neurotrauma, the CNS undergoes
pathophysiological changes that both affect and are affected
by the innate and adaptive arms of the immune system. After
acute stroke, for instance, brain ischaemia, damage to tissue
and subsequent release of pro-inflammatory factors (e.g.,
matrix metalloproteinase-3 (MMP-3), ATP, alpha-synuclein,
and neuromelanin, (366, 367)) can activate innate immune
(via leukocytes, toll-like receptors, and the lectin pathway) and
neuroinflammatory responses, such as the release of cytokines
and activation of resident microglial cells (359, 365, 368). T and
B cells mediate the adaptive immune responses to neurological
damage, providing both potentially protective and potentially
damaging autoimmune/reactive effects on neural tissue, if
inflammation is prolonged and unregulated [(362, 365, 369-
371); for a thorough overview of the innate and adaptive immune
responses to neurotrauma, see (359, 371)].

For cell therapies intended to treat the effects of neurotrauma,
neuroinflammation and the potential for an immune response
must be considered. In some cases, the administration of
antibiotics, immunosuppresants, or other small-molecule anti-
inflammatory agents [e.g., N-palmitoylethanolamine (PEA)] may
be required, particularly following or alongside transplant or
injection of tissue/cells into injured patients (362, 372, 373).
However, one must also consider the effect that administration of
such immunosuppressants may have on the stem cell therapies,
cell differentiation and cell engraftment, as well as the optimum
time for delivery of these substances (374).

In theory, the use of autologous adult somatic cells to generate
iPSCs and progeny would avoid or at least significantly reduce
immunogenicity in stem cell transplant therapies. However,
Zhao et al. (375) suggested that transplantable stem cells
could be subject to aberrant DNA methylation during the

reprogramming process, and that such changes to the DNA
might trigger an immune response after transplantation in the
host. Other potential sources of immunogenicity may include
culture reagents, protein expression, maturity of transplanted
cells, or factors of the micro- or macro-environment at the
site of transplantation (376). Others have explored the potential
immunogenicity of autologous iPSCs using mouse (377, 378) and
primate models (379), and these studies appear to contradict
the results reported by Zhao et al. (375). Such ambiguity
establishes the need to more stringently assess potential sources
of immunogenicity in iPSC-derived cell therapies prior to their
clinical use.

Safety and Use: Addressing Ethical, Legal

and Social Issues

Interest in stem cell research is sustained by the potential
contribution that these cells and their progeny can make
to transplant-based therapies for neurological repair and
regeneration (260, 380, 381). Indeed, research suggests that stem
cell transplantation affords potential as a therapeutic strategy
for central neural injury and disease (260, 382, 383). Initially
focused on use of ESCs as sources of pluripotent stem cells, the
field was soon rife with ethical debate related to controversies
surrounding the sources of ESCs, implications relevant to the
status of early-stage human embryos (380), limited supply, high
cost, and associated risks of tumorigenicity and immune rejection
after transplantation.

In light of this, more recent basic and preclinical studies
of regenerative therapies for CNS insult have shifted toward
use of iPSCs and their derivatives that are generated from
adult somatic cells. As noted above, iPSC-derived and directly
reprogrammed neuronal and glial cell types can be generated
from cell sources that are not (or at least less) controversial and
more readily available. Such cell sources can be autologous—
derived from tissue samples directly from patients—and thus, can
eliminate or significantly reduce risks of immunological rejection
after transplantation, and may appeal to current incentives for
personalized and precision medicine. As well, developments
have been made in reducing time spent in vitro during the
reprogramming processes, improving selection of cell type, and
increasing efficiency of methods to remove harmful cells pre-
and post-transplantation, which, when taken together, can reduce
risks of tumorigencity in iPSC transplant-based therapies.

To be sure, autologous reprogrammed cells have a number
of attributes that make them attractive and potentially
viable alternatives (to ESCs and fetal stem cells) in cell-
based therapeutic approaches for particular types of CNS
injury and disease. Yet, while this approach has potential
to fulfill therapeutic goals of enabling partial to complete
recovery of defined functions, ethico-legal and social issues
persist. As described in detail elsewhere (260, 384, 385) such
issues involve the unknowns of intermediate and long-term
use of new techniques and technologies in practice. For
example, (1) how such unknowns impact the validity and
contingencies of informed consent; (2) the need for continuity
of research and clinical care (to address emerging issues
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consequential to sustained use-in-practice); (3) legal liabilities
and process of claims if/when adverse events occur; and (4)
provision/distribution of resources and services (to furnish cells,
as well clinical interventions, and ongoing support) in and across
various populations in need.

We have proposed a risk assessment approach to more
specifically define and address the issues, questions and problems
generated by possible uses of emerging neuroscientific and
neurotechnological developments (386, 387); but address
does not assure resolution. While some concerns relate to
safety and effectiveness (e.g., possibilities of unanticipated
consequences, runaway effects) with regard for patients’
welfare (i.e., via integrity of informed consent and availability
of sustainable clinical care), others reflect recognition of
problematic distribution of medical goods [for overview, see
(388)]. Both safety and distribution can be met, to some extent,
by rigorous quality control and expediency in the manufacture
and delivery of cells. Still, it remains to be determined if the type
and extent of broad-based medical care (i.e., trained personnel
and institutional resources) can and/or will be made available to
perform the procedures and insure sustained post-implantation
evaluations and care.

We have opined, and re-iterate here, that any consideration
of the ethics of biomedicine must regard economic factors, and
in many cases, economics of biomedical research and care are
determined by policy and law (389, 390). Here discussion of the
viability and value of NSCs—or any biomedical technique and/or
technology—centers upon the interactive roles of regulatory
policy in establishing both standards of care and fiscal (i.e.,
insurance) subsidy of these approaches in patient care. Suffice
it to note that the gravitas—and international relevance and
importance—of this situation is such that a complete discussion
of economic and policy issues focal to NSCs or translational
neuroscience would be significant, and is therefore beyond the
scope of this paper.

CONCLUSIONS AND FUTURE VISTAS

Research and possible use of stem cell therapies toward
mitigating the effects of neurotrauma, and inducing neurological
repair and regeneration are gaining momentum and
attention—in both the professional and public spheres. Emerging
techniques and technologies of cell development, manufacture
and delivery are progressing at a considerable pace. A number of
previously contentious technical and ethical issues and questions
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