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Objective: To identify reproducible sub-classes of traumatic brain injury (TBI) that

correlate with patient outcomes.

Methods: Two TBI datasets from the Federal Interagency Traumatic Brain Injury

Research (FITBIR) Informatics System were utilized, Transforming Research and Clinical

Knowledge in Traumatic Brain Injury (TRACK-TBI) Pilot and Citicoline Brain Injury

Treatment Trial (COBRIT). Patients included in these analyses had closed head injuries

with Glasgow Comas Scale (GCS) scores of 13–15 at arrival at the Emergency

Department (ED). Sparse hiearchical clustering was applied to identify TBI sub-classes

within each dataset. The reproducibility of the sub-classes was evaluated by investigating

similarities in clinical variable profiles and patient outcomes in each sub-class between

the two datasets, as well as by using a statistical metric called in-group proportion (IGP).

Results: Seven TBI sub-classes were identified in the first dataset. There were

between-class differences in patient outcomes at 90 days (Glasgow Outcome Scale

Extended (GOSE): p < 0.001) and 180 days (Trail Making Test (TMT): p = 0.03). Four of

seven sub-classes were reproducible in the second dataset with very high IGPs (94, 100,

99, 97%). Seven TBI sub-classes were also identified in the second dataset. There were

significant between-class differences in patient outcomes at 180 days (GOSE: p= 0.024;

Brief Symptom Inventory (BSI) p = 0.007; TMT: p < 0.001). Three of seven sub-classes

were reproducible in the second dataset with very high IGPs (100% for all).

Conclusions: Reproducible TBI sub-classes were identified across two independent

datasets, suggesting that these sub-classes exist in a general population. Differences in

patient outcomes according to sub-class assignment suggest that this sub-classification

could be used to guide post-TBI prognosis.
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INTRODUCTION

Traumatic brain injury (TBI) severity is sub-classified into “mild,”
“moderate,” and “severe” categories based upon Glasgow Coma
Scale (GCS) scores (1). In addition to GCS, some classification
systems also consider duration of loss of consciousness, amnesia,
alteration of awareness, and imaging evidence of traumatic
head injury (2). The sub-classification of TBI might be further
refined if additional information that is available at the time
of the initial post-TBI patient evaluation was utilized. Si et al.
previously performed a study in 2018 that classified mild TBI
patients into sub-classes using patients’ gender, employment,
marital status, use of alcohol, use of tobacco, history of neurologic
disease, history of psychiatric disease, injury mechanism and a
few additional characteristics collected during the Emergency
Department (ED) visit including head CT results, diastolic and
systolic blood pressure, and use of intravenous fluids (3). The
sub-class assignment in this prior study predicted 90 and 180-day
patient outcomes. However, the previous study focused on
finding sub-classes from a single dataset, Transforming Research
and Clinical Knowledge in Traumatic Brain Injury (TRACK-
TBI) Pilot (4). Sub-classification is more clinically relevant if the
sub-classes found in one patient population are reproducible in
other patient populations.

The objectives of this study were to identify TBI sub-classes
from a group of patients collected from one dataset and evaluate
the reproducibility of the sub-classes in another dataset [TRACK-
TBI Pilot and Citicoline Brain Injury Treatment Trial (COBRIT)]
(5). If sub-classes exist in both datasets, it provides more evidence
that such sub-classes exist in the general TBI population and thus
might inform clinical practice.

METHODS

Data
After obtaining appropriate approvals for accessing data, two
TBI datasets were downloaded from the Federal Interagency
Traumatic Brain Injury Research (FITBIR) Informatics System1,
TRACK-TBI Pilot2 and COBRIT.

Patient Selection
We included patients with a GCS score of 13–15 at arrival at the
ED and who had a closed head injury. Four hundred and seventy-
eight out of 599 patients in TRACK-TBI Pilot, and 564 out of
1,213 patients in COBRIT met these inclusion criteria.

Clinical Variables
Based on clinical knowledge and literature review, 37 clinical
variables potentially relevant for TBI sub-classification were
included in our study (6–12) (Table 1). We only considered
clinical variables shared by both datasets and for which less than
10% of patients had missing values, except for two variables

1“Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics

System,” 2015, fitbir.nih.gov.
2“Transforming Research and Clinical Knowledge in Traumatic Brain Injury

Pilot,” 2014, tracktbi.ucsf.edu.

that we hypothesized to be exceptionally important for sub-
classifying patients: post-traumatic amnesia (PTA) duration and
pupil reaction at ED arrival. To perform sub-classification
on clinical variables, we imputed missing data for clinical
variables in TRACK-TBI Pilot and COBRIT separately with a
classic imputation method, Multivariate Imputation by Chained
Equations implemented in the R package “mice” (13).

Outcome Variables
We included five patient outcome measures shared by
TRACK-TBI Pilot and COBRIT to evaluate post-TBI
global outcomes, psychological status, and cognitive activity
limitations/neuropsychological impairment. Scores on each
outcome measure were defined as consistent with “good”
or “bad” outcomes. Specifically, a Glasgow Outcome Score
Extended (GOSE) at 90 or 180 days was considered as a bad
outcome if GOSE was from 1 to 7; a good outcome otherwise
(14). Brief Symptom Inventory (BSI) score at 180 days was
considered bad if its Global Severity Index T-score was >63 or
two or more subscales >63; a good outcome, otherwise (15).

Wechsler Adult Intelligence Scale (WAIS) score at 180 days
was considered as a bad outcome if the score was >=1 standard
deviation below the mean; a good outcome, otherwise (16). Trail
Making Test (TMT) score at 180 days was considered as a bad
outcome if either of the age adjusted normalized times in A and
B was >=1 standard deviation above mean; a good outcome,
otherwise (17, 18).

Sparse Hierarchical Clustering (SHC)
Hierarchical Clustering (HC) is a conventional clustering
algorithm to build a binary tree that successively merges similar
subgroups hierarchically. HC starts from the bottom of the tree
where each subject is in its own subgroup and the pairwise
distance between the subgroups is measured. In the next upper
level of the tree, the pair of subgroups with the closest distance
is merged into a bigger subgroup and the tree is iteratively built.
However, since our study involved a large number of variables
and not all of them contribute to sub-classifying patients, we used
Sparse Hierarchical Clustering (SHC) (19), which automatically
selects informative features to the clustering. SHC analysis was
performed with an R package “sparcl.”

Reproducibility of Sub-classes in an
Independent Dataset
Our objective was to evaluate the reproducibility of sub-classes
identified within one dataset in another independent dataset, by
classifying new patients into the sub-classes we found. First, we
computed a centroid for each sub-class found in one dataset
(dataset A), which averaged over the clinical variables of the
patients within that sub-class. Then, we classified each patient in
the second dataset (dataset B) to one sub-class in A by the shortest
distance between the patient and the cluster-wise centroid. Note
that it is possible that there exists a sub-class in A into which none
of the patients in B is classified. Such a sub-class is definitely not
reproducible. For the remaining sub-classes in A, i.e., sub-classes
into which at least some patients in B were classified, we further
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TABLE 1 | Clinical variables included in analyses.

Variable category Variable name Type Values

Demographics Age Ordinal 1–3: <30, 30–45, >45

Gender Binary 0–1: female, male

Ethnicity Binary 0–1: not Hispanic or Latino, Hispanic or Latino

Education Binary 0–1: college and grad, before high and high

Employment Binary 0–1: employed, unemployed/not working

Marital status Binary 0–1: married/living together/common law, not married/living together/

common law

Medical history Alcohol use Binary 0–1: no, yes

Prior developmental disease Binary 0–1: no, yes

Prior psychiatric disease Binary 0–1: no, yes

Current TBI mechanism Injury mechanism–bike Binary 0–1: no, yes

Injury mechanism–pedestrian Binary 0–1: no, yes

Injury mechanism–motorcycle Binary 0–1: no, yes

Injury mechanism–motor Binary 0–1: no, yes

Injury mechanism–other person Binary 0–1: no, yes

Injury mechanism–fall Binary 0–1: no, yes

Injury mechanism–striking Binary 0–1: no, yes

Injury mechanism–other types Binary 0–1: no, yes

ED examination GCS total score at ED arrival Numerical 13–15

GCS assessment condition at ED arrival Binary 0–1: no sedation or paralysis, sedation or paralysis

GCS total score at ED discharge Numerical 3–15

Hospital type Binary 0–1: primary, secondary

Post-traumatic amnesia duration Ordinal 1–3: none, <1min, ≥1min

CT result Binary 0–1: without abnormality, abnormal

Pupil reactivity at ED arrival Ordinal 1–3: both, one, neither reactive

Blood work Alcohol intoxication at ED Binary 0–1: no, yes

Any drug intoxication Binary 0–1: no, yes

Vital signs Diastolic blood pressure at ED Ordinal 1–3: low (less than 60mm Hg), normal (60–89mm Hg), high (at least 90mm Hg)

Systolic blood pressure at ED Ordinal 1–3: low (less than 90mm Hg), normal (90–139mm Hg), high (at least

140mm Hg)

Heart rate at ED Ordinal 1–3: low (less than 60 bpm), normal (60–100 bpm), high (at least 101 bpm)

Temperature at ED 1–3: low (less than 35 degrees Celsius), normal (35–37.7 degrees Celsius), high

(greater than 37.7 degrees Celsius)

O2 saturation at ED Ordinal 1–2: low (less than 90%), normal (at least 90%)

Respiratory rate at ED Ordinal 1–3: low (less than 12/min), normal (12–20/min), high (at least 21/min)

Complications and

treatment at ED

Blood transfusion Binary 0–1: no, yes

Hypotension Binary 0–1: no, yes

Hypoxia Binary 0–1: no, yes

Intubation Binary 0–1: no, yes

Seizure Binary 0–1: no, yes

Of note, the definition of injury due to “other person” in TRACK-TBI Pilot was “injury purposefully inflicted by other persons.” “Primary” vs. “Secondary” hospital type is determined by

“whether the participant/subject was taken directly from the scene of accident to the study hospital (primary) or was first taken to a non-study hospital, and then transferred to the study

hospital (secondary).”

assessed the reproducibility of these sub-classes using statistical
criteria and medical criteria, both discussed below.

A cluster quality measure called “in group proportion (IGP)”
was used to statistically assess the reproducibility of the sub-
classes (20). IGP is between 0 and 1; the higher the IGP,
the stronger evidence for the reproducibility of a sub-class.
From the medical perspective, we assessed two aspects for
reproducibility. First, if the average patient in a sub-class from
the first dataset had similar measurements for his/her clinical

variables to the average patient in a sub-class from the second
dataset, there was evidence for the reproducibility of the sub-
class. Similarities between the average patients was assessed by
a Pearson correlation between their respective clinical variables.
Second, we computed the proportions of bad outcomes among
patients in sub-classes from each independent dataset, on each
of the multi-dimensional outcome variables. A lack of difference
in outcomes using a two-sample proportion test was further
evidence for reproducibility.
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RESULTS AND DISCUSSION

Summary statistics for clinical variables in TRACK-TBI Pilot and
COBRIT are shown in Table 2.

Reproducibility Study
Initially we identified sub-classes using the TRACK-TBI Pilot
data and validated the sub-classes using the COBRIT data.
Then, we reversed the analysis and identified sub-classes
from the COBRIT data and used TRACK-TBI Pilot data for
validation. Variables that significantly contributed to patient
sub-classification in TRACK-TBI Pilot and COBRIT were found

by SHC and indicated with “∗” and “#” in Table 2, respectively.
Finally, we examined the similarity between the two sets of
reproducible sub-classes found in the two datasets.

Reproducibility Study of Track-TBI Pilot Sub-classes

Using COBRIT

Sub-classification based on clinical variables in TRACK-TBI

pilot
SHC identified seven sub-classes with 11 clinical variables
indicated by “∗” in Table 2. As shown in Figure 1, sub-classes A-
G included 22, 12, 16, 14, 17, 10, and 9% of all the TRACK-TBI
Pilot subjects, respectively.

TABLE 2 | Summary statistics of clinical variables included in the analysis.

Variable category Variable name Summary statistics in TTP Summary statistics

in COBRIT

Demographics *#Age (<30/30∼45/>45) 155/107/216 164/115/285

*#Gender (female/male) 138/340 162/402

Ethnicity (not Hispanic or Latino/Hispanic or Latino) 403/75 535/29

*Education (college and grad/before high and high) 148/330 113/451

*#Employment (employed/unemployed) 275/203 386/178

*#Marital status (married/not married) 151/327 232/332

Medical history *#Alcohol use (no/yes) 238/240 219/345

Prior developmental disease (no/yes) 424/54 503/61

*Prior psychiatric disease (no/yes) 330/148 445/119

Current TBI mechanism Injury mechanism—bike (no/yes) 398/80 505/59

Injury mechanism—pedestrian (no/yes) 443/35 535/29

Injury mechanism—motorcycle (no/yes) 465/13 477/87
# Injury mechanism—motor (no/yes) 391/87 419/145

Injury mechanism−other person (no/yes) 398/80 494/70

*# Injury mechanism—fall (no/yes) 325/153 417/147

Injury mechanism—striking (no/yes) 462/16 549/15

Injury mechanism—other types (no/yes) 464/14 552/12

ED examination GCS total score at ED arrival (13/14/15) 16/99/363 60/110/394

GCS assessment condition at ED arrival (no sedation or

paralysis/sedation or paralysis)

473/5 535/29

GCS total score at ED discharge (3–12/13/14/15) 11/5/43/419 54/29/86/395
#Hospital type (primary/secondary) 395/83 397/167

*#Post-traumatic amnesia duration (none/<1 min/≥1min) 197/32/249 161/0/403

*CT result (without/with abnormality) 254/224 3/561

Pupil reactivity at ED arrival (both/one/neither reactive) 470/6/2 561/2/1

Blood work #Alcohol intoxication at ED (no/yes) 405/73 428/136
#Any drug intoxication (no/yes) 451/27 419/145

Vital signs Diastolic blood pressure at ED (low/normal/high) 0/389/89 75/440/49

*#Systolic blood pressure at ED (low/normal/high) 0/318/160 0/387/177

Heart rate at ED (low/normal/high) 11/395/72 10/466/88

Temperature at ED (low/normal/high) 12/457/9 3/536/25

O2 saturation at ED (low/normal/high) 1/477/0 12/552/0

Respiratory rate at ED (low/normal/high) 1/438/39 9/453/102

Complications and treatment at ED Blood transfusion (no/yes) 466/12 480/84
#Hypotension (no/yes) 469/9 315/249

Hypoxia (no/yes) 456/22 523/41

Intubation (no/yes) 466/12 564/0

Seizure (no/yes) 470/8 563/1

Clinical variables found by SHC that significantly contribute to sub-classifying Track-TBI Pilot patients or COBRIT patients are indicated by “*” and “#,” respectively.
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FIGURE 1 | Dendrogram built by SHC. Seven clusters (A–G) were used in

subsequent analyses. The percentages refer to the proportions of TRACK-TBI

Pilot patients in each cluster.

Subgroup characterization using clinical variables in

TRACK-TBI pilot
To characterize the seven sub-classes using the 11 clinical
variables, we used an 11 × 7 “pie chart array” in Figure 2 to
show the distribution of each clinical variable within each sub-
class. Colors of each pie represent the proportions of the different
values for each variable. Please see Table 1 for the definition of
“values” for each variable.

Furthermore, we explored the differences of multi-
dimensional outcomes between sub-classes using an ANOVA
test, which showed that there were significant between-class
differences in GOSE at 90 days (p < 0.001) and TMT at 180 days
(p= 0.03).

Then, to further investigate the between cluster differences in
outcomes, we used a Chi-square test for proportions to compare
GOSE at 90 days and TMT at 180 days between each pair
of clusters. A few statistically significant ordinal relationships
between a few pairs of sub-classes were identified (Table 3). For
example, sub-class E had significantly better recovery in GOSE at
90 days, compared with sub-classes B, C, D, and G (p < 0.001,
p < 0.001, p = 0.001, p < 0.001). Based on examination of
the clinical profiles shown in Figure 2, we contend that this is
because all patients in sub-class E had normal CT scans and
were employed, and sub-class E contained more individuals with
college or graduate degrees. We further compared outcomes
between sub-classes B, C, D, and G, and found that sub-class C
had better recovery in TMT at 180 days, compared with sub-
classes D and G. This finding might be due to those in sub-class
C not having a history of alcohol use.

Validation of reproducibility using COBRIT
To validate if the sub-classes identified in TRACK-TBI Pilot
were reproducible in COBRIT, we first classified each COBRIT
patient into one of the seven sub-classes identified via analyses

of the TRACK-TBI Pilot dataset. Sub-classes A-G included 2, 90,
142, 14, 6, 236, and 74 of the patients in COBRIT. Only 4% of
COBRIT patients were classified into sub-classes A, D, and E.
This is because A, D, and E in TRACK-TBI Pilot only included
patients with normal CT while 99.5% of COBRIT patients had
abnormal CT. Since 96% of COBRIT patients were classified
into sub-classes B, C, F, and G, we focused on these four sub-
classes in subsequent analyses. To measure the reproducibility
of the four sub-classes in COBRIT, we computed the IGP for
each sub-class. The IGPs of sub-classes B, C, F, and G were
94, 100, 99, and 97%, respectively. These IGPs are very high
(close to the maximum possible value of 1), indicating very high
reproducibility (20).

Furthermore, we checked reproducibility using clinical
similarity criteria. In the left four columns of Figure 3, we show
the pie chart array of sub-classes B, C, F, and G in TRACK-TBI
Pilot (same as Figure 2). In the right four columns, we show the
pie chart array of COBRIT patients who were classified into B, C,
F, and G, respectively. Comparing the corresponding columns in
the left and right panels, clear similarities can be seen. To quantify
the similarity, we computed the Pearson correlation between
the average patients of left-B and right-B sub-classes using their
respective clinical variables. Likewise, we computed the Pearson
correlation for other pairs of sub-classes. Correlations between
sub-classes B, C, F, and G on the left pane and right pane are all
larger than or equal to 0.99 (p < 0.001), providing evidence for
the reproducibility of the sub-classes.

Another clinical criterion for reproducibility assessment is
based on patient outcomes following TBI. Specifically, we tested
the difference in each outcome between patients in the same
sub-classes (B, C, F, or G) in TRACK-TBI Pilot and COBRIT.
There were no significant differences in the proportion of patients
experiencing bad outcomes between a TRACK-TBI Pilot sub-
class and the COBRIT sub-class for each of the outcome variables.
Since outcome variables were not used in SHC to produce the
sub-classes, this result provides strong evidence that sub-classes
B, C, F, and G found in TRACK-TBI Pilot were reproducible in
COBRIT.

Prognosis of 180-day outcome using 90-day outcome
We pooled the patients from both datasets in each reproducible
sub-class, and explored the differences of multi-dimensional
outcomes between sub-classes using an ANOVA test, which
showed that there was still significant between-class differences
in GOSE (p = 0.03), BSI (p = 0.006), and TMT at 180 days
(p = 0.009). Furthermore, we assessed the prognostic capability
of 90-day GOSE for predicting 180-day GOSE in each sub-class,
by computing the positive predictive value (PPV; proportion of
patients with bad 90-day GOSE score who did not recover at
180 days) and negative predictive value (NPV; proportion of
patients with good 90-day GOSE scores who did not deteriorate
at 180 days) of each sub-class. For sub-classes B, C, F, and G,
PPVs were 93.1, 77.5, 76.7, and 84.5%, respectively; NPVs were
71.9, 78.4, 81.7, and 87.5%, respectively, demonstrating clear
differences between the sub-classes. Sub-class B had the highest
PPV of 93.1%. The implication of this result is that if a patient
is classified to sub-class B and has bad 90-day GOSE, he/she
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FIGURE 2 | Distributions of clinical variables in clusters A–G and in the entire TRACK-TBI Pilot (TTP) population. Red represents proportions of age >45, male,

education level being less than high school and high school, unemployment, unmarried, use of alcohol, having prior psychiatric disease, injury due to falls,

post-traumatic amnesia >1min, abnormal CT, abnormal systolic blood pressure at ED. Employed, employment; martial, marital status; alcohol, alcohol use;

psychiatric, prior psychiatric disease; fall, injury mechanism being falls; PTA, post-traumatic amnesia; CT, CT result; systolic, systolic blood pressure at ED, TTP,

Track-TBI Pilot.

has 93.1% probability of having bad GOSE (i.e., non-recovering)
at 180 days. Sub-class G had the highest NPV of 87.5%. This
means that if a patient is classified to sub-class G and has good
90-day GOSE, he/she has 87.5% probability of having goodGOSE
(i.e., non-deteriorating) at 180 days. These probabilities would be
different for the patient who is classified into any of the other
sub-classes.

Reproducibility Study of COBRIT Sub-classes Using

Track-TBI Pilot

Sub-classification based on clinical variables in COBRIT
SHC identified seven sub-classes with 13 clinical variables
indicated by “#” in Table 2. As shown in Figure 4, sub-classes

A–G included 10, 8, 16, 23, 22, 10, and 10% of all the COBRIT
subjects, respectively.

Subgroup characterization using clinical variables in

COBRIT
To characterize the seven sub-classes using the 13 clinical
variables, we used a 13 × 7 “pie chart array” in Figure 5 to show
the distribution of each clinical variable within each sub-class.

Furthermore, we explored the differences of multi-
dimensional patient outcomes between sub-classes using
an ANOVA test, which showed that there were significant
between-class differences in GOSE (p = 0.024), BSI (p = 0.007),
and TMT (p < 0.001) at 180 days.
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TABLE 3 | Pairwise comparison of outcomes between sub-classes.

E > B E > C E > D E > G C > D C > G

GOSE at 90 days p < 0.001 p < 0.001 p = 0.001 p < 0.001

GOSE at 180 days

BSI at 180 days

WAIS at 180 days

TMT at 180 days p = 0.005 p = 0.002

P-values are shown only for those comparisons with significant differences.

FIGURE 3 | Distributions of clinical variables in four clusters B, C, F, and G in TRACK-TBI Pilot (left four columns) and in COBRIT patients who were classified into B,

C, F, and G (right four columns). Colors and abbreviations are defined in the same way as Figure 2.

Then, to further investigate the between cluster differences in
outcomes we used a Chi-square test for proportions to compare
GOSE, BSI, and TMT at 180 days between each pair of clusters.
A few statistically different ordinal relationships between a few
pairs of sub-classes were identified (summarized in Table 4). For
example, sub-class B had significantly better outcomes than sub-
classes A, D, E, and G in terms of GOSE, BSI, and TMT at
180 days. Based on examination of the different clinical profiles
between sub-classes (Figure 5), we hypothesize that superior

outcomes amongst those in sub-class B might be due to a higher
proportion of individuals being married, fewer patients having
TBI due to motor vehicle accidents, and fewer patients with
drug intoxication. Among other sub-classes, sub-class D had
better recovery in TMT at 180 days compared to sub-classes
E and G. This might be explained by differences in injury
mechanisms; sub-class D includes fewer patients with injuries
due to motor vehicle accidents and more patients with injuries
due to falls.
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FIGURE 4 | Dendrogram built by SHC. Seven clusters (A–G) were used in

subsequent analyses. The percentages refer to the proportion of COBRIT

patients in each cluster.

Validation of reproducibility using TRACK-TBI pilot
Since 99.5% of the patients in COBRIT had abnormal CT, we
only included the TRACK-TBI Pilot patients with abnormal CT
(224 patients) in the validation. We classified the 224 TRACK-
TBI Pilot patients into one of the seven sub-classes found in
COBRIT. Sub-classes A–G included 0, 1, 2, 90, 61, 2, and 68
patients in TRACK-TBI Pilot. Only 2% of TRACK-TBI Pilot
patients were classified into sub-classes A, B, C, and F. One
possible reasonmight be that A, B, C, and F in COBRIT contained
patients with hypotension while 98.1% of TRACK-TBI Pilot
patients had no hypotension. Since 97.8% of TRACK-TBI Pilot
patients were classified into sub-classes D, E, and G, we focused
on these three sub-classes in subsequent analyses. Tomeasure the
reproducibility of the three sub-classes in TRACK-TBI Pilot, we
computed the IGP for each sub-class. The IGPs of sub-classes D,
E, and G were each 100%, indicating high reproducibility.

Furthermore, we checked reproducibility using clinical
criteria by a pie chart array in Figure 6 (same as Figure 4).
Comparing the corresponding columns in the left and right
panels in Figure 6, we can see clear similarity. To quantify the
similarity, we computed the Pearson correlation between the
clinical variables of the average patients in sub-classes from
the first dataset to the corresponding sub-class in the second
dataset, and the correlations between sub-classes D, E, and G
in two datasets are all larger than or equal to 0.99 (p < 0.001).
All the correlations are near one, which is strong evidence for
reproducibility.

We also tested the difference in each patient outcome between
a sub-class (D, E, or G) in COBRIT and TRACK-TBI Pilot
patients who were classified into that sub-class. There were
no significant differences in the proportion of patients with
bad outcomes within each sub-class between the two datasets,
providing strong evidence for reproducibility.

To assess how the sub-classification results can help inform
outcome prognosis we focused on sub-classes D, E, and G
that were found in COBRIT and reproducible in TRACK-TBI

Pilot. After pooling the patients from both datasets into each
reproducible sub-class, ANOVA was used to investigate the
differences in multi-dimensional patient outcomes between sub-
classes. There were still significant between-class differences in
TMT at 180 days (p < 0.001).

Prognosis of 180 days outcome using 90 days outcome
We assessed the prognostic capability of 90-day GOSE for
predicting 180-day GOSE in each sub-class. For sub-classes D,
E, and G, PPVs are 85.5, 76.3, and 80.6%, respectively; NPVs
are 87.2, 82.9, and 71.4%, respectively, demonstrating clear
differences between the sub-classes. Sub-class D has the highest
PPV of 85.5% and highest NPV of 87.2%. The implication of this
result is that if a patient is classified to sub-class D and has bad 90-
day GOSE, he/she has 85.5% probability of having badGOSE (i.e.,
not recovering) at 180 days. Also, if a patient is classified to sub-
class D and has good 90-day GOSE, he/she has 87.2% probability
of having good GOSE (i.e., not deteriorating) at 180 days. These
probabilities would be different if the patient were classified into
any other sub-class.

DISCUSSION AND CONCLUSIONS

The main findings of our study are that there are reproducible
sub-classes amongst TBI patients with closed head injuries who
present with a GCS score of 13–15 at arrival to the ED, and
that the sub-classes are associated with 90 and 180-day patient
outcomes. The reproducibility of the sub-classes across the two
datasets, TRACK-TBI Pilot and COBRIT, suggests that these
sub-classes likely exist in the general patient population.

Literature Review
To the best of our knowledge, there are not previously
published reproducibility studies using TRACK-TBI Pilot and
COBRIT datasets. However, Hart et al. (21) explored COBRIT
data and identified race, age, PTA, employment status, and
alcohol use history as significant predictors of 180-day BSI.
In addition, there are studies using TRACK-TBI Pilot data
to find multivariate predictive factors for post-TBI outcomes.
Lingsma et al. (22) found that GOSE scores at 90 and 180 days
were significantly associated with age, pre-existing psychiatric
conditions, education years, injury caused by assault, and
extracranial injury. Yuh et al. (23) discovered predictive factors
for GOSE at 90 days including CT evidence of subarachnoid
hemorrhage, unemployment, one or more brain contusions
on MRI, and ≥4 foci of hemorrhagic axonal injury on MRI.
Cnossen et al. (24) found that years of education, history of
psychiatric disorders, and previous TBIs were the strongest
predictors for RPQ at 180 days. Yue et al. (25) performed
multivariate regression and found that alcohol intoxication at
ED was associated with a higher odds-ratio of having GOSE
≤7 and a lower WAIS. Another study focusing on multivariate
analysis of mild TBI patients showed that GOSE at 180 days
was associated with clinical and demographics/socioeconomic
variables, including education years, history of prior seizure, and
GCS score at ED. Palacios et al. (26) compared 75 mild TBI
patients from TRACK-TBI Pilot with 47 healthy subjects, and
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FIGURE 5 | Distributions of clinical variables in clusters A–G and in the entire COBRIT population. Red represents proportions of age >45, male, unemployed,

unmarried, use of alcohol, injury due to motor accidents, injury due to falls, primary hospital, post-traumatic amnesia >1min, alcohol intoxication at ED, any drug

intoxication at ED, abnormal systolic blood pressure at ED, hypotension presents at ED. Employed, employment; martial, marital status; alcohol, alcohol use; motor,

injury mechanism being motor accident; fall, injury mechanism being falls; hospital, hospital type; PTA, post-traumatic amnesia; alcoholLV, alcohol intoxication; drug,

any drug intoxication at ED; systolic, systolic blood pressure at ED; hypotension, hypotension present at ED.

TABLE 4 | Pairwise comparison of outcomes between sub-classes.

B > A B > D B > E B > G C > G D > E D > G

GOSE at 90 days

GOSE at 180 days p = 0.006 p = 0.006

BSI at 180 days p = 0.004 p < 0.001

WAIS at 180 days

TMT at 180 days p = 0.002 p = 0.006 p = 0.001 p < 0.001

P-values are shown only for those comparisons with significant differences.
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FIGURE 6 | Distributions of clinical variables in three clusters D, E, and G for both TRACK-TBI Pilot patients who are classified into D, E, and G (left three columns)

and COBRIT (right three columns). Colors and abbreviations are defined in the same way as Figure 5.

found that alterations in the spatial maps of brain resting-state
functional connectivity networks between the two groups were
predictive of RPQ, TMT, and CVLT at 180 days.

Nielson et al. (27) adopted a topological data analysis
machine learning approach of TRACK-TBI Pilot data to discover
patient subtypes according to clinical assessments, demographics,
imaging and genetic findings, and clinical outcomes. This
analytic approach identified a subgroup of TBI patients who
had poorer outcomes, associated with higher rates of PTSD and

single-nucleotide polymorphisms associated with DNA damage.
Their study is different from ours in the following aspects:
(1) their clustering structure was found from clinical variables
and outcomes at 180 days, while our clustering structure was
based on clinical variables available at the time of initial clinical
evaluation; (2) subtypes found in their study were evaluated
by correlating with genetic information, but the subtypes we
discovered were evaluated by correlating with post-TBI outcomes
at 90 and 180 days; (3) their study focused on a single dataset,
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while ours was a cross-study of two datasets to find reproducible
sub-classes.

Consistent with the previous studies using TRACK-TBI
Pilot or COBRIT data, our study also identified age, CT
results, education, alcohol intoxication at ED, and psychiatric
disease history as significant clinical variables contributing to
TBI patient sub-classification. In addition, there are other
contributing factors to sub-classifying TBI patient in our study,
including gender, employment status, marital status, alcohol
use history, TBI due to falling, TBI due to motor accidents,
hospital type, PTA duration, drug use history, systolic blood
pressure in the ED, and hypotension in the ED. Several of
these factors have been investigated and some have been
identified as predictors for patient outcomes in studies using
datasets other than TRACK-TBI Pilot or COBRIT (28–30).
Our study provides further evidence that a combination of
multiple factors is associated with patient outcomes following
TBI. These factors fit broadly into several categories, including
sociodemographics, medical history, drug and alcohol use,
mechanism of TBI, measures of TBI severity, and brain
imaging findings. Mechanisms by which each of these variables
associates with outcomes following TBI need to be further
explored. Furthermore, the cross-validation of TBI sub-classes
in our study, increases the likelihood of the sub-classes
existing in TBI patient populations outside of TRACK-TBI
Pilot and COBRIT and increases the likelihood of this sub-
classification structure being useful for accurate prediction of
patient outcomes, a goal that has historically been difficult to
achieve (28).

Limitations
There are several limitations of this study: (1) The study only
included clinical variables shared by both datasets. Therefore, it
is possible that additional clinical variables could contribute to
TBI sub-classification, but were not considered in our study. For
example, CT results were used as a binary variable (i.e., either
“normal” CT or “abnormal” CT), while we were not able
to include more detailed Rotterdam, Helsinki, or Stockholm
CT scores since detailed CT readings were not available to
us within the TRACK-TBI Pilot dataset. (2) The rules we
used for binarizing outcomes into “good” vs. “bad” recovery
were based on literature review and domain knowledge. Other
approaches for binarization of the outcomes could be used.
(3) The reproducible sub-classes were found and verified in two
datasets only, i.e., TRACK-TBI Pilot and COBRIT. It is possible
that there are other sub-classes yet to be discovered within a
wider TBI population. (4) COBRIT was a TBI treatment trial
with citicoline. Although the use of citicoline did not result
in improvement in TBI outcomes compared with placebo (31),
citicoline may have had some impact on patients in the active
treatment group, potentially affecting the results of our analyses.

CONCLUSIONS AND FUTURE WORKS

In conclusion, our study investigated the sub-classification of
TBI amongst those with closed head injuries who had GCS

scores of 13–15 at arrival to the ED. We studied two FITBIR
datasets, TRACK-TBI Pilot and COBRIT, and independently
found seven sub-classes from each dataset. Four of the seven
sub-classes found in TRACK-TBI Pilot were reproducible in
COBRIT and three of the seven sub-classes found in COBRIT
were reproducible in TRACK-TBI Pilot. Furthermore, we used
GOSE at 90 days to predict GOSE at 180 days, and showed
the accuracy of the prognosis varied across different TBI sub-
classes. Our study helps to identify the heterogeneity of TBI, even
amongst patients all presenting with GCS scores between 13 and
15. This heterogeneity needs to be defined in order to accurately
predict patient outcomes and to determine the most appropriate
patient groups for TBI clinical trials.

If the sub-classes found in TRACK-TBI Pilot and COBRIT
are proven to exist in the wider patient population, the sub-
classes can help clinicians with their prognostication of each
patient in the following way: A clinical variable profile for
each sub-class (called sub-class-specific profile) can be computed
by averaging over the clinical variables of the patients within
that sub-class. Then, the clinician can compare a new patient’s
clinical variable profile with each of the sub-class-specific profiles
and classify the new patient to the sub-class with the most
similar profile. If further validated, this sub-classification can
then be used to guide the prognosis of the patient with
TBI.

Future TBI sub-classification work will include data collected
over a broader time range, such as data collected at patient
discharge in addition to data collected at the time of the initial
patient evaluation. For example, including where the patient was
discharged to (e.g., home, ward, or NCCU) would help take
treatment intensity into account for the sub-classification. Other
sub-classification studies will include additional datasets, helping
to further define the reproducibility of the TBI sub-classes
identified herein. Such studies are likely to provide additional
insights that can be used for prognosticating patient outcomes
following TBI.
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