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Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disease that

causes the decline of some cognitive impairments. The present study aimed to identify

the corpus callosum (CC) radiomic features related to the diagnosis of AD and build and

evaluate a classification model.

Methods: Radiomics analysis was applied to the three-dimensional T1-weighted

magnetization-prepared rapid gradient echo (MPRAGE) images of 78 patients with AD

and 44 healthy controls (HC). The CC, in each subject, was segmentedmanually and 385

features were obtained after calculation. Then, the feature selection were carried out. The

logistic regression model was constructed and evaluated according to identified features.

Thus, the model can be used for distinguishing the AD from HC subjects.

Results: Eleven features were selected from the three-dimensional T1-weighted

MPRAGE images using the LASSO model, following which, the logistic regression model

was constructed. The area under the receiver operating characteristic curve values

(AUC), sensitivity, specificity, accuracy, precision, and positive and negative predictive

values were 0.720, 0.792, 0.500, 0.684, 0.731, 0.731, and 0.583, respectively.

Conclusion: The results demonstrated the potential of CC texture features as a

biomarker for the diagnosis of AD. This is the first study showing that the radiomics

model based on machine learning was a valuable method for the diagnosis of AD.

Keywords: magnetic resonance imaging, Alzheimer’s disease, corpus callosum, radiomics, neuroimaging

INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disease, resulting in the decline of
some cognitive impairments that in turn can influence the immediate and delayed memory,
language, calculation, attention, and visuospatial abilities. A definitive diagnosis of AD depends on
the pathological findings from an invasive autopsy or biopsy that might not be available. Therefore,
noninvasive and accurate AD diagnosis is critical. Although current pharmacotherapy cannot cure
this disease, early intervention can delay the disease progression and also prolongs the lives of
patients with AD.

The corpus callosum (CC) is the largest white matter tract in the human brain, which connects
the two hemispheres that is essential for several neurological functions, including integration
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of lateralized sensory input, regulation of higher-order cognitive,
social function, and emotional processing (1). The CC atrophy
has been found in patients with AD (2), and some of these studies
have indicated that the CC atrophy might be related to the degree
of cognitive impairment. Therefore, the CC atrophy might be
ascribed as the neuroanatomy basis for memory decline in AD.
Additionally, a recent study showed the relationship between the
CC and AD by texture analysis (3).

Radiomics is a newly developed tumor diagnosis and auxiliary
detection technique in recent years. It transforms the visual
image information into deep features for quantitative research.
Radiomics may provide almost unlimited feature information.
The information includes the density, shape, size, and texture of
the tumor as determined by phenotype and microenvironment,
which aids in the evaluation of the efficacy and prognosis in
tumor therapy. The radiomics analysis has been applied to
various tumor diseases, such as glioma (4), nasopharyngeal
cancer (5), breast cancer (6), hepatocellular carcinoma (7),
lung cancer (8), and rectal cancer (9). Nowadays, radiomics is
also applied in non-tumor areas, for example, attention-deficit
hyperactivity disorder (10), Meniere’s disease (11), and autism
spectrum disorder (12).

In recent years, the most commonly used imaging method in
radiomics studies is computed tomography (CT) that quantifies
the tissue density. However, as compared to CT, magnetic
resonance (MR) images can provide numerous sequences. It
reflects not only the structure of the organization but also
the functional metabolism and dynamic changes. MR imaging
provides an enhanced tissue contrast, has a multidimensional
volume, and does not require a radiation dose (13). Several MR
methods have been used to study AD, including resting-state
functional MRI (14), voxel-based morphometry (15), diffusion
tensor imaging (16), and arterial spin labeling (17) among others.
Although these methods are greatly valuable in the diagnosis of
AD, they are rarely used in the related radiomics features.

In the present study, we used the T1-weighted MR images
of the brain for radiomics analysis. A series of characteristics
are obtained by analyzing the heterogeneity of the target area.
Finally, clinical prediction and feature analysis were realized.
Subsequently, we focused on studying the CC as it occupies
a crucial position in AD and can be considered suitable
for radiomics analysis. Therefore, the CC heterogeneity is
investigated to construct a classification model for distinguishing
between the patients with AD and HC.

MATERIALS AND METHODS

Patient Population and Data Acquisition
AD subjects were recruited from the Zhejiang Provincial
People’s Hospital from September 2016 to February 2018. The
healthy control (HC) subjects were right-handed volunteers and
recruited from the health promotion center of the hospital. All
the subjects provided written informed consent. This prospective
study was approved by the local Ethics Committee of the hospital
(No. 2012KY002). The work has been carried out in accordance
with the Declaration of Helsinki.

The patients underwent a set of standard dementia screening
including medical history, neuropsychological testing, physical
examinations, laboratory tests, and conventional brain MRI
scans. Patients with AD were first diagnosed and were required
to fulfill the criteria of the revised NINCDS-ADRDA (National
Institute of Neurological and Communicative Disorders and
Stroke and the Alzheimer’s Disease and Related Disorders
Association) (18). The subjects were evaluated using the Mini-
Mental State Examination (MMSE) (19). Patients with AD
received an MMSE score of ≤ 24.

The criteria for HC subjects were as follows: (1) no
neurological or psychiatric disorders such as stroke, epilepsy, or
depression; (2) no neurological deficiencies such as hearing or
visual loss; (3) no infarction, hemorrhage, or tumor lesion on
conventional brain MRI; (4) achieved an MMSE score ≥ 28.

The exclusion criteria for all the subjects were as follows: (1)
vascular dementia or mixed dementia; (2) stroke; (3) cerebral
trauma; (4) disorders that causememory loss such as brain tumor,
epilepsy, Parkinson’s disease; (5) systemic diseases such as severe
anemia, diabetes, and hypertension; (6) history of administering
psychoactive substances or alcohol dependence. Therefore, 85
patients with AD and 50 HC subjects were recruited initially,
followed by an MRI-based examination, and those with unusable
data due to the head movement were excluded (7 patients in the
AD group and 6 controls). Thus, 78 patients with AD and 44 HC
subjects were ultimately included in the study.

All examinations were performed using an MR scanner
(Discovery MR750 3.0T; GE Healthcare, Waukesha, WI, USA).
The three-dimensional T1-weighted magnetization-prepared
rapid gradient echo (MPRAGE) sagittal images were collected.
The scan parameters were as follows: TR = 6.7ms, TE = 2.9ms,
TI = 450ms, FOV = 256 × 256 mm2, flip angle = 12◦, slice
thickness/gap = 1/0mm, in-plane resolution = 256 × 256, and
192 sagittal slices in total. All collected data is from only one MR
scanner.

Segmentation
The CC is considered the region of interest (ROI). The manual
segmentation of the CC was carried out using the software “ITK-
SNAP” (http://www.itksnap.org/). We selected 9 sections from
each image sequence in the sagittal view: the central section,
4 to the right and 4 to the left, as the boundary of CC can
be recognizable easily in the sagittal images. Consequently, the
segmentation was based on anatomy, which was supported by
a previous study (20). All segmentations were conducted by
a radiologist and checked by an expert neuroradiologist. The
differences in the opinions were resolved by integrating another
expert neuroradiologist’s opinion. Artificial Intelligence Kit (A.K)
is a software developed by GE Healthcare Life Sciences for
feature extraction and analysis. It can be combined with software
“ITK-SNAP” to obtain 3D images.

Feature Calculation
First, we loaded the original three-dimensional T1-weighted
MPRAGE data and ROI images in bulk into the A.K software.
Then, the features including Histogram, Formfactor, Haralick,
gray level co-occurrence matrix (GLCM), and gray level
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run-length matrix (RLM), desired for computation were selected
in the data selection window. The displacement vectors were
selected as 1, 4, and 7 in the relevant window. The histogram
parameters were concerned with the properties of individual
pixels that described the distribution of the voxel intensities in
the image via basic metrics. The Formfactor parameters include
descriptors of the three-dimensional shape and size of the tumor
ROI. The texture is one of the major characteristics in identifying
the ROI in an image. Texture represents the appearance of the
surface and the distribution pattern of the voxels. The GLCM P
(i, j | θ , d) calculates the number of times a pixel with gray -level i
occurs with another pixel with a gray value j jointly. It is defined
as the joint probability of specific pixels having certain gray -level
values. The rotation angles of an offset are 0◦, 45◦, 90◦, 135◦, and
the distance to the neighboring pixel is 1, 2, 3...; the same images
have different co-occurrence distributions (21). The RLM P r(i,j
|θ) represents the number of runs for pixels with gray level i and
run length j for a given direction θ . The following ten features
of RLM were derived: short run emphasis, long run emphasis,
gray level non-uniformity, run length non-uniformity, low gray
level run emphasis, high gray level run emphasis, short run low
gray level emphasis, short run high gray level emphasis, long run
low gray level emphasis, and long run high gray level emphasis
(22, 23). The formulas for some parameters are displayed in
Table 1. The total number of features extracted from this data is
385. Then, the AD or HC label was added for each subject.

Feature Selection
The preprocessing before feature selection was divided into three
steps. The first step was dealing with the abnormal value. Here,

we replaced the abnormal values by mean. The second step was
to set the data to the training data proportion of 0.7 and the
testing data proportion of 0.3. The third step was to preprocess
the training data after division and perform the same operation
on the testing data. Thismethod is known as standardization. The
feature selection steps are as follows.

Step 1: The software first sought to identify the features that
contribute to the result using the T-test (P < 0.05).
The rank sum test was used to select the features with
significant differences (P < 0.05), and the features of
T-test and rank sum test were selected together.

Step 2: The correlation analysis reduced the dimension. The
filter threshold was set to 0.9 for the Spearman rank
correlation coefficient analysis that was conducted on
any two feature columns. The two features were highly
correlated if the correlation coefficient was> 0.9, thereby
excluding of one of them.

TABLE 2 | Demographics performances of the AD and healthy controls.

AD group HC group Statistic p value

Sample size 78 44 NA NA

Age (years, mean ± SD) 69.18 ± 12.23 65.43 ± 9.70 −1.75 0.08

Gender (Male: Female) 25:53 20:24 2.17* 0.14*

Education (years, mean ± SD) 7.54 ± 4.16 7.09 ± 3.38 −0.61 0.54

MMSE 16.94 ± 5.94 29.14 ± 0.77 17.87 <0.01

SD standard deviation; Statistics were calculated with t tests unless otherwise indicated;

*x2 test was used; MMSE mini-mental state examination.

TABLE 1 | Definition of the features measures computed in this study after feature selection.

Type of measure Name Formula

Texture Parameter ClusterShade_AllDirection_offset1
∑

i,j
((i − µ) + (j − µ))3 g(i, j)

GLCM Parameter InverseDifferenceMoment_AllDirection_offset1 f5 =

N8∑

i=1

N8∑

j=1

1
1+(i−j)2

p(i, j)

GLCM parameter InverseDifferenceMoment_AllDirection_offset4_SD f5 =

N8∑

i=1

N8∑

j=1

1
1+(i−j)2

p(i, j)

RLM parameter ShortRunEmphasis_angle45_offset1 SRE (θ) = 1
nr

M∑

i=1

N∑

j=1

p(i,j,θ )
j2

RLM parameter RunLengthNonuniformity_AllDirection_offset4_SD RLN (θ) = 1
nr

N∑

j=1
(
M∑

i=1
p(i, j, θ ))

2

RLM parameter ShortRunHighGreyLevelEmphasis_AllDire ction_offset4_SD SRHGE (θ) = 1
nr

N∑

j=i

M∑

i=1

p(i,j,θ )i2

j2

RLM parameter ShortRunEmphasis_angle90_offset7 SRE (θ) = 1
nr

M∑

i=1

N∑

j=1

p(i,j,θ )
j2

RLM parameter LongRunEmphasis_AllDirection_offset4_SD LRE (θ) = 1
nr

M∑

i=1

N∑

j=1
p(i, j, θ )j2

RLM parameter ShortRunEmphasis_angle0_offset4 SRE (θ) = 1
nr

M∑

i=1

N∑

j=1

p(i,j,θ )
j2

RLM parameter ShortRunEmphasis_angle90_offset4 SRE (θ) = 1
nr

M∑

i=1

N∑

j=1

p(i,j,θ )
j2

RLM parameter GreyLevelNonuniformity_AllDirection_offset7_SD GLN (θ) = 1
nr

M∑

i=1
(
N∑

j=1
p(i, j, θ ))

2

For texture parameter, g is a GLCM, where i,j are the spatial coordinates of g (i,j). For GLCM parameters, i is a gray-level, j is a gray value, N is the number of classes of gray levels. For

RLM parameters, nr is the number of runs, N is the number of classes of gray levels, and M is the size in voxels of the largest region found.
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Step 3: In the training data, the most useful features were
selected by the least absolute shrinkage and selection
operator (LASSO) Cox regression model. We need to
minimize the sum of squares of residues, with the sum
of the absolute values of the selected features coefficients
being not more than a tuning parameter (λ). We
chose the λ which got the minimum criteria according
to 10-fold cross-validation in the LASSO model. This
method was suitable for the regression analysis of high-
dimensional data, and patient features could be selected
based on the associations with the survival endpoints and
time (24).

Machine Learning
Firstly, training data and testing data were loaded for the
following up model building and testing. We subsequently
selected the logical regression method to establish a classification
model for AD diagnosis. This method was based on the
linear function; it served as an independent variable into the
sigmoid function. According to the probability P of the output
(probability that the classification result is 1), the classification
was determined. It’s one of the machine learning methods.

RESULTS

Comparison of Demographic and
Neuropsychological Performance
The demographic variables did not differ significantly between
patients and control subjects, as assessed by SPSS (version 22.0).
However, the neuropsychological performance was significantly
different between the two groups (Table 2).

Feature Selection Results
Step 1: A total of 385 features were extracted. The selective

method was T test + MW. The remaining feature
number was 196.

Step 2: The selective method was correlation analysis. The
threshold value was 0.9, correlation method Spearman,
and the remaining feature number was 89 (Figure 1).

Step 3: The selective method was Lasso. We found an optimal
lambda by using cross-validation. The error-lambda
graph is illustrated in Figure 2. The coefficients-lambda
graph is shown in Figure 3. The remaining feature
number was 11. The feature name order was as follows:
“InverseDifferenceMoment_AllDirection_offset1”;
“ClusterShade_AllDirection_offset1”;
“ShortRunEmphasis_angle45_offset1”;
“InverseDifferenceMoment_AllDirection_offset4_SD”;
“RunLengthNonuniformity_AllDirection_offset4_SD”;
“ShortRunHighGreyLevelEmphasis_AllDirection_offset
4_SD”;
“ShortRunEmphasis_angle90_offset7”;
“LongRunEmphasis_AllDirection_offset4_SD”;
“ShortRunEmphasis_angle0_offset4”;
“ShortRunEmphasis_angle90_offset4”;
“GreyLevelNonuniformity_AllDirection_offset7_SD”
(Table 1).

FIGURE 1 | Graph shows correlation analysis between the parameters of

training data.

FIGURE 2 | Graph shows error-lambda.

Machine Learning Results
The training and testing data were loaded, the proportion of
the training data was 0.7, while that of the testing data was
0.3. While establishing the classifier discriminating the patients
with AD from HC subjects, the selected method was logistic
regression based on the selected features. The area under the
receiver operating characteristic curve values (AUC), sensitivity,
specificity, accuracy, precision, positive predictive value, and
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FIGURE 3 | Plot of coefficients-lambda.

FIGURE 4 | ROC curve of training data.

negative predictive value were 0.720, 0.792, 0.500, 0.684, 0.731,
0.731, and 0.583, respectively (Figures 4–6).

DISCUSSION

The major finding of the present study was that the CC
radiomics-based classification model discriminated the patients
with AD from HC subjects. After a three-step feature selection,
an 11-feature radiomics signature was constructed using logistic
regression model for the diagnosis of patients with AD. Although
the specificity of this model was not extremely high, its diagnostic
value was better than the other indicators.

The radiomics analysis has already been applied to
neuropsychiatric disorders. For example, a radiomics study
found texture differences between autism spectrum disorder and
control groups in the right hippocampus, left choroid-plexus,
CC, and cerebellar white matter (25). Another recent radiomics
study indicated that cerebral morphometric alterations can
allow discrimination between the patients with attention deficit

FIGURE 5 | ROC curve of testing data.

hyperactivity disorder and control subjects and also among the
subtypes (10). This study has built random forest classifiers
for diagnosis and subtyping. In addition, textures differences
in the CC and thalamus were observed in AD and amnestic
mild cognitive impairment (3). One study investigated the
three-dimensional texture as a putative diagnostic marker of
AD (26). However, currently, there is no study describing the
establishment of the model in the analysis of AD radiomics
studies. Thus, for the first time, the present study attempted
to construct a classification model for the diagnosis of AD.
In addition, the machine learning method was added to the
modeling.

The CC presented abnormality in the surface-based
morphometry and microstructural integrity in the patients with
AD (27). Another study found significant volume reductions
in anterior and posterior of the CC in severe AD patients (28).
A voxel-based morphometry study in AD detected significant
atrophy of CC in the anterosuperior splenium, the anterior
and posterior portions of the body, and the rostral portion of
the genu (29). The volume changes in the different portions
of the CC might exist in different pathological processes.
Reportedly, the anterior portion of CC consists of myelinated
axons with a small diameter; however, the posterior portion
consists of thick fibers (1). Thus, this abnormal development
might result in the differences observed in the texture. In
the current study, the texture features derived from the CC
were used for differentiating between AD and HC subjects.
Herein, we established an analysis framework on the basis of
CC radiomics and machine learning methods for AD diagnosis,
which suggested that the CC radiomics features could be used
as biomarkers for AD diagnosis. Nevertheless, longitudinal
developmental studies are essential to substantiate these
interpretations. Structural data were involved in the process
of classifier building, thereby providing a neuroanatomical
evaluation of the disorder.
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FIGURE 6 | The radiomics score based on the testing data. The red area below the horizontal line and the blue area above the horizontal line represented the

accurate prediction. On the contrary, the red area above the horizontal line and the blue area below the horizontal line represented the false prediction.

The radiomics signature consisted of 11 imaging features
that were deep features, extracted from the three-dimensional
T1-weighted MPRAGE images. The deep features extracted
from A.K. performed better than the conventional handcrafted
features in the diagnosis of patients with AD. As expected,
the deep features reflected higher order imaging patterns and
captured more imaging heterogeneity as compared to the low-
level shape, intensity, and texture features. Cluster Shade is one
of the texture parameters. Cluster analysis is the task of grouping
objects such that the objects in the same cluster are rather
similar to each other than those in the other clusters. The inverse
difference moment is one of the GLCM parameters. Short run
emphasis, long run emphasis, run length non-uniformity, short-
run high gray level emphasis, and gray level non-uniformity
constitute the RLM parameters. They reflect the measurement of
nonuniformity of the length and that of the grayscale. Thus, the
observed abnormalities in the CC may be clinically relevant with
respect to cognitive and behavioral issues in patients with AD.
However, the relationship between the radiomics features and the
genetic characteristics is yet challenging.

Nevertheless, the present study has several limitations.
First, owing to the insufficient sample size, the classification
performance may be limited. Thus, a large-scale multicenter
study is required to fully assess the generalization ability of
the radiomics model in future. Second, although no statistically
significant difference was detected between the two groups in the
sex ratio analysis, we did not achieve a complete 1:1 match, and
hence, it was not possible to completely exclude the effect on
the study results. Finally, there is no evaluation of white matter
integrity using white matter imaging method, such as DTI and
DKI, which need to be further studied.

Future radiomics work can use additional imaging modalities,
such as diffusion tensor imaging and functional MRI. These
radiomicsmodelsmight contain additional anatomical structures
related to AD, such as the hippocampus, medial temporal
lobe, thalamus, as well as, the whole brain. Furthermore, we
can improve the classification performance by combining the

radiomics analysis with established clinical risk factors such as
age and MMSE score.

In conclusion, our findings indicated that a moderately
successful diagnostic classification efficiency could be achieved
between patients with AD and HC subjects using the CC
radiomic features. The workflow was automatic, and therefore,
potentially useful in the clinical setting. As a non-invasive MR-
based imaging biomarker, the radiomics analysis might provide
a valuable and practical method to identify the patients with AD
and guide the individualized treatment.
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